1
|
El-Halwagy MO, Hegazy EM, Shalaby HK, Mahmoud EF. Impact of short and long-term application of low-level laser therapy on mandibular alveolar process of osteoporotic rats - a Histological and Molecular Study. Lasers Med Sci 2025; 40:5. [PMID: 39751945 PMCID: PMC11698838 DOI: 10.1007/s10103-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.1 mg/kg b.wt./day for 60 days) for the induction of osteoporosis, then the rats were treated using LLLT (830 nm, 100 mW, at 60 J/cm2). The lower jaw specimens were collected and processed for histological, molecular, and histomorphometric assessments. The osteoporotic group exhibited alveolar bone resorption, accompanied by significantly upregulated RANKL and downregulated OPG mRNA expression. The short-term application of laser group showed alveolar bone partial improvement with slightly downregulated RANKL and slightly upregulated OPG levels. The long-term application of laser group showed dramatic positive changes in the alveolar bone, with markedly downregulated RANKL and upregulated OPG levels. LLLT shows potential as a low-risk and impactful local management for osteoporosis, with long-term laser application demonstrably improving bone quality, quantity, and organization compared to short-term application.
Collapse
Affiliation(s)
- Mai O El-Halwagy
- Oral Biology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| | - Hany K Shalaby
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt
| | - Elham F Mahmoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| |
Collapse
|
2
|
Zheng M, Xu J, Feng Z. Association between nonalcoholic fatty liver disease and bone mineral density: Mendelian randomization and mediation analysis. Bone Rep 2024; 22:101785. [PMID: 39220175 PMCID: PMC11363625 DOI: 10.1016/j.bonr.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Observational studies have reported significant association between non-alcoholic fatty liver disease (NAFLD) and bone mineral density (BMD), a critical indicator of bone health. We aimed to investigate whether NAFLD is a cause for changes in BMD. Methods We selected 29 independent SNPs as instrumental variables for NAFLD. A range of Mendelian randomization (MR) methods, namely the inverse variance-weighted (IVW) method, weighted-median, weighted-mode, and MR-Egger regression, were utilized to determine the causal effects of NAFLD on BMD. Two-step MR analysis was conducted to determine the mediating effect of fasting glucose, insulin, glycosylated hemoglobin, low-density cholesterol, and body-mass index on the association between NAFLD and BMD. False-discovery-rate (FDR) was used to correct for multiple testing bias. Results The IVW-method indicated a significantly inverse association between genetically predicted NAFLD and total body BMD (β = -0.04, 95 % CI -0.07 to -0.02, FDR = 0.010). Notably, the relationship was more pronounced in participants over 60 years of age (β = -0.06, 95 % CI -0.11 to -0.02, FDR = 0.030). Inverse associations were observed in other subpopulations and in site-specific BMD, though they were not statistically significant after correcting for multiple testing. We observed a significantly positive association between NAFLD and the risk of osteoporosis. Consistency in results was observed across multiple MR methods and in the repeated analysis. Fasting glucose, insulin, and glycosylated hemoglobin mediated 25.4 % (95 % CI 17.6-31.5 %), 18.9 % (12.0-24.9 %), and 27.9 % (19.9-36.7 %) of the effect of NAFLD on BMD, respectively. Conclusion Our findings underscore a probable causal negative link between NAFLD and BMD, indicating that NAFLD might detrimentally affect bone health, especially in older individuals.
Collapse
Affiliation(s)
- Minzhe Zheng
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| | - Junxiang Xu
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| | - Zongxian Feng
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| |
Collapse
|
3
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
4
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Chai S, Yang Y, Wei L, Cao Y, Ma J, Zheng X, Teng J, Qin N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155516. [PMID: 38547625 DOI: 10.1016/j.phymed.2024.155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated. PURPOSE This research aimed to determine the effect of Lut in ameliorating PMOP by alleviating osteoblast pyroptosis and sustaining osteogenesis. STUDY DESIGN This research was designed to investigate the novel mechanism of Lut in alleviating PMOP both in cell and animal models. METHODS Ovariectomy-induced PMOP models were established in mice with/without daily gavaged of 10 or 20 mg/kg body weight Lut. The impact of Lut on bone microstructure, metabolism and oxidative stress was evaluated with 0.104 mg/kg body weight Estradiol Valerate Tablets daily gavaged as positive control. Network pharmacological analysis and molecular docking were employed to investigate the mechanisms of Lut in PMOP treatment. Subsequently, the impacts of Lut on the PI3K/AKT axis, oxidative stress, mitochondria, and osteoblast pyroptosis were assessed. In vitro, cultured MC3T3-E1(14) cells were exposed to H2O2 with/without Lut to examine its effects on the PI3K/AKT signaling pathway, osteogenic differentiation, mitochondrial function, and osteoblast pyroptosis. RESULTS Our findings demonstrated that 20 mg/kg Lut, similar to the positive control drug, effectively reduced systemic bone loss and oxidative stress, and enhanced bone metabolism induced by ovariectomy. Network pharmacological analysis and molecular docking indicated that the PI3K/AKT axis was a potential target, with oxidative stress response and nuclear membrane function being key mechanisms. Consequently, the effects of Lut on the PI3K/AKT axis and pyroptosis were investigated. In vivo data revealed that the PI3K/AKT axis was deactivated following ovariectomy, and Lut restored the phosphorylation of key proteins, thereby reactivating the axis. Additionally, Lut alleviated osteoblast pyroptosis and mitochondrial abnormalities induced by ovariectomy. In vitro, Lut intervention mitigated the inhibition of the PI3K/AKT axis and osteogenesis, as well as H2O2-induced pyroptosis. Furthermore, Lut attenuated ROS accumulation and mitochondrial dysfunction. The effects of Lut, including osteogenesis restoration, anti-pyroptosis, and mitochondrial maintenance, were all reversed with LY294002 (a PI3K/AKT pathway inhibitor). CONCLUSION In summary, Lut could improve mitochondrial dysfunction, alleviate GSDME-mediated pyroptosis and maintain osteogenesis via activating the PI3K/AKT axis, offering a new therapeutic strategy for PMOP.
Collapse
Affiliation(s)
- Shuang Chai
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yanbing Yang
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Liwei Wei
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, Zhengzhou, 450016, Henan Province, China
| | - Jiangtao Ma
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Xuxia Zheng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Junyan Teng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Na Qin
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China.
| |
Collapse
|
6
|
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024; 13:1646. [PMID: 38890875 PMCID: PMC11172246 DOI: 10.3390/foods13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamins are essential organic compounds that vary widely in chemical structure and are vital in small quantities for numerous biochemical and biological functions. They are critical for metabolism, growth, development and maintaining overall health. Vitamins are categorised into two groups: hydrophilic and lipophilic. Vitamin K (VK), a lipophilic vitamin, occurs naturally in two primary forms: phylloquinone (VK1), found in green leafy vegetables and algae, and Menaquinones (VK2), present in certain fermented and animal foods and widely formulated in VK supplements. This review explores the possible factors contributing to VK deficiency, including dietary influences, and discusses the pharmacological and therapeutic potential of supplementary VK2, examining recent global clinical studies on its role in treating diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, diabetes, neurodegenerative disorders and cancers. The analysis includes a review of published articles from multiple databases, including Scopus, PubMed, Google Scholar, ISI Web of Science and CNKI, focusing on human studies. The findings indicate that VK2 is a versatile vitamin essential for human health and that a broadly positive correlation exists between VK2 supplementation and improved health outcomes. However, clinical data are somewhat inconsistent, highlighting the need for further detailed research into VK2's metabolic processes, biomarker validation, dose-response relationships, bioavailability and safety. Establishing a Recommended Daily Intake for VK2 could significantly enhance global health.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland
| | - James W. Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
7
|
Li Y, Tan J, Tian J, Xu J, Shao H, Zhang J, Zhao T, Huang Y. Cross-sectional analysis of the correlation between serum uric acid and trabecular bone score: NHANES 2005-2008. Sci Rep 2023; 13:21546. [PMID: 38057416 PMCID: PMC10700542 DOI: 10.1038/s41598-023-48739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Serum uric acid (SUA) has been discovered to be associated with bone mineral density (BMD), but its relationship with trabecular bone score (TBS) remains unclear. Thus, the aim of our study was to investigate the association between SUA levels and TBS. Our study included 5895 individuals over 20 years old (3061 men and 2834 women) from NHANES 2005-2008. To analyze the association between SUA and TBS, multivariate linear regression models with covariate adjustments were applied. Furthermore, population description, stratified analysis, single factor analysis, smooth curve fitting, interaction analysis, and threshold effect and saturation effect analysis were also conducted. After adjusting for covariates, SUA showed a strong negative relationship with total TBS (β = 0.319; 95% CI 0.145-0.494; P < 0.001). The relationship between SUA levels and total TBS was found to be nonlinear, with inflection points at 4.8 mg/dL for the overall population, 4.2 mg/dL for women, and 5.7 mg/dL for non-Hispanic whites, indicating a saturation effect. Additionally, no interactions were found in any of the subgroups. Our study found a negative association between SUA and total TBS in adults. Maintaining SUA at a saturated level can benefit in preventing osteoporosis and fractures.
Collapse
Affiliation(s)
- Yanlei Li
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Jinxin Tan
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang, China
| | - Jinlong Tian
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Jiongnan Xu
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Haiyu Shao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Jun Zhang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China.
| | - Yazeng Huang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
8
|
Wang J, Xing F, Sheng N, Xiang Z. Associations of dietary oxidative balance score with femur osteoporosis in postmenopausal women: data from the National Health and Nutrition Examination Survey. Osteoporos Int 2023; 34:2087-2100. [PMID: 37648795 DOI: 10.1007/s00198-023-06896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
We used data from the NHANES to explore associations of DOBS with femur BMD and osteoporosis in postmenopausal women. We found that DOBS was positively associated with femur BMD and negatively associated with the risk of osteoporosis in postmenopausal women. PURPOSE The study aimed to investigate the relationship between dietary oxidative balance score (DOBS) and the risk of osteoporosis in American postmenopausal women. METHODS A total of 3043 participants were included in this study. The linear relationship between DOBS and femur BMD was evaluated using a weighted multivariate linear regression model. The association between DOBS and the risk of osteoporosis was assessed using a weighted logistic regression model, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated. Moreover, the relationship was further characterized through smooth curve fitting (SCF) and weighted generalized additive model (GAM) analysis. RESULTS After adjusting for all covariates, the weighted multivariable linear regression models showed a positive correlation between DOBS and femur BMD. Moreover, the weighted logistic regression model demonstrated that compared to the first tertile of DOBS, the highest tertile of DOBS was significantly associated with a lower risk of osteoporosis, with ORs of 0.418 (95% CI, 0.334, 0.522) for individuals under the age of 70 and 0.632 (95% CI, 0.506, 0.790) for individuals aged 70 or above. Similar trends were also observed in SCF and GAM models. CONCLUSION The present study indicated that postmenopausal women with a higher DOBS have a lower risk of femur osteoporosis. This finding may highlight the potential protective role of an antioxidant-rich diet for the bones of the postmenopausal population. Moreover, DOBS may also be a valuable tool in identifying individuals with osteoporosis. Screening and early intervention for osteoporosis may be essential for postmenopausal women with low DOBS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Fei Xing
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ning Sheng
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Chen F, Zhang X, Chen S, Wu Y, Wei Q, Chu X, Zhang Z. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbiota metabolite of flavan-3-ols, activates SIRT1-mediated autophagy to attenuate H₂O₂-induced inhibition of osteoblast differentiation in MC3T3-E1 cells. Free Radic Biol Med 2023; 208:309-318. [PMID: 37611644 DOI: 10.1016/j.freeradbiomed.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Phenolic compounds are promising agents for the prevention of osteoporosis. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (DHPV) is the major microbiota metabolite of the flavan-3-ols phenolic compound. Herein, we aimed to investigate the potential mechanisms underlying the effects of DHPV on an osteoblast cell model with H2O2-induced oxidative injury. The MC3T3-E1 cell cultured with H2O2 was used as an oxidative injury model after pretreating with DHPV. Pretreatment with DHPV significantly attenuated cell viability decline, enhanced the activity of alkaline phosphatase and mineralization capacity in MC3T3-E1 cells. Reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels as well as increased in mitochondrial membrane potential and superoxide dismutase (SOD) activities indicated that DHPV affected both the oxidative and antioxidative processes in the cells. DHPV administration increased the LC3-II/I ratio and Beclin-1 protein levels, thereby promoting autophagy, which perhaps contributes to ROS elimination. However, the inhibition of Sirtuin 1 (SIRT1) by SIRT1 small interfering RNA reduced the protective effect of DHPV or SRT1720, as revealed by the increased ROS and MDA levels and decreased SOD, LC3-II/I ratio and Beclin-1 levels. DHPV may promote autophagy and reduce oxidative stress through the SIRT1-mediated pathway, thereby protecting MC3T3-E1 cells from H2O2-induced oxidative damage.
Collapse
Affiliation(s)
- Fengyan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xuanrui Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
11
|
Ekeuku SO, Chin KY, Qian J, Zhang Y, Qu H, Ahmad F, Wong SK, Noor MMM, Soelaiman IN. The effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised rats. Int J Med Sci 2023; 20:1711-1721. [PMID: 37928881 PMCID: PMC10620870 DOI: 10.7150/ijms.84604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Mohd Mustazil Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Han H, Chen S, Wang X, Jin J, Li X, Li Z. Association of the composite dietary antioxidant index with bone mineral density in the United States general population: data from NHANES 2005-2010. J Bone Miner Metab 2023; 41:631-641. [PMID: 37291468 DOI: 10.1007/s00774-023-01438-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION There is evidence that individual antioxidants may increase bone mineral density (BMD) in patients with low BMD. However, the association between overall dietary antioxidant intake and BMD is unclear. The objective of this study was to examine how overall dietary antioxidant intake is related to BMD. MATERIALS AND METHODS A total of 14,069 people participated in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2010. Dietary Antioxidant Index (DAI) was calculated from the intake of vitamins A, C, E, zinc, selenium, and magnesium, which indicates a nutritional tool to assess the overall antioxidant properties of the diet. The correlation between the Composite Dietary Antioxidant Index (CDAI) and BMD was examined using multivariate logistic regression models. In addition to fitting smoothing curves, we fitted generalized additive models as well. Furthermore, to ensure data stability and avoid confounding factors, subgroup analysis was also conducted on gender and body mass index (BMI). RESULTS A significant association was demonstrated by the study between CDAI and total spine BMD (β = 0.001, 95% CI 0-0.001, P = 0.00039). And just like that, CDAI was positively correlated with femoral neck (β = 0.003, 95% CI 0.003-0.004, P < 0.00001) and trochanter (β = 0.004, 95% CI 0.003-0.004, P < 0.00001). In the gender subgroup analysis, CDAI maintained a strong positive correlation with femoral neck and trochanter BMD in males and females. Nevertheless, the link with total spine BMD was only observed in males. In addition, in the subgroup analysis stratified by BMI, CDAI showed a significantly positive relation to BMD of the femoral neck and trochanter in each group. However, the significant relationship between CDAI and BMD of the total spine was only maintained when BMI was above 30 kg/m2. CONCLUSION This study found that CDAI correlated positively with femoral neck, trochanter, and total spine BMD. This suggests that intake of a diet rich in antioxidants can reduce the risk of low bone mass and osteoporosis.
Collapse
Affiliation(s)
- Huawei Han
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, People's Republic of China
| | - Shuai Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, People's Republic of China
| | - Xinzhe Wang
- Department of Gynecology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Jin
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, People's Republic of China
| | - Xianghui Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, People's Republic of China.
| | - Zhiwei Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Faheem MA, Akhtar T, Naseem N, Aftab U, Zafar MS, Hussain S, Shahzad M, Gobe GC. Chrysin Is Immunomodulatory and Anti-Inflammatory against Complete Freund's Adjuvant-Induced Arthritis in a Pre-Clinical Rodent Model. Pharmaceutics 2023; 15:1225. [PMID: 37111711 PMCID: PMC10144384 DOI: 10.3390/pharmaceutics15041225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysin (5,7-dihydroxyflavone) has many pharmacological properties including anti-inflammatory actions. The objective of this study was to evaluate the anti-arthritic activity of chrysin and to compare its effect with the non-steroidal anti-inflammatory agent, piroxicam, against complete Freund's adjuvant (CFA)-induced arthritis in a pre-clinical model in rats. Rheumatoid arthritis was induced by injecting CFA intra-dermally in the sub-plantar region of the left hind paw of rats. Chrysin (50 and 100 mg/kg) and piroxicam (10 mg/kg) were given to rats with established arthritis. The model of arthritis was characterized using an index of arthritis, with hematological, biological, molecular, and histopathological parameters. Treatment with chrysin significantly reduced the arthritis score, inflammatory cells, erythrocyte sedimentation rate, and rheumatoid factor. Chrysin also reduced the mRNA levels of tumor necrosis factor, nuclear factor kappa-B, and toll-like recepter-2 and increased anti-inflammatory cytokines interleukin-4 and -10, as well as the hemoglobin levels. Using histopathology and microscopy, chrysin reduced the severity of arthritis in joints, infiltration of inflammatory cells, subcutaneous inflammation, cartilage erosion, bone erosion, and pannus formation. Chrysin showed comparable effects to piroxicam, which is used for the treatment of rheumatoid arthritis. The results showed that chrysin possesses anti-inflammatory and immunomodulatory effects that make it a potential drug for the treatment of arthritis.
Collapse
Affiliation(s)
- Muhammad Asif Faheem
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Nadia Naseem
- Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | | | - Safdar Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Glenda Carolyn Gobe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Yang S, Li H, Gu Y, Wang Q, Dong L, Xu C, Fan Y, Liu M, Guan Q, Ma L. The association between total bile acid and bone mineral density among patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1153205. [PMID: 37033244 PMCID: PMC10080120 DOI: 10.3389/fendo.2023.1153205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Bile acids have underlying protective effects on bones structure. Long-term diabetes also causes skeletal disorders including osteoporosis, Charcot arthropathy and renal osteodystrophy. Nevertheless, few studies have reported whether bile acid is associated with bone metabolism in diabetics. This study aimed to explore the relationship between total bile acid (TBA) and bone mineral density (BMD) among patients with type 2 diabetes mellitus (T2DM). Methods We retrospectively included 1,701 T2DM patients who were hospitalized in Taian City Central Hospital (TCCH), Shandong Province, China between January 2017 to December 2019. The participants were classified into the osteopenia (n = 573), osteoporosis (n= 331) and control groups (n= 797) according to BMD in the lumbar spine and femoral. The clinical parameters, including TBA, bilirubin, vitamin D, calcium, phosphorus and alkaline phosphatase were compared between groups. Multiple linear regression was used to analyze the relationship between TBA and BMD in lumbar spine, femoral, trochiter, ward's triangle region. A logistic regression was conducted to develop a TBA-based diagnostic model for differentiating abnormal bone metabolism from those with normal BMD. We evaluated the performance of model using ROC curves. Results The TBA level was significantly higher in patients with osteoporosis (Median[M]= 3.300 μmol/L, interquartile range [IQR] = 1.725 to 5.250 μmol/L) compared to the osteopenia group (M = 3.200 μmol/L, IQR = 2.100 to 5.400 μmol/L) and control group (M = 2.750 μmol/L, IQR = 1.800 to 4.600 μmol/L) (P <0.05). Overall and subgroup analyses indicated that TBA was negatively associated with BMD after adjusted for the co-variates (i.e., age, gender, diabetes duration, BMI, total bilirubin, direct bilirubin, indirect bilirubin) (P <0.05). Logistic regression revealed that higher TBA level was associated with increased risk for abnormal bone metabolism (OR = 1.044, 95% CI = 1.005 to 1.083). A TBA-based diagnostic model was established to identify individuals with abnormal bone metabolism (T-score ≤ -1.0). The area under ROC curve (AUC) of 0.767 (95% CI = 0.730 to 0.804). Conclusion Our findings demonstrated the potential role of bile acids in bone metabolism among T2DM patients. The circulating TBA might be employed as an indicator of abnormal bone metabolism.
Collapse
Affiliation(s)
- Song Yang
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Hongyun Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanyuan Gu
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qiang Wang
- Department of Joint Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Li Dong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxin Fan
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lixing Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
15
|
Mousavi S, Vakili S, Zal F, Savardashtaki A, Jafarinia M, Sabetian S, Razmjoue D, Veisi A, Azadbakht O, Sabaghan M, Behrouj H. Quercetin potentiates the anti-osteoporotic effects of alendronate through modulation of autophagy and apoptosis mechanisms in ovariectomy-induced bone loss rat model. Mol Biol Rep 2023; 50:3693-3703. [PMID: 36829081 DOI: 10.1007/s11033-023-08311-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Osteoporosis is a bone disease leading to bone fracture and affects 200 million women worldwide. Autophagy and apoptosis are two fundamental mechanisms that are involved in the development of osteoporosis. In this study we aim to investigate the combined effects of quercetin and alendronate on the markers of osteoporosis, autophagy, and apoptosis in the bone of ovariectomized rats. METHODS AND RESULTS Fifty adult female Sprague-Dawley rats were ovariectomized and treated with alendronate alone (5 µg/kg/day) or alendronate (5 µg/kg/day) in combination with quercetin (15 mg/kg/day) for 12 weeks. Then, ELISA, stereological tests, Real-time PCR analysis, and immunofluorescence assay were used to measure the markers of osteoporosis, autophagy, and apoptosis in the serum and tibia of rats. The serum osteocalcin was significantly decreased in ovariectomized rats that received quercetin and alendronate compared with alendronate only. Stereological data showed that except for osteoclasts, the total trabecular volume, bone weight, bone volume, osteocyte, and osteoblast numbers were increased in an ovariectomized group that was treated with quercetin and alendronate compared with alendronate alone. Except for Bcl2, the autophagy markers (Beclin-1 and LC3B) and Caspase-3 were significantly downregulated in ovariectomized rats that received quercetin and alendronate compared with those treated with alendronate alone. CONCLUSION Our results show that quercetin enhances the anti-osteoporotic effects of alendronate, possibly through the regulation of autophagy and apoptosis mechanisms. These findings suggest that the combination of quercetin and alendronate could be a useful therapeutic strategy in the treatment of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Sima Mousavi
- Department of obstetrics and gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Zal
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Biotechnology Department, School of advanced medical sciences and technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
16
|
Hua Z, Dai S, Li S, Wang J, Peng H, Rong Y, Yu H, Liu M. Deciphering the protective effect of Buzhong Yiqi Decoction on osteoporotic fracture through network pharmacology and experimental validation. J Orthop Surg Res 2023; 18:86. [PMID: 36737821 PMCID: PMC9898002 DOI: 10.1186/s13018-023-03545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteoporotic fracture (OPF) is one of the most common skeletal diseases in an aging society. The Chinese medicine formula Buzhong Yiqi Decoction (BZYQD) is commonly used for treating OPF. However, the essential bioactive compounds and the underlying molecular mechanisms that promote fracture repair remain unclear. METHODS We used network pharmacology and experimental animal validation to address this issue. First, 147 bioactive BZYQD compounds and 32 target genes for treating OPF were screened and assessed. A BZYQD-bioactive compound-target gene-disease network was constructed using the Cytoscape software. Functional enrichment showed that the candidate target genes were enriched in oxidative stress- and inflammation-related biological processes and multiple pathways, including nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, an OPF rat model was established and treated with BZYQD. RESULTS The results revealed that BZYQD ameliorated OPF characteristics, including femoral microarchitecture, biomechanical properties, and histopathological changes, in a dose-dependent manner. Results of enzyme-linked immunosorbent assay showed that BZYQD reduced the serum's pro-inflammatory cytokines [Tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-1β, and IL-6] and improved oxidative stress-related factors [glutathione (GSH) and superoxide dismutase (SOD)]. BZYQD significantly decreased the protein expression of NF-κB in OPF rat femurs, suppressed NF-κB activation, and activated the nuclear factor-erythroid factor 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) and p38 MAPK as well ERK pathways. CONCLUSIONS Our results suggest that BZYQD could improve inflammation and oxidative stress during fracture repair by suppressing NF-κB and activating Nrf2/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Hua
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Shijie Dai
- grid.268505.c0000 0000 8744 8924College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang China
| | - Shaoshuo Li
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hongcheng Peng
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Yi Rong
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hao Yu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Mingming Liu
- Department of Orthopedics, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Haizhou District, Lianyungang, 222006, Jiangsu Province, China.
| |
Collapse
|
17
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
18
|
Dong WC, Guo JL, Jiang XH, Xu L, Wang H, Ni XY, Zhang YZ, Zhang ZQ, Jiang Y. A more accurate indicator to evaluate oxidative stress in rat plasma with osteoporosis. RSC Adv 2023; 13:1267-1277. [PMID: 36686958 PMCID: PMC9813688 DOI: 10.1039/d2ra05572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background: oxidative stress is linked to various human diseases which developed into the idea of "disrupted redox signaling". Osteoporosis (OP) is a chronic skeletal disorder characterized by low bone mineral density and deterioration of bone microarchitecture among which estrogen deficiency is the main cause. Lack of estrogen leads to the imbalance between oxidation and anti-oxidation in patients, and oxidative stress is an important link in the pathogenesis of OP. The ratio of the reduced to the oxidized thiols can characterize the redox status. However, few methods have been reported for the simultaneous determination of reduced forms and their oxidized forms of thiols in plasma. Methods: we developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation and validated a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method to determine two reduced forms of thiols-homocysteine (Hcy), cysteine (Cys) levels and their respective oxidized compounds, homocystine (HHcy) and cystine (Cyss) in rat plasma simultaneously for the first time. Thirty-six female rats were randomly divided into three groups: normal control (NC), oxidative stress (ovariectomy, OVX) and ovariectomy with hydrogen-rich saline administration (OVX + HRS). Results: the validation parameters for the methodological results were within the acceptance criteria. There were both significant differences of Hcy/HHcy (Hcy reduced/oxidized) and Cys/Cyss (Cys reduced/oxidized) in rat plasma between three groups with both p < 0.05 and meanwhile, the p values of malondialdehyde, superoxide dismutase and glutathione peroxidase were all less than 0.01. The value of both Hcy/HHcy and Cys/Cyss were significantly decreased with the change of Micro-CT scan result of femoral neck in OVX group (both the trabecular thickness and trabecular number significantly decreased with a significant increase of trabecular separation) which demonstrate OP occurs. The change of Hcy/HHcy is more obvious and prominent than Cys/Cyss. Conclusions: the Hcy/HHcy and Cys/Cyss could be suitable biomarkers for oxidative stress and especially Hcy/HHcy is more sensitive. The developed method is simple and accurate. It can be easily applied in clinical research to further evaluate the oxidative stress indicator for disease risk factors.
Collapse
Affiliation(s)
- Wei-Chong Dong
- Department of Pharmacy, The Second Hospital of Hebei Medical University215# Heping West RoadShijiazhuangHebei Province 050051China,Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University361# East Zhongshan RoadShijiazhuangHebei Province 050017China
| | - Jia-Liang Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University139# Ziqiang RoadShijiazhuangHebei Province 050000China
| | - Xin-Hui Jiang
- Department of Obstetrics and Gynecology, Aerospace Central HospitalBeijing 100049China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuangHebei Province 050051China
| | - Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University361# East Zhongshan RoadShijiazhuangHebei Province 050017China
| | - Xiao-yu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University361# East Zhongshan RoadShijiazhuangHebei Province 050017China
| | - Ying-Ze Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University139# Ziqiang RoadShijiazhuangHebei Province 050000China
| | - Zhi-Qing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University215# Heping West RoadShijiazhuangHebei Province 050051China
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University361# East Zhongshan RoadShijiazhuangHebei Province 050017China
| |
Collapse
|
19
|
Li H, Wang C, Jin Y, Cai Y, Yao J, Meng Q, Wu J, Wang H, Sun H, Liu M. Anti-Postmenopausal osteoporosis effects of Isopsoralen: A bioinformatics-integrated experimental study. Phytother Res 2023; 37:231-251. [PMID: 36123318 DOI: 10.1002/ptr.7609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Isopsoralen (IPRN), which comes from the fruit of Psoralea corylifolia, has been identified as a kind of phytoestrogen and has been proven to be effective for the treatment of osteoporosis (OP). However, the mechanisms underlying IPRN's anti-OP effects, especially the anti-postmenopausal osteoporosis (PMOP) effects, remain indistinct. Thus, this study aimed to investigate the effects and mechanisms of IPRN's anti-PMOP activity. In this study, the bioinformatics results predicted that IPRN could resist PMOP by targeting EGFR, AKT1, SRC, CCND1, ESR1 (ER-α), AR, PGR, BRCA1, PTGS2, and IGF1R. An ovariectomized (OVX) mice model and a H2 O2 -induced bone marrow mesenchyml stem cells (BMSCs) model confirmed that IPRN could inhibit the bone loss induced by OVX in mice and promote the osteogenic differentiation in H2 O2 -induced BMSCs by inhibiting oxidative stress and apoptosis. Moreover, IPRN could significantly produce the above effects by upregulating ESR1. IPRN might be a therapeutic agent for PMOP by acting as an estrogen replacement agent and a natural antioxidant.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Lu L, Wen Q, Zhang X, Lv J, Zhang L, Liu L, Yu X, Li N. Moxibustion as adjuvant therapy for preventing bone loss in postmenopausal women: protocol for a randomised controlled trial. BMJ Open 2022; 12:e062677. [PMID: 36523246 PMCID: PMC9748964 DOI: 10.1136/bmjopen-2022-062677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Postmenopausal osteoporosis, caused by ageing and oestrogen deficiency, seriously threatens women's physical and mental health. Postmenopausal osteopenia is the transition from healthy bone to osteoporosis, and it may be the key period for preventing bone loss. Moxibustion, a physical therapy of Traditional Chinese Medicine, has potential benefits for osteoporosis treatment and prevention, but it has not been adequately studied. This study aims to explore the clinical effects and safety of moxibustion in delaying bone loss in postmenopausal women. METHODS AND ANALYSIS In this parallel-design, randomised, patient-blind and assessor-blind, controlled clinical study, 150 women with osteopenia at low fracture risk will be randomly assigned to a moxibustion treatment (MT) group or a placebo-moxibustion control (PMC) group in a 1:1 ratio. In addition to the fundamental measures (vitamin D3 and calcium) as recommended by the guidelines, participants of the two groups will receive MT or PMC treatment for 42 sessions over 12 months. The primary outcome will be the bone mineral density (BMD) of the lumbar spine at the end of the 12-month treatment, and secondary outcomes will be the BMD of the femoral neck and total hip, T-scores, bone turnover markers, serum calcium levels, serum magnesium levels, serum phosphorus levels, serum parathyroid hormone levels and 25-hydroxyvitamin D levels, intensity of bone pain, quality of life, incidence of osteoporosis and fractures, usage of emergency drugs or surgery, participant self-evaluation of therapeutic effects and the rate of adverse events. All statistical analyses will be performed based on the intention-to-treat and per-protocol principle. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Ethics Committee on Biomedical Research, West China Hospital of Sichuan University (permission number: 2021-1243). The results are expected to be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ChiCTR2100053953.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Qian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Leixiao Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ning Li
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Cao Z, Liu W, Bi B, Wu H, Cheng G, Zhao Z. Isoorientin ameliorates osteoporosis and oxidative stress in postmenopausal rats. PHARMACEUTICAL BIOLOGY 2022; 60:2219-2228. [PMID: 36382865 PMCID: PMC9673777 DOI: 10.1080/13880209.2022.2142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Isoorientin has many biological activities, including antioxidant, anti-inflammatory, antitumor. However, the effect of isoorientin on postmenopausal osteoporosis remains unclear. OBJECTIVE To evaluate the effect of isoorientin on postmenopausal osteoporosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into five groups (n = 5): sham, model, 17-β-oestradiol (E2, 10 μg/kg/day), low-dose isoorientin (L-Iso, 50 mg/kg), and high-dose isoorientin (H-Iso, 100 mg/kg). The rats were ovariectomized, treated by gavage daily for 12 weeks, and serum and femur samples were collected. Bone mineral density, bone metabolism, and oxidative stress were assessed. H&E staining, immunohistochemistry, and western blotting were employed. RESULTS Isoorientin improved the bone mineral density of the lumbar vertebrae (2.01 ± 0.05 g/cm3 in H-Iso group vs. 1.74 ± 0.07 g/cm3 in model group) and femur (1.46 ± 0.06 g/cm3 vs. 1.19 ± 0.03 g/cm3), increased the trabecular bone number (1.97 ± 0.03 vs. 1.18 ± 0.13) and thickness (0.27 ± 0.02 vs. 0.16 ± 0.03 mm). Isoorientin decreased the separation degree of trabecular bone, ameliorated bone histomorphology changes, and significantly improved the mechanical properties. Isoorientin diminished MDA (by 60%) and increased SOD (by 49.2%), and GSH-Px (by 159%) activity. Furthermore, osteoprotegerin (OPG), nuclear factor erythroid 2-like 2 (Nrf2), haem oxygenase (HO-1), NAD(P)H quinone dehydrogenase 1(NQO1), and oestrogen receptor 1(ESR1) protein expression increased, while receptor activator of nuclear factor-κB ligand (RANKL) protein expression decreased after treatment. CONCLUSIONS Isoorientin ameliorates osteoporosis via upregulating OPG and Nrf2/ARE signalling, suggesting isoorientin maybe a potential therapeutic drug for PMOP.
Collapse
Affiliation(s)
- Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Benjun Bi
- Department of Hand and Foot Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Zhongyuan Zhao
- Department of Articulation surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
22
|
Brichagina AS, Semenova NV, Kolesnikova LI. Age-Related Menopause and Carbonyl Stress. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Xiong Y, Zhang Y, Zhou F, Liu Y, Yi Z, Gong P, Wu Y. FOXO1 differentially regulates bone formation in young and aged mice. Cell Signal 2022; 99:110438. [PMID: 35981656 DOI: 10.1016/j.cellsig.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
It is a great challenge to develop a safe and effective treatment strategy for age-related osteoporosis and fracture healing. As one of the four FOXO transcription factors, FOXO1 is essential for cell proliferation, survival, senescence, energy metabolism, and oxidative stress in various cells. Our previous study demonstrated that specific Foxo1 gene deletion in osteoblasts in young mice results in bone loss while that in aged mice shows the opposite effect. However, the mechanism underlying the differential regulation of bone metabolism by FOXO1 remains to be elucidated. In this study, we generated osteoblast-specific Foxo1 knockout mice by using Foxo1fl/fl and Bglap-Cre mice. In young mice, Foxo1 gene deletion inhibits osteoblast differentiation, leading to a decreased osteoblast number and decreased bone formation rate because of the weakened ability to resist oxidative stress, eventually resulting in bone loss and delayed healing of bone defects. In aged mice, high levels of reactive oxygen species (ROS) promote the diversion of CTNNB1 (β-catenin) from T cell factor 4 (TCF4)- to FOXO1-mediated transcription, thereby inhibiting Wnt/β-catenin signaling and leading to decreased osteogenic activity. Conversely, FOXO1 deficiency indirectly promotes the binding of β-catenin and TCF4 and activates Wnt/β-catenin signaling, thereby alleviating age-related bone loss and improving bone defect healing. Our study proves that FOXO1 has differential effects on bone metabolism in young and aged mice and elucidates its underlying mechanism. Further, this study provides a new perspective on the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yeyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Combined Therapy of Yishen Zhuanggu Decoction and Caltrate D600 Alleviates Postmenopausal Osteoporosis by Targeting FoxO3a and Activating the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7732508. [PMID: 35873637 PMCID: PMC9307327 DOI: 10.1155/2022/7732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background Postmenopausal osteoporosis (PMO) is the most prevalent metabolic bone disease in women. Yishen Zhuanggu (YSZG) decoction and Caltrate D600 reportedly affects bone formation. This study aimed to investigate the efficacy and mechanism of YSZG decoction combined with Caltrate D600 in PMO treatment. Methods Ovariectomy-induced PMO rat model was treated with YSZG or/and Caltrate D600 for 12 weeks. Femur bone mineral density (BMD), osteoporosis-related protein expression, and serum parameters were measured. Pathological features of femur bone tissues were observed using hematoxylin and eosin staining. Serum levels of oxidative stress parameters were measured using corresponding commercial kits. The mRNA and protein expression of FoxO3a, Wnt, and β-catenin was detected using qRT-PCR and western blotting. Results The BMD and ultimate load of PMO rats were increased after treatment with YSZG. YSZG treatment promoted the bone trabeculae formation of PMO rats. YSZG treatment also induced bone differentiation and suppress oxidative stress in PMO rats, evidenced by the increased BALP, Runx2, OPG, SOD, and CAT levels, as well as the decreased TRACP 5b, RANKL, ROS, and MDA levels. Additionally, YSZG treatment downregulated the FoxO3a expression and upregulated the levels of Wnt and β-catenin in PMO rats. Caltrate D600 addition showed an auxiliary effect for YSZG. Conclusion YSZG decoction exerts the antiosteoporotic effect on PMO by restraining the FoxO3a expression and activating the Wnt/β-catenin pathway, which has an impressive synergistic effect with Caltrate D600.
Collapse
|
25
|
Beneficial effects of the fructus Sophorae extract on experimentally induced osteoporosis in New Zealand white rabbits. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:289-302. [PMID: 36651509 DOI: 10.2478/acph-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/20/2023]
Abstract
Sophora japonica is a source of several flavonol, flavone and isoflavone glycosides that are reported to positively affect menopausal symptoms including osteoporotic complications. In the present study fructus Sophorae extract (FSE) was administered orally for three months at a dose of 200 mg kg-1 in ovariectomized (OVX) New Zealand rabbits. 3D computed tomography scans and histopathological images revealed microstructural disturbances in the bones of the castrated animals. FSE recovered most of the affected parameters in bones in a manner similar to zoledronic acid (ZA) used as a positive control. The aglycones of the main active compounds of FSE, daidzin, and genistin, were docked into the alpha and beta estrogen receptors and stable complexes were found. The findings of this study provide an insight into the effects of FSE on bone tissue loss and suggest that it could be further developed as a potential candidate for the prevention of postmenopausal osteoporotic complications.
Collapse
|
26
|
Xiao J, Li W, Li G, Tan J, Dong N. STK11 overexpression prevents glucocorticoid-induced osteoporosis via activating the AMPK/SIRT1/PGC1α axis. Hum Cell 2022; 35:1045-1059. [PMID: 35543972 DOI: 10.1007/s13577-022-00704-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis (OP) is a frequent orthopedic disease characterized by pain, fractures and deformities. Glucocorticoids are the most common cause of secondary osteoporosis. Here, we aim to explore the function and mechanism of STK11 in glucocorticoid (GC)-induced OP. Human mesenchymal stromal cells (hMSCs) were differentiated under osteogenic or adipogenic culture medium. An in-vitro OP model was induced by dexamethasone (DEX). The viability, differentiation, apoptosis, and ROS level were evaluated for investigating the functions of SKT11 on hMSCs. The SIRT1 inhibitor EX-527, PGC1α inhibitor SR-18292, and AMPK activator metformin were administered into hMSCs for confirming the mechanism of SKT11. Our results showed that STK11 was down-regulated in OP tissues, as well as DEX-treated hMSCs. Overexpressing STK11 attenuated DEX-mediated inhibition of osteogenic differentiation and heightened the activation of the AMPK/SIRT1/PGC1α pathway, whereas STK11 knockdown exerted opposite effects. Inhibiting SIRT1 or PGC1α repressed the promotive effect of STK11 on osteogenic differentiation of hMSCs, while activation of AMPK abated the inhibitory effect of STK11 knockdown on osteogenic differentiation of hMSCs. In conclusion, this study revealed that overexpressing STK11 dampened GC-induced OP by activating the AMPK/SIRT1/PGC1α axis.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Wenjin Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Guojuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Jiankai Tan
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Na Dong
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
27
|
Carletti A, Cardoso C, Lobo-Arteaga J, Sales S, Juliao D, Ferreira I, Chainho P, Dionísio MA, Gaudêncio MJ, Afonso C, Lourenço H, Cancela ML, Bandarra NM, Gavaia PJ. Antioxidant and Anti-inflammatory Extracts From Sea Cucumbers and Tunicates Induce a Pro-osteogenic Effect in Zebrafish Larvae. Front Nutr 2022; 9:888360. [PMID: 35614979 PMCID: PMC9125325 DOI: 10.3389/fnut.2022.888360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Bone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.
Collapse
Affiliation(s)
- Alessio Carletti
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Jorge Lobo-Arteaga
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Sabrina Sales
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Diana Juliao
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Inês Ferreira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Paula Chainho
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria Ana Dionísio
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria J. Gaudêncio
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Helena Lourenço
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - M. Leonor Cancela
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Centre for BioMedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Paulo J. Gavaia
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
28
|
Sedky AA, Raafat MH, Hamam GG, Sedky KA, Magdy Y. Effects of tamoxifen alone and in combination with risperidone on hyperlocomotion, hippocampal structure and bone in ketamine-induced model of psychosis in rats. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and aim of the work
Protein kinase C activation with subsequent increase in oxidative stress (OXS) and reduction in brain derived neurotrophic factor (BDNF) are implicated in the pathophysiology of psychotic disorders and in osteoporosis. Accordingly PKC inhibitors such as tamoxifen could be a novel approach to psychotic illness and may reduce progression of osteoporosis. Since current antipsychotics such as risperidone have inconsistent effects on OXS and BDNF, combination with tamoxifen could be beneficial. Accordingly in this work, tamoxifen was used to investigate the impact of changes in OXS and BDNF on behavioral, hippocampus structural changes in a ketamine induced model of psychosis in rats. The impact of tamoxifen on the antipsychotic effects of risperidone and on its bone damaging effects was also determined.
Ketamine was chosen, because it is a valid model of psychosis. Hippocampus was chosen, since hippocampal overactivity is known to correlate with the severity of symptoms in psychosis. Hippocampal overactivity contributes to hyperdopaminergic state in ventral tegmental area and increase in DA release in nucleus accumbens, these are responsible for positive symptoms of schizophrenia and hyperlocomotion in rodents. Hyperlocomotion is considered a corelate of positive symptoms of psychotic illness in rodents and is considered primary outcome to assess manic-like behavior.
Methods
Rats were divided into seven groups (ten rats each (1) non-ketamine control and (2) ketamine treated groups (a ketamine control, b risperidone/ketamine, c tamoxifen/ketamine, d Risp/Tamox/ketamine risperidone, tamoxifen/risperidone) to test if TAM exhibited behavioral changes or potentiated those of risperidone); (e clomiphene/ketamine and f clomiphene/risperidone/ketamine) to verify that estrogen receptor modulators do not exhibit behavioral changes or potentiates those of risperidone. In addition, thus, the effects of tamoxifen are not due to estrogen effects but rather due to protein kinase c inhibition. Drugs were given for 4 weeks and ketamine was given daily in the last week. Effects of drugs on ketamine-induced hyperlocomotion (open field test) and hippocampus and bone biochemical (MDA, GSH, BDNF) and histological changes (Nissel granules, GFAP positive astrocytes in hippocampus were determined).
Electron microscopy scanning of the femur bone was done. Histomorphometric parameters measuring the: 1. Trabecular bone thickness and 2. The trabecular bone volume percentage.
Results
Tamoxifen reduced hyperlocomotion, and improved hippocampus structure in ketamine-treated rats, by reducing OXS (reduced malondialdehyde and increased glutathione) and increasing BDNF. These effects might be related to (PKC) inhibition, rather than estrogen modulation, since the anti-estrogenic drug clomiphene had no effect on hyperlocomotion. Tamoxifen enhanced the beneficial effects of risperidone on hippocampal OXS and BDNF, augmenting its effectiveness on hyperlocomotion and hippocampal structure. It also reduced risperidone-induced OXS and the associated bone damage.
Conclusions
PKC inhibitors, particularly tamoxifen, might be potential adjuncts to antipsychotics, by reducing OXS and increasing BDNF increasing their effectiveness while reducing their bone damaging effects.
Collapse
|
29
|
Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, Riegger J, Tuckermann J, Scharffetter-Kochanek K, Ignatius A. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech 2022; 15:274992. [PMID: 35394023 PMCID: PMC9118037 DOI: 10.1242/dmm.049392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2−) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging. Summary: Osteoblast-lineage specific Sod2 deficiency in mice leads to increased mtROS, impaired osteoblast function, increased adipogenesis, increased osteoclast activity and increased osteoblast senescence, resulting in bone loss.
Collapse
Affiliation(s)
- Astrid M Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Xiangxu Chen
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan-Moritz Ramge
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jana Riegger
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
30
|
Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int J Mol Sci 2022; 23:ijms23052872. [PMID: 35270014 PMCID: PMC8911302 DOI: 10.3390/ijms23052872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress (OS) mediators, together with the inflammatory processes, are considered as threatening factors for bone health. The aim of this study was to investigate effects of flavonoids naringenin and chrysin on OS, inflammation, and bone degradation in retinoic acid (13cRA)-induced secondary osteoporosis (OP) in rats. We analysed changes in body and uterine weight, biochemical bone parameters (bone mineral density (BMD), bone mineral content (BMC), markers of bone turnover), bone geometry parameters, bone histology, OS parameters, biochemical and haematological parameters, and levels of inflammatory cytokines. Osteoporotic rats had reduced bone Ca and P levels, BMD, BMC, and expression of markers of bone turnover, and increased values of serum enzymes alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Malondialdehyde (MDA) production in liver, kidney, and ovary was increased, while the glutathione (GSH) content and activities of antioxidant enzymes were reduced and accompanied with the enhanced release of inflammatory mediators TNF-α, IL-1β, IL-6, and RANTES chemokine (regulated on activation normal T cell expressed and secreted) in serum. Treatment with chrysin or naringenin improved bone quality, reduced bone resorption, and bone mineral deposition, although with a lower efficacy compared with alendronate. However, flavonoids exhibited more pronounced antioxidative, anti-inflammatory and phytoestrogenic activities, indicating their great potential in attenuating bone loss and prevention of OP.
Collapse
|
31
|
Usategui-Martín R, Pérez-Castrillón JL, Mansego ML, Lara-Hernández F, Manzano I, Briongos L, Abadía-Otero J, Martín-Vallejo J, García-García AB, Martín-Escudero JC, Chaves FJ. Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene 2022; 809:146036. [PMID: 34688818 DOI: 10.1016/j.gene.2021.146036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The most widely accepted etiopathogenesis hypothesis of the origin of osteoporosis and its complications is that they are a consequence of bone aging and other environmental factors, together with a genetic predisposition. Evidence suggests that oxidative stress is crucial in bone pathologies associated with aging. The aim of this study was to determine whether genetic variants in oxidative stress-related genes modified the risk of osteoporotic fracture. We analysed 221 patients and 354 controls from the HORTEGA sample after 12-14 years of follow up. We studied the genotypic and allelic distribution of 53 SNPs in 24 genes involved in oxidative stress. The results showed that being a carrier of the variant allele of the SNP rs4077561 within TXNRD1 was the principal genetic risk factor associated with osteoporotic fracture and that variant allele of the rs1805754 M6PR, rs4964779 TXNRD1, rs406113 GPX6, rs2281082 TXN2 and rs974334 GPX6 polymorphisms are important genetic risk factors for fracture. This study provides information on the genetic factors associated with oxidative stress which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid. Spain; Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid. Spain.
| | - José Luis Pérez-Castrillón
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain.
| | - María L Mansego
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Bioinformatics. Making Genetics S.L. Pamplona. Spain
| | | | - Iris Manzano
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Laisa Briongos
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Jesica Abadía-Otero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics. University of Salamanca. Salamanca Biomedical Research Institute (IBSAL), Salamanca. Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| |
Collapse
|
32
|
Yang R, Zhang J, Li J, Qin R, Chen J, Wang R, Goltzman D, Miao D. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic Biol Med 2022; 178:246-261. [PMID: 34890768 DOI: 10.1016/j.freeradbiomed.2021.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that 1,25(OH)2D plays an anti-osteoporosis role by an anti-aging mechanism. Oxidative stress is a key mediator of aging and bone loss; however, whether 1,25(OH)2D can exert its anti-osteoporosis effect by inhibiting oxidative stress is unclear. In this study, osteoporosis and the bone aging phenotype induced by 1,25(OH)2D deficiency in male mice were significantly rescued in vivo upon the supplementation of oltipraz, an inhibitor of Nrf2 degradation. Increased oxidative stress, cellular senescence and reduced osteogenesis of BM-MSCs from VDR knockout mice were also significantly rescued when the cells were pre-treated with oltipraz. We found that 1,25(OH)2D3 promoted Nrf2 accumulation by inhibiting its ubiquitin-proteasome degradation, thus facilitating Nrf2 activation of its transcriptional targets. Mechanistically, 1,25(OH)2D3 enhances VDR-mediated recruitment of Ezh2 and facilitation of H3K27me3 action at the promoter region of Keap1, thus transcriptionally repressing Keap1. To further validate that the Nrf2-Keap1 pathway serves as the key mediator in the anabolic effect of 1,25(OH)2D3 on bone, Nrf2-/- mice, or hBM-MSCs with shRNA-mediated Nrf2-knockdown, were treated with 1,25(OH)2D3; we found that Nrf2 knockout largely blocked the bone anabolic effect of 1,25(OH)2D3 in vivo and ex vivo, and Nrf2 knockdown in hBM-MSCs markedly blocked the role of 1,25(OH)2D3 in inhibiting oxidative stress and promoting osteogenic differentiation and bone formation. This study provides insight into the mechanism whereby 1,25(OH)2D3 postpones age-related osteoporosis via VDR-mediated activation of Nrf2-antioxidant signaling and inhibition of oxidative stress, and thus provides evidence for oltipraz as a potential reagent for clinical prevention and treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Renlei Yang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiao Zhang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:782848. [PMID: 36004321 PMCID: PMC9396756 DOI: 10.3389/fresc.2021.782848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Zhang Y, Liu X, Li Y, Song M, Li Y, Yang A, Zhang Y, Wang D, Hu M. Aucubin slows the development of osteoporosis by inhibiting osteoclast differentiation via the nuclear factor erythroid 2-related factor 2-mediated antioxidation pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1556-1565. [PMID: 34757891 PMCID: PMC8583775 DOI: 10.1080/13880209.2021.1996614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Osteoporosis (OP) is a metabolic disease. We have previously demonstrated that aucubin (AU) has anti-OP effects that are due to its promotion of the formation of osteoblasts. OBJECTIVES To investigate the mechanisms of anti-OP effects of AU. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, 30 mg/kg Dex-induced OP group (OP model group, 15 μg/kg oestradiol-treated positive control group, 5 or 45 mg/kg AU-treated group), and 45 mg/kg AU-alone-treated group. The administration lasted for 7 weeks. Subsequently, 1, 2.5 and 5 µM AU were incubated with 50 ng/mL RANKL-induced RAW264.7 cells for 7 days to observe osteoclast differentiation. The effect of AU was evaluated by analysing tissue lesions, biochemical factor and protein expression. RESULTS The LD50 of AU was greater than 45 mg/kg. AU increased the number of trabeculae and reduced the loss of chondrocytes in OP mice. Compared to OP mice, AU-treated mice exhibited decreased serum concentrations of TRAP5b (19.6% to 28.4%), IL-1 (12.2% to 12.6%), IL-6 (12.1%) and ROS (5.9% to 10.7%) and increased serum concentrations of SOD (14.6% to 19.4%) and CAT (17.2% to 27.4%). AU treatment of RANKL-exposed RAW264.7 cells decreased the numbers of multi-nuclear TRAP-positive cells, reversed the over-expression of TRAP5, NFATc1 and CTSK. Furthermore, AU increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in RANKL-exposed RAW264.7 cells. CONCLUSIONS AU slows the development of OP via Nrf2-mediated antioxidant pathways, indicating the potential use of AU in OP therapy and other types of OP research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- CONTACT Di Wang School of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, Jilin, P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- Min Hu Department of Orthodontics, College of Stomatology, Jilin University, No. 1500, Qinghua Road, Changchun, Jilin, P. R. China
| |
Collapse
|
35
|
Role of Exosomal MicroRNAs and Their Crosstalk with Oxidative Stress in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6301433. [PMID: 34336108 PMCID: PMC8315851 DOI: 10.1155/2021/6301433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Osteoporosis (OP) is an aging-related disease involving permanent bone tissue atrophy. Most patients with OP show high levels of oxidative stress (OS), which destroys the microstructure of bone tissue and promotes disease progression. Exosomes (exos) help in the delivery of microRNAs (miRNAs) and allow intercellular communication. In OP, exosomal miRNAs modulate several physiological processes, including the OS response. In the present review, we aim to describe how exosomal miRNAs and OS contribute to OP. We first summarize the relationship of OS with OP and then detail the features of exos along with the functions of exo-related miRNAs. Further, we explore the interplay between exosomal miRNAs and OS in OP and summarize the functional role of exos in OP. Finally, we identify the advantages of exo-based miRNA delivery in treatment strategies for OP. Our review seeks to improve the current understanding of the mechanism underlying OP pathogenesis and lay the foundation for the development of novel theranostic approaches for OP.
Collapse
|
36
|
Mu P, Hu Y, Ma X, Shi J, Zhong Z, Huang L. Total flavonoids of Rhizoma Drynariae combined with calcium attenuate osteoporosis by reducing reactive oxygen species generation. Exp Ther Med 2021; 21:618. [PMID: 33936275 PMCID: PMC8082640 DOI: 10.3892/etm.2021.10050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In the present study, the effects of total flavonoids of Rhizoma Drynariae (TFRD) and calcium carbonate (CaCO3) on osteoporosis (OP) were assessed in a rat model of OP. For this purpose, 36 Sprague-Dawley rats, aged 3 months, were randomly divided into a group undergoing sham surgery (sham-operated group), model group (OP group), CaCO3 group (OP + CaCO3 group), TFRD group (OP + TFRD group), TFRD combined with CaCO3 group (OP + TFRD + CaCO3 group) and TFRD and CaCO3 combined with N-acetyl cysteine group (OP + TFRD + CaCO3 + NAC group). The rat model of OP was established by bilateral ovariectomy. The changes in bone mineral density (BMD), bone volume parameters and bone histopathology in the rats from each group were observed. The levels of serum reactive oxygen species, superoxide dismutase (SOD), malondialdehyde, glutathione peroxidase (GSH-Px), interleukin (IL)-6, IL-1β, TNF-α, and the levels of bone tissue runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), osteocalcin (BGP), PI3K, p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were measured in the rats of each group. The induction of OP was associated with a marked decrease in BMD, bone mineral content, bone volume fraction and trabecular thickness, and decreased serum levels of SOD and GSH-Px. Moreover, the expressions of RUNX2, OPG, BGP were downregulated and an upregulation of p-PI3K, p-AKT and p-mTOR were observed in osteoporotic rats. However, treatment with TFRD and CaCO3 restored all the aforementioned parameters to almost normal values. Furthermore, the findings on histopathological evaluation were consistent with the biochemical observations. Taken together, the findings of the present study demonstrated that TFRD and CaCO3 significantly increased the antioxidant capacity in rats with OP, increased BMD and reduced bone mineral loss, and may be useful for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xu Ma
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Jingru Shi
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Zhendong Zhong
- Laboratory Animal Research Institute of Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Lingyuan Huang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
37
|
Tchoupang EN, Ateba SB, Mvondo MA, Ndinteh DT, Nguelefack TB, Zingue S, Krenn L, Njamen D. Regular consumption of "Nkui", a Cameroonian traditional dish, may protect against cardiovascular and bone disorders in an estrogen deficiency condition. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:535-544. [PMID: 33818035 DOI: 10.1515/jcim-2020-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES There is a growing body of evidence indicating the potential of culinary herbs and spices to decrease the incidence of several chronic diseases or conditions. Because of this, the WHO recommends their regular consumption. In the Cameroonian culinary practices, "Nkui" is a famous dish made from a mixture of 10 spices. In our previous study, the ethanolic extract of this mixture exhibited promising estrogenic properties. Thus, this study aimed to evaluate its protective effects on some menopause-related cardiovascular and bone disorders. METHODS For this purpose, a post-menopause-like model (ovariectomized rats) has been used. Animals were orally treated with the "Nkui" extract for 60 days. The investigation focused on the oxidative stress status, endothelial function (NO bioavailability), lipid profile, and bone mass, biochemical (calcium and inorganic phosphorus contents, serum alkaline phosphatase activity) and histomorphological features. RESULTS The extract regulated lipid metabolism in a way to prevent accumulation of abdominal fat, gain in body weight and increased atherogenic indexes induced by ovariectomy. It prevented menopause-related low levels of nitric oxide and oxidative stress damage by increasing superoxide dismutase and catalase activities, while reducing glutathione and malondialdehyde levels in the heart and aorta. Moreover, it prevented ovariectomy-induced bone mass loss, bone marrow disparities and the disorganization of the trabecular network. It also increased femur calcium and inorganic phosphorus contents. CONCLUSIONS These results suggest that a regular consumption of "Nkui" may have health benefits on cardiovascular system and osteoporosis, major health issues associated with menopause.
Collapse
Affiliation(s)
- Edwige Nana Tchoupang
- Department of Animal Science, Faculty of Agriculture and Veterinary Medicine, University of Buea Buea, Cameroon
| | - Sylvin Benjamin Ateba
- Department of Biology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon
| | - Marie Alfrede Mvondo
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | | | - Stéphane Zingue
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua Maroua, Cameroon
| | - Liselotte Krenn
- Department of Pharmacognosy , University of Vienna, Vienna , Austria
| | - Dieudonné Njamen
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
38
|
Shahriarpour Z, Nasrabadi B, Hejri-Zarifi S, Shariati-Bafghi SE, Yousefian-Sanny M, Karamati M, Rashidkhani B. Oxidative balance score and risk of osteoporosis among postmenopausal Iranian women. Arch Osteoporos 2021; 16:43. [PMID: 33634327 DOI: 10.1007/s11657-021-00886-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/07/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED To our knowledge, this is the first study to examine the association of oxidative balance score (OBS) and risk of osteoporosis. Findings suggest that a predominance of anti- over pro-oxidant exposures, as reflected by a higher OBS, is associated with lower risk of lumbar spine osteoporosis among postmenopausal Iranian women. PURPOSE The oxidative balance score (OBS) is a combined measure of pro- and anti-oxidant exposure status, with a higher OBS indicating a predominance of anti- over pro-oxidant exposures. We aimed to examine the potential association of OBS and risk of osteoporosis among postmenopausal Iranian women, hypothesizing that a higher OBS is associated with lower risk of postmenopausal osteoporosis. METHODS This cross-sectional study was conducted among 151 postmenopausal Iranian women aged 50-85 y. Bone mineral density (BMD) at lumbar spine and femoral neck was measured by dual-energy X-ray absorptiometry, and osteoporosis was defined using the WHO criteria as a BMD T-score of ≤ - 2.5 standard deviations. The OBS was calculated by combining information from 17 a-priori selected pro- and anti-oxidant components classified in the following four categories: non-dietary pro-oxidants (i.e., obesity and smoking); non-dietary anti-oxidants (i.e., physical activity); dietary pro-oxidants (i.e., saturated fatty acid, poly-unsaturated fatty acid, and iron); and dietary anti-oxidants (i.e., fiber, vitamin E, folate, vitamin C, alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, lycopene, zinc, and selenium). RESULTS After controlling for several potential covariates in the multivariable-adjusted binary logistic regression analysis, subjects in the highest tertile of OBS had a lower risk of lumbar spine osteoporosis than those in the lowest tertile (odds ratio = 0.14; 95% confidence interval, 0.04-0.45; p = 0.001). The OBS was not associated with risk of femoral neck osteoporosis. CONCLUSION Findings suggest that a predominance of anti- over pro-oxidant exposures, as indicated by a higher OBS, is associated with lower risk of lumbar spine osteoporosis among postmenopausal Iranian women.
Collapse
Affiliation(s)
- Zahra Shahriarpour
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Bita Nasrabadi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Sudiyeh Hejri-Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahboobe Yousefian-Sanny
- Department of Physical Education and Sport Sciences, Faculty of Literature, Humanities, and Social Sciences, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Karamati
- Department of Community Nutrition, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute (WHO Collaborating Center), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Rashidkhani
- Department of Community Nutrition, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute (WHO Collaborating Center), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Akbulut AC, Wasilewski GB, Rapp N, Forin F, Singer H, Czogalla-Nitsche KJ, Schurgers LJ. Menaquinone-7 Supplementation Improves Osteogenesis in Pluripotent Stem Cell Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 8:618760. [PMID: 33585456 PMCID: PMC7876270 DOI: 10.3389/fcell.2020.618760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/09/2020] [Indexed: 01/15/2023] Open
Abstract
Development of clinical stem cell interventions are hampered by immature cell progeny under current protocols. Human mesenchymal stem cells (hMSCs) are characterized by their ability to self-renew and differentiate into multiple lineages. Generating hMSCs from pluripotent stem cells (iPSCs) is an attractive avenue for cost-efficient and scalable production of cellular material. In this study we generate mature osteoblasts from iPSCs using a stable expandable MSC intermediate, refining established protocols. We investigated the timeframe and phenotype of cells under osteogenic conditions as well as the effect of menaquinone-7 (MK-7) on differentiation. From day 2 we noted a significant increase in RUNX2 expression under osteogenic conditions with MK-7, as well as decreases in ROS species production, increased cellular migration and changes to dynamics of collagen deposition when compared to differentiated cells that were not treated with MK-7. At day 21 OsteoMK-7 increased alkaline phosphatase activity and collagen deposition, as well as downregulated RUNX2 expression, suggesting to a mature cellular phenotype. Throughout we note no changes to expression of osteocalcin suggesting a non-canonical function of MK-7 in osteoblast differentiation. Together our data provide further mechanistic insight between basic and clinical studies on extrahepatic activity of MK-7. Our findings show that MK-7 promotes osteoblast maturation thereby increasing osteogenic differentiation.
Collapse
Affiliation(s)
- Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Grzegorz B Wasilewski
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,NattoPharma ASA, Oslo, Norway
| | - Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Francesco Forin
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Katrin J Czogalla-Nitsche
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,Department of Nephro-Cardiology, Rheinisch-Westfälische Technische Hochschule Klinikum, Aachen, Germany
| |
Collapse
|
40
|
Preadministration of yerba mate (Ilex paraguariensis) helps functional activity and morphology maintenance of MC3T3-E1 osteoblastic cells after in vitro exposition to hydrogen peroxide. Mol Biol Rep 2021; 48:13-20. [PMID: 33454904 DOI: 10.1007/s11033-020-06096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Natural substances with antioxidant effects may benefit prevention and treatment of people with or prone to bone diseases after menopause, such as osteoporosis. This study aimed to evaluate the in vitro effect of preadministration of yerba mate extract (YM) in the metabolism of MC3T3-E1 osteoblasts exposed to hydrogen peroxide (H2O2). The cells (MC3T3-E1) were cultured in 24-well plates with the concentration of 1 μg/mL yerba mate extract dissolved in culture medium throughout the culture period. Four hours before each experiment, 400 μmol/L H2O2 was added per well to simulate oxidative stress. There were evaluated cell adhesion and proliferation, in situ detection of alkaline phosphatase (ALP), mineralized nodules, and immunolocalization of osteocalcin (OCN), bone sialoprotein (BSP) and alkaline phosphatase (ALP) proteins. The results showed that YM preadministration to H2O2 exposition significatively increased cell adhesion after 3 days as well as proliferation and in situ ALP detection after 10 and 7 days respectively, when compared to H2O2 group. Besides, staining of OCN and BSP proteins was less intense and scattered in poor spread cells with cytoskeletal changes in H2O2 group when compared to control and YM H2O2 group. ALP staining was restrained to intracellular regions and similar in all experimental groups. Our results suggest that preadministration of yerba mate extract may prevent deleterious effects in the morphology and functional activity of osteoblasts exposed to H2O2, which could enable the maintenance of extracellular matrix in the presence of oxidative stress.
Collapse
|
41
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Festus OO, Agbebaku SO, Idonije BO, Oluba OM. Comparison of Serum Iron, Zinc, and Selenium Levels in Premenopausal and Postmenopausal Women in Ekpoma, Nigeria: A Descriptive Study. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Estrogen deficiency following menopause creates an imbalance in plasma micronutrient resulting in several degenerative pathological conditions, including hypertension, cardiovascular disease, osteoporosis, etc. Objectives: The present study was designed to compare zinc (Zn), iron (Fe), and selenium (Se) concentrations between premenopausal and postmenopausal women. Methods: In this descriptive study a total of 200 participants were classified into two groups of postmenopausal (age range: 46-75 years, served as experimental) and premenopausal (age range: 30-45 years, served as control). Each group consisted of 100 subjects. After obtaining informed consent from all participants, blood samples were collected from the antecubital fossa vein of each participant by venipuncture. The concentrations of Fe, Zn, and Se in each blood sample were determined using Atomic Absorption Spectrophotometer. Results: No significant difference (P>0.05) was observed in serum Fe (114.24 ± 26.79 µg/dL), Zn (83.11 ± 20.45 µg/dL), and Se (41.99 ± 9.78 µg/dL) levels between the control and experimental groups. However, serum Fe and Zn showed progressive significant (P=0.04, 0.03, respectively) increase with increasing postmenopausal age. Conversely, serum Se concentration decreased significantly (P=0.03) with increasing menopausal age. Conclusion: Although no significant difference was observed in serum levels of Fe, Zn, and Se between pre- and post-menopausal women, the progressive significant increase in the serum Fe and Zn levels as well as significant decrease in serum Se level with advancing post-menopausal age portend a great risk.
Collapse
Affiliation(s)
- Oloruntoba O. Festus
- Department of Medical Laboratory Science, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Solomon O. Agbebaku
- Department of Chemical Pathology, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Blessing O. Idonije
- Department of Medical Biochemistry, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Olarewaju M. Oluba
- Department of Biochemistry, Food Safety & Toxicology Research Unit, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
43
|
Mann SN, Pitel KS, Nelson-Holte MH, Iwaniec UT, Turner RT, Sathiaseelan R, Kirkland JL, Schneider A, Morris KT, Malayannan S, Hawse JR, Stout MB. 17α-Estradiol prevents ovariectomy-mediated obesity and bone loss. Exp Gerontol 2020; 142:111113. [PMID: 33065227 PMCID: PMC8351143 DOI: 10.1016/j.exger.2020.111113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females. Eight-week-old female C57BL/6J mice were subjected to SHAM or OVX surgery and received dietary 17α-E2 during a six-week intervention period. We observed that 17α-E2 prevented OVX-induced increases in body weight and adiposity. Similarly, uterine weight and luminal cell thickness were decreased by OVX and prevented by 17α-E2 treatment. Interestingly, 17α-E2 prevented OVX-induced declines in tibial metaphysis cancellous bone. And similarly, 17α-E2 improved bone density parameters in both tibia and femur cancellous bone, primarily in OVX mice. In contrast, to the effects on cancellous bone, cortical bone parameters were largely unaffected by OVX or 17α-E2. In the non-weight bearing lumbar vertebrae, OVX reduced trabecular thickness but not spacing, while 17α-E2 increased trabecular thickness and reduced spacing. Despite this, 17α-E2 did improve bone volume/tissue volume in lumbar vertebrae. Overall, we found that 17α-E2 prevented OVX-induced increases in adiposity and changes in bone mass and architecture, with minimal effects in SHAM-operated mice. We also observed that 17α-E2 rescued uterine tissue mass and lining morphology to control levels without inducing hypertrophy, suggesting that 17α-E2 could be considered as an adjunct to traditional hormone replacement therapies.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Molly H Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Urszula T Iwaniec
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Russell T Turner
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
44
|
Hamza S, Fathy S, El-Azab S. Effect of diode laser biostimulation compared to Teriparatide on induced osteoporosis in rats: an animal study from Egypt. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1970-1985. [PMID: 32922592 PMCID: PMC7476941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Our aim in this study was to evaluate the effect of low-level laser therapy (LLLT) by means of diode laser bio-stimulation compared to Teriparatide in induced osteoporosis in rats. A total of 45 adult female Egyptian albino rats were used. Rats were divided into five groups: normal control, osteoporotic control, Teriparatide (TPTD) group (T), laser group (L), and laser and teriparatide (T+L) combination group. Osteoporosis was induced by performing double ovariectomy in rats. Lower jaws and left femurs were dissected. The specimens were tested using a Computed tomography unit, scanning EM (SEM) equipped with Energy Dispersive X-Ray Analyzer, and Rat PINP ELISA Kit. The histopathologic examination of experimental rat jaws and femurs revealed changes in bone architecture among the various groups throughout the experiment. CT examination showed a noticeable difference in radiodensity between jaw and femur bones. By SEM, bones of the Normal Control (NC) group showed normal bone porosity. However, bones of the Osteoporotic Control (OC) group showed a great difference as bone pores were large and numerous with irregular outlines. The ELISA test for PINP concentration showed a steady rise in the PINP concentrations in OC, T, L and T+L groups. We concluded that TPTD has osteogenic potential and is capable to enhance bone architecture by inducing the formation of new well-organized bone with narrower bone pore diameter. LLLT can be used as a good alternative local treatment strategy with minimal side effects and superior outcomes.
Collapse
Affiliation(s)
- Shymaa Hamza
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| | - Safa Fathy
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| | - Samia El-Azab
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| |
Collapse
|
45
|
Osteoprotective Activity and Metabolite Fingerprint via UPLC/MS and GC/MS of Lepidium sativum in Ovariectomized Rats. Nutrients 2020; 12:nu12072075. [PMID: 32668691 PMCID: PMC7400896 DOI: 10.3390/nu12072075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Lepidium sativum seeds are used traditionally to accelerate healing of bone fracture in addition to its culinary uses. This study aimed to characterize the osteoprotective effect of L. sativum in an ovariectomized rat model at two dose levels (50 and 100 mg/kg) using 17β-estradiol as a positive reference standard. Moreover, a complete metabolite profile of L. sativum via UHPLC/PDA/ESI-MS, as well as headspace solid-phase microextraction (SPME)-GC/MS is presented. Results revealed that L. sativum extract exhibited significant anti-osteoporotic actions as evidenced by mitigating the decrease in relative bone weight concurrent with improved longitudinal and perpendicular femur compression strength. Further, the extract enhanced the serum bone formation biomarkers lactate dehydrogenase (LDH) activity and osteocalcin levels. The extract also inhibited exhaustion of superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) activities and accumulation of lipid peroxides in bone tissues. This is in addition to ameliorating the rise in the markers of bone resorption carboxyterminal telopeptide, type I (CTXI) and tartrate-resistant acid phosphatase (TRAP) and modulating receptor activator of nuclear factor kappa-Β ligand (RANKL)/ osteoprotegerin (OPG) expression. Metabolite characterization suggests that glucosinolates, lignans, coumarins, phenolic acids, and alkaloids mediate these anti-osteoporotic effects in a synergistic manner.
Collapse
|
46
|
Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular Basis of Bone Aging. Int J Mol Sci 2020; 21:ijms21103679. [PMID: 32456199 PMCID: PMC7279376 DOI: 10.3390/ijms21103679] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
A decline in bone mass leading to an increased fracture risk is a common feature of age-related bone changes. The mechanisms underlying bone senescence are very complex and implicate systemic and local factors and are the result of the combination of several changes occurring at the cellular, tissue and structural levels; they include alterations of bone cell differentiation and activity, oxidative stress, genetic damage and the altered responses of bone cells to various biological signals and to mechanical loading. The molecular mechanisms responsible for these changes remain greatly unclear and many data derived from in vitro or animal studies appear to be conflicting and heterogeneous, probably due to the different experimental approaches; nevertheless, understanding the main physio-pathological processes that cause bone senescence is essential for the development of new potential therapeutic options for treating age-related bone loss. This article reviews the current knowledge concerning the molecular mechanisms underlying the pathogenesis of age-related bone changes.
Collapse
|
47
|
Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 2020; 52:88-98. [PMID: 32081538 DOI: 10.1016/j.cytogfr.2020.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Chin KY, Ima-Nirwana S. The Role of Tocotrienol in Preventing Male Osteoporosis-A Review of Current Evidence. Int J Mol Sci 2019; 20:E1355. [PMID: 30889819 PMCID: PMC6471446 DOI: 10.3390/ijms20061355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Male osteoporosis is a significant but undetermined healthcare problem. Men suffer from a higher mortality rate post-fracture than women and they are marginalized in osteoporosis treatment. The current prophylactic agents for osteoporosis are limited. Functional food components such as tocotrienol may be an alternative option for osteoporosis prevention in men. This paper aims to review the current evidence regarding the skeletal effects of tocotrienol in animal models of male osteoporosis and its potential antiosteoporotic mechanism. The efficacy of tocotrienol of various sources (single isoform, palm and annatto vitamin E mixture) had been tested in animal models of bone loss induced by testosterone deficiency (orchidectomy and buserelin), metabolic syndrome, nicotine, alcoholism, and glucocorticoid. The treated animals showed improvements ranging from bone microstructural indices, histomorphometric indices, calcium content, and mechanical strength. The bone-sparing effects of tocotrienol may be exerted through its antioxidant, anti-inflammatory, and mevalonate-suppressive pathways. However, information pertaining to its mechanism of actions is superficial and warrants further studies. As a conclusion, tocotrienol could serve as a functional food component to prevent male osteoporosis, but its application requires validation from a clinical trial in men.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| |
Collapse
|