1
|
Nikjoo D, van der Zwaan I, Rudén J, Frenning G. Engineered microparticles of hyaluronic acid hydrogel for controlled pulmonary release of salbutamol sulphate. Int J Pharm 2023; 643:123225. [PMID: 37451326 DOI: 10.1016/j.ijpharm.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Most pulmonary drugs are immediate-release formulations with short duration of action. Controlled release systems provide the ability to deliver drugs at a controlled rate, which helps maintain drug concentrations within the therapeutic window for a longer period of time. This study aimed to produce microparticles (MPs) of hyaluronic acid hydrogel (HAGA) loaded with salbutamol sulphate (SS) for controlled release in the lung. The drug-loaded MPs were prepared via spray drying and underwent extensive characterization, which revealed that SS was successfully encapsulated in the HAGA matrix. The prepared MPs (denoted as HASS) ranged in size from 1.6 ± 0.4 μm to 1.7 ± 0.5 μm with a fine particle fraction (FPF) of 48-56% and showed improvement in aerodynamic properties compared to unloaded HAGA hydrogel MPs. In vitro drug release studies performed in a Transwell system confirmed the potential of the particles to release the drug in a sustained manner. The drug release was delayed for all formulations, with a t63 between 5 and 30 min, compared to <1min for pure SS. This study advances our understanding of the formulation of a highly soluble drug to achieve controlled release in the lung.
Collapse
Affiliation(s)
- Dariush Nikjoo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; Division of Material Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Irès van der Zwaan
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Jonas Rudén
- Pharmaceutical Development, Orexo AB, 751 05, Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
2
|
Chen Y, Huang Y, Jin Q. Polymeric nanoplatforms for the delivery of antibacterial agents. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| |
Collapse
|
3
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
4
|
Kaul S, Nagaich U, Verma N. Preclinical assessment of nanostructured liquid crystalline particles for the management of bacterial keratitis: in vivo and pharmacokinetics study. Drug Deliv Transl Res 2021; 12:1719-1737. [PMID: 34582029 DOI: 10.1007/s13346-021-01072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
The research work was driven to develop, optimize, and characterize novel nanostructured liquid crystalline particles as carriers for the ocular delivery of vancomycin. The formulations were developed by fragmenting the cubic crystalline phase of glycerol monooleate, water, and poloxamer 407. A four-factor, three-level Taguchi statistical experimental design was constructed to optimize the formulation. Formulations exhibited internal-cubic structure of the vesicles with particle size in the range of 51.11 ± 0.96 nm to 158.73 ± 0.46 nm and negative zeta potential. Ex vivo transcorneal permeation studies demonstrated that the optimized cubosomes had a 2.4-fold increase in apparent permeability co-efficient as compared to vancomycin solution, whereas in vivo studies in rabbits demonstrated that the severity of keratitis was considerably lowered on day 3 with optimized cubosomes. Ocular pharmacokinetic studies evaluated the level of drug in aqueous humor, and results revealed that the time to peak concentration (Tmax) of vancomycin-loaded cubosomal formulation was about 1.9-fold higher and mean residence time was 2.2-fold greater than vancomycin solution. Furthermore, histological examination revealed that the corneal layers displayed well-maintained morphology without any stromal swelling, consequently indicating the safety of formulation. It could be concluded that the developed nanostructured liquid crystalline particles of vancomycin demonstrated improved pre-ocular residence time, increased permeability, reduced dosing frequency, controlled drug release, and reduced systemic side-effects. Results manifested that the developed vancomycin-loaded cubosomes could be a promising novel ocular carrier and an ideal substitute for conventional eye drops for the management of bacterial-keratitis.
Collapse
Affiliation(s)
- Shreya Kaul
- Department of Pharmaceutics, Faculty of Pharmacy, IFTM University, Uttar Pradesh, Moradabad, India.
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Navneet Verma
- Department of Pharmaceutics, Faculty of Pharmacy, IFTM University, Uttar Pradesh, Moradabad, India
| |
Collapse
|
5
|
Zero-order drug delivery: State of the art and future prospects. J Control Release 2020; 327:834-856. [PMID: 32931897 DOI: 10.1016/j.jconrel.2020.09.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
Pharmaceutical drugs are an important part of the global healthcare system, with some estimates suggesting over 50% of the world's population takes at least one medication per day. Most drugs are delivered as immediate-release formulations that lead to a rapid increase in systemic drug concentration. Although these formulations have historically played an important role, they can be limited by poor patient compliance, adverse side effects, low bioavailability, or undesirable pharmacokinetics. Drug delivery systems featuring first-order release kinetics have been able to improve pharmacokinetics but are not ideal for drugs with short biological half-lives or small therapeutic windows. Zero-order drug delivery systems have the potential to overcome the issues facing immediate-release and first-order systems by releasing drug at a constant rate, thereby maintaining drug concentrations within the therapeutic window for an extended period of time. This release profile can be used to limit adverse side effects, reduce dosing frequency, and potentially improve patient compliance. This review covers strategies being employed to attain zero-order release or alter traditionally first-order release kinetics to achieve more consistent release before discussing opportunities for improving device performance based on emerging materials and fabrication methods.
Collapse
|
6
|
Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alotaibi NH, Alshehri S, Alhakamy NA, Alzarea AI, Afzal M, Elmowafy M. Stimulus Responsive Ocular Gentamycin-Ferrying Chitosan Nanoparticles Hydrogel: Formulation Optimization, Ocular Safety and Antibacterial Assessment. Int J Nanomedicine 2020; 15:4717-4737. [PMID: 32636627 PMCID: PMC7335305 DOI: 10.2147/ijn.s254763] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study was designed to study the gentamycin (GTM)-loaded stimulus-responsive chitosan nanoparticles to treat bacterial conjunctivitis. METHODS GTM-loaded chitosan nanoparticles (GTM-CHNPs) were prepared by ionotropic gelation method and further optimized by 3-factor and 3-level Box-Behnken design. Chitosan (A), sodium tripolyphosphate (B), and stirring speed (C) were selected as independent variables. Their effects were observed on particle size (PS as Y1), entrapment efficiency (EE as Y2), and loading capacity (LC as Y3). RESULTS The optimized formulation showed the particle size, entrapment efficiency, and loading capacity of 135.2±3.24 nm, 60.18±1.65%, and 34.19±1.17%, respectively. The optimized gentamycin-loaded chitosan nanoparticle (GTM-CHNPopt) was further converted to the stimulus-responsive sol-gel system (using pH-sensitive carbopol 974P). GTM-CHNPopt sol-gel (NSG5) exhibited good gelling strength and sustained release (58.99±1.28% in 12h). The corneal hydration and histopathology of excised goat cornea revealed safe to the cornea. It also exhibited significant (p<0.05) higher ZOI than the marketed eye drop. CONCLUSION The finding suggests that GTM-CHNP-based sol-gel is suitable for ocular delivery to enhance the corneal contact time and improved patient compliance.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Kingdom of Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulaziz I Alzarea
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Salvi V, Pawar P. Eudragit RL100 Based Moxifloxacin Hydrochloride and Ketorolac Tromethamine Combination Nanoparticulate System for Ocular Drug Delivery. Pharm Nanotechnol 2020; 8:133-147. [PMID: 32167436 DOI: 10.2174/2211738508666200313140902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bacterial conjunctivitis is a serious ocular infection if left untreated. It is caused by several species of bacteria like Pseudomonas, Staphylococcus and Mycobacterium. OBJECTIVE The present investigation explores the development and characterization of moxifloxacin hydrochloride and ketorolac tromethamine combination loaded Eudragit RL 100 nanosuspension for ocular drug delivery in order to overcome the problems associated with conventional dosage forms. METHODS The nanosuspension prepared by nanoprecipitation technique showed successful entrapment of both water-soluble drugs in the polymer matrix indicated by their % entrapment efficiencies. RESULTS Formulations showed a mean particle size <200 nm with narrow size distribution and positive surface charge due to the presence of quaternary ammonium groups of Eudragit RL100. FTIR study revealed compatibility among the components, while a reduction in the crystallinity of formulation was observed in the PXRD study. The release of both the drugs was found to be sustained in nanosuspension as compared to commercial eyedrops. Ex vivo studies showed increased transcorneal permeation of drugs from nanosuspension, where approximately 2.5-fold and 2-fold increase in the permeation was observed for moxifloxacin hydrochloride and ketorolac tromethamine, respectively. The formulation was stable at 4°C and room temperature. CONCLUSION Due to their sustained release, positive surface charge and higher transcorneal permeation, this will be a promising ocular drug delivery.
Collapse
Affiliation(s)
- Vedanti Salvi
- Department of Pharmaceutics (PG), Gourishankar Institute of Pharmaceutical Education & Research, Limb, Survey No.990, NH-4, Satara-4150415, MS, India
| | - Pravin Pawar
- Department of Pharmaceutics, Annasaheb Dange College of B Pharmacy, Ashta, Tal-Walwa, Dist. Sangli-415301, MS, India
| |
Collapse
|
8
|
Cyclosporine-loaded cross-linked inserts of sodium hyaluronan and hydroxypropyl-β-cyclodextrin for ocular administration. Carbohydr Polym 2018; 201:308-316. [DOI: 10.1016/j.carbpol.2018.08.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022]
|
9
|
Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin Ophthalmol 2018; 12:2223-2235. [PMID: 30464383 PMCID: PMC6219274 DOI: 10.2147/opth.s165722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cataract surgery is one of the most commonly performed surgeries worldwide, with nearly 20 million cases annually. Appropriate prophylaxis after cataract surgery can contribute to a safe and quick visual recovery with high patient satisfaction. Despite being the current standard of care, the use of multiple postoperative eye drops can create a significant burden on these patients, contributing to documented and significant non-adherence to the postoperative regimen. Over the past 25 years, there have been a few studies analyzing the use of intracameral dexamethasone (DXM) in controlling inflammation following cataract surgery. This review explores various drug delivery approaches for managing intraocular inflammation after cataract surgery, documenting the strengths and weaknesses of these options and examining the role of intracameral DXM (among these other strategies) in controlling postoperative intraocular inflammation. Intracameral DXM has a particular advantage over topical steroids in possibly decreasing postoperative inflammatory symptoms and objective anterior cell and flare scores. Compared to topical steroids, there may be a slightly less theoretical risk of significant intraocular pressure spikes and systemic absorption. In addition, surveys indicate patients prefer an intraoperative intracameral injection over a self-administered postoperative eye drop regimen. However, there are several adverse effects associated with intracameral DXM delivery that are not seen with the noninvasive topical approach. Although it is unlikely that intracameral DXM will replace topical medications as the standard management for postoperative inflammation, it is seemingly another safe and effective strategy for controlling postoperative inflammation after routine cataract surgery.
Collapse
Affiliation(s)
- Tirth J Shah
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, USA,
| | - Mandi D Conway
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, USA,
- Department of Ophthalmology, Tulane University College of Medicine, New Orleans, Louisiana, USA,
| | - Gholam A Peyman
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, USA,
- Department of Ophthalmology, Tulane University College of Medicine, New Orleans, Louisiana, USA,
| |
Collapse
|
10
|
Abstract
The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.
Collapse
Affiliation(s)
- Om Prakash Sharma
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Viral Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
11
|
Semnani D, Afrashi M, Alihosseini F, Dehghan P, Maherolnaghsh M. Investigating the performance of drug delivery system of fluconazole made of nano-micro fibers coated on cotton/polyester fabric. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:175. [PMID: 28956211 DOI: 10.1007/s10856-017-5957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Polymer-based drug delivery systems are suitable to optimize the therapeutic properties of drugs and to render them safer, more effective and reliable. Long-term or repeated use of oral administration of fluconazole for treating chronic candidiasis in the patient and partially abandoned treatment lead to the resistant strains of the fungus Candida albicans and severity of the disease. In this study, the use of nanofibers and microfibers containing fluconazole for local drug delivery to increase the efficiencies and reduce the side effects caused by taking the drug was studied. Morphology, microstructure and chemical composition of PVA nanofibers containing fluconazole were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). As well as, the DSC test was indicated presence of fluconazole in PVA fibrous mats. The rate of drug release was investigated by UV-Vis spectrophotometery and swelling technique. SEM images showed that the nanofibers with uniform structure without beads were produced. The mechanical properties of the pristine PVA nanofiber and fibrous mat containing drug were evaluated. The release of fluconazole from PVA nanofibers in pH of 7.4 and at 37 °C was investigated. The results presented that the drug release rate is dependent on the morphology and structure of PVA nanofibers and could be adjusted in desired dosage. The presented products are applicable in the high production form for medical textile industry.
Collapse
Affiliation(s)
- Dariush Semnani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Mehran Afrashi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Farzaneh Alihosseini
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Parvin Dehghan
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Maherolnaghsh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery. A summary table will provide quick reference to note the key findings in this area. In addition, the review also elucidates current theranostic and diagnostic approaches based on ocular lenses.
Collapse
|
13
|
Rodríguez Villanueva J, Rodríguez Villanueva L, Guzmán Navarro M. Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends. Int J Pharm 2016; 516:342-351. [PMID: 27889587 DOI: 10.1016/j.ijpharm.2016.11.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 01/04/2023]
Abstract
Dexamethasone is one of the most prescribed glucocorticoids. It is effective and safe in the treatment of a wide variety of ocular conditions, including anterior and posterior segment inflammation. However, its half-life in the vitreous humor is very short, which means that it typically requires frequent administrations, thus reducing patient adherence and causing therapeutic failure. Innovative dexamethasone delivery systems have been designed in an attempt to achieve sustained release and targeting. The FDA has approved dexamethasone implants for the treatment of macular edema secondary to retinal vein occlusion and posterior segment noninfectious uveitis. Lenses, micro- and nanoparticles, liposomes, micelles and dendrimers are also proving to be adequate systems for maintaining optimal dexamethasone levels in the site of action. Pharmaceutical technology is turning a classical drug, dexamethasone, into a fashionable medicine.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain.
| | - Laura Rodríguez Villanueva
- Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel Guzmán Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|