1
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Özer Simsek Z, Aras S, Cikrikcioglu M, Baydili KN, Cortuk M. Melatonin as a radioprotective agent against flattening filter and flattening filter-free beam in radiotherapy-induced lung tissue damage. Int J Radiat Biol 2024:1-7. [PMID: 39074356 DOI: 10.1080/09553002.2024.2381492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/09/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Radiotherapy is a widely used treatment method in oncology, applied by delivering high-energy particles or waves to the tumor tissue. Although tumor cells are targeted with radiotherapy, it can cause acute or long-term damage to healthy tissues. Therefore, the preservation of healthy tissues has been an important subject of various scientific researches. Melatonin has been shown to have a radioprotective effect on many tissues and organs such as liver, parotid gland, brain, and testicles. This study aimed to evaluate the protective effect of melatonin against the radiation at various doses and rates administered to the lung tissue of healthy mice. METHODS This study was a randomized case-control study conducted with 80 rats comprising 10 groups with eight animals per group. Of the 10 groups, first is the control group, which is not given any melatonin, and second is the group that does not receive RT, which is given only melatonin, and the other eight groups are RT groups, four with melatonin and four without melatonin. RESULTS There was no statistical difference in terms of histopathological findings in the lung tissue between the second group, which did not receive radiotherapy and received only melatonin, and the control group. Lung damage due to radiotherapy was statistically significantly higher in the groups that did not receive melatonin compared to the groups that received melatonin. CONCLUSIONS This study revealed that melatonin has a protective effect against the cytotoxic damage of RT in rats receiving RT.
Collapse
Affiliation(s)
- Zuhal Özer Simsek
- Department of Chest Intensive Care Unit, Kayseri City Hospitals, Kayseri, Turkey
| | - Serhat Aras
- Department of Radiation Oncology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Makbule Cikrikcioglu
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Kursad Nuri Baydili
- Department of Biostatistics, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mustafa Cortuk
- Department of Chest Diseases, Health Science University Yedikule Chest Diseases and Thoracic Surgery Hospital, İstanbul, Turkey
| |
Collapse
|
3
|
Seyedpour N, Motevaseli E, Taeb S, Nowrouzi A, Mirzaei F, Bahri M, Dehghan-Manshadi HR, Zhaleh M, Rashidi K, Azmoonfar R, Yahyapour R, Najafi M. Protective Effects of Alpha-lipoic Acid, Resveratrol, and Apigenin Against Oxidative Damages, Histopathological Changes, and Mortality Induced by Lung Irradiation in Rats. Curr Radiopharm 2024; 17:99-110. [PMID: 37909433 DOI: 10.2174/0118744710244357231018070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 11/03/2023]
Abstract
AIM This study investigated the protective effects of three antioxidants on radiationinduced lung injury. BACKGROUND Oxidative stress is one of the key outcomes of radiotherapy in normal tissues. It can induce severe injuries in lung tissue, which may lead to pneumonitis and fibrosis. Recently, interest in natural chemicals as possible radioprotectors has increased due to their reduced toxicity, cheaper price, and other advantages. OBJECTIVE The present study was undertaken to evaluate the radioprotective effect of Alpha-lipoic Acid (LA), Resveratrol (RVT), and Apigenin (APG) against histopathological changes and oxidative damage and survival induced by ionizing radiation (IR) in the lung tissues of rats. METHODS First, the lung tissue of 50 mature male Wistar rats underwent an 18 Gy gamma irradiation. Next, the rats were sacrificed and transverse sections were obtained from the lung tissues and stained with hematoxylin and eosin (H and E) and Mason trichrome (MTC) for histopathological evaluation. Then, the activity of Glutathione peroxidase (GPx), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) was measured by an ELISA reader at 340, 405, and 550 nm. RESULTS Based on the results of this study, IR led to a remarkable increase in morphological changes in the lung. However, APG, RVT, and LA could ameliorate the deleterious effects of IR in lung tissue. IR causes an increase in GPX level, and APG+IR administration causes a decrease in the level of GPX compared to the control group. Also, the results of this study showed that RVT has significant effects in reducing MDA levels in the short term. In addition, compared to the control group, IR and RVT+IR decrease the activity of SOD in the long term in the lung tissues of rats. Also, the analysis of results showed that weight changes in IR, LA+IR, APG+IR, and control groups were statistically significant. CONCLUSION APG and RVT could prevent tissue damage induced by radiation effects in rat lung tissues. Hence, APG, LA, and RVT could provide a novel preventive action with their potential antioxidant anti-inflammatory properties, as well as their great safety characteristic.
Collapse
Affiliation(s)
- Nasrin Seyedpour
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mirzaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Bahri
- Central Research Laboratory, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Zhaleh
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Wang SC, Hsu HC, Chang YC, Yu CY, Liu CT, Sung WW. Melatonin exhibits partial protective effects against gemcitabine- and cisplatin-induced kidney and reproductive injuries in mice. Aging (Albany NY) 2023; 15:14372-14383. [PMID: 38097341 PMCID: PMC10756091 DOI: 10.18632/aging.205307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2023]
Abstract
Cisplatin has the potential to cause kidney and reproductive organ injuries, prompting the search for protective agents against cisplatin-induced toxicity. Melatonin, an antioxidant hormone, has shown promise in mitigating oxidative stress in various organs. However, its protective effects on cisplatin-induced kidney and reproductive injuries have not been extensively investigated. The aim of this study was to explore the potential protective effects of melatonin on cisplatin-induced kidney and reproductive injuries when administered in combination with gemcitabine in mice. Male C57BL/6 mice were subjected to a seven-week treatment with gemcitabine plus cisplatin, with or without melatonin intervention. The testis, epididymis, and kidney were assessed through histological analysis and measurement of blood parameters. Treatment with cisplatin led to a significant reduction in testicular weight, histological abnormalities, and alterations in reproductive hormone levels. Melatonin exhibited a slight protective effect on the testis, with higher doses of melatonin yielding better outcomes. However, melatonin did not reverse the effects of cisplatin on the epididymis. Administration of melatonin before and during treatment with cisplatin plus gemcitabine in mice demonstrated a modest protective effect on testicular injuries, while showing limited effects on epididymal injuries. Serum creatinine levels in the group treated with gemcitabine plus cisplatin treatment and high-dose melatonin approached those of the control group, indicating a protective effect on the kidney. These findings underscore the potential of melatonin as a protective agent against cisplatin-induced kidney and reproductive injuries and emphasize the need for further research to optimize its dosage and evaluate its long-term effects.
Collapse
Affiliation(s)
- Shao-Chuan Wang
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsuan-Chih Hsu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ya-Chuan Chang
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wei Sung
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
5
|
Gumru S, Ozgur G, Ertas B, Sen A, Eker P, Sener TE, Sener G. Ethanolic extract of cotinuscoggygria leaves attenuates crystalluria and kidney damage in ethylene glycol-induced urolithiasis in rats. North Clin Istanb 2023; 10:734-744. [PMID: 38328729 PMCID: PMC10846575 DOI: 10.14744/nci.2023.29794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Nephrolithiasis is a common cause of kidney insufficiency. Nephrolithiasis is proven to be the result of various biochemical and inflammatory processes that result in crystal formation and subsequent aggregation. Cotinuscoggygria L. (CCog) is a plant extract which has been used as a Turkish remedy for kidney stones. With this study, we planned to evaluate the effects of CCog extract in ethylene glycol (EG)-induced nephrolithiasis model in rats. METHODS The study group comprised 32 Wistar albino rats which were divided into Control (C), EG, CCog Prophylaxis (CC+EG+CC), and CCog Treatment (EG+CC) groups. Stone formation was induced by adding EG (0.75%) into rat's drinking water. Normal drinking water was given to Control group for 8 weeks. Throughout the study period of 8 weeks, EG group was given only EG (0.75%) and CC+EG+CC group was given both EG and CCog. In EG+CC group, EG (0.75%) was given for 8 weeks whereas CCog was given for the past 4 weeks. After the 8th week, 24-h urine samples were collected. Rats were then sacrificed and kidney tissue samples were harvested. RESULTS Metabolites (calcium, citrate) and creatinine in 24 h urine samples were decreased in CC+EG+CC and EG+CC groups. While hyperoxaluria was observed in the EG group, oxalate levels were similar to control levels in the P-CCog and C-CCog groups. The N-acetyl-β-glucosaminidase and myeloperoxidase activities were both increased in EG group and these parameters were significantly decreased on CCog treatment. CONCLUSION We can conclude that C. coggygria extract can have beneficial effect on lowering concentration of stone-forming metabolites in urine and consequently protect renal tissues from damage due to nephrolithiasis. C. coggygria extract can be considered as a potential prophylactic and therapeutic option in high-risk stone formers. Furthermore, our data confirm ethnobotanical use of CC against nephrolithiasis.
Collapse
Affiliation(s)
- Salih Gumru
- Department of Pharmacology, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Gunal Ozgur
- Department of Urology, Marmara University Faculty of Medicine, Istanbul, Turkiye
| | - Busra Ertas
- Department of Pharmacology, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Ali Sen
- Department of Pharmacognosy, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Pinar Eker
- Department of Biochemistry, Health Sciences University, Istanbul, Turkiye
| | - Tarik Emre Sener
- Department of Urology, Marmara University Faculty of Medicine, Istanbul, Turkiye
| | - Goksel Sener
- Department of Pharmacology, Fenerbahce University Faculty of Pharmacy, Istanbul, Turkiye
| |
Collapse
|
6
|
Basirat U, Bin Tariq U, Moeen N, Jawhar ZH, Shoja SJ, Kareem AK, Ramírez-Coronel AA, Romero-Parra RM, Zabibah RS, Gupta J, Mustafa YF, Farhood B. A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy. Curr Pharm Des 2023; 29:1218-1229. [PMID: 37138418 DOI: 10.2174/1381612829666230503145707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.
Collapse
Affiliation(s)
| | | | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Sarah Jawad Shoja
- College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
8
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Niloofar Deravi,
| |
Collapse
|
9
|
Lai PP, Jing YT, Guo L, Qin TZ, Xue YZ, Zhang ZW, Wang X, Miao X, Zhang W, Ding GR. Abscopal effects of thoracic X-ray radiation on spermatogenesis in mice. Front Physiol 2022; 13:984429. [PMID: 36091371 PMCID: PMC9458860 DOI: 10.3389/fphys.2022.984429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
The study aimed to elucidate abscopal effects of thoracic X-ray irradiation on spermatogenesis in mice. Male C57BL/6 mice were randomly divided into sham group and radiation group, and subjected to thorax fractionated X-ray irradiation or sham irradiation with the total dose of 5 Gy/day for each animal for four consecutive days. After irradiation, sperm morphology was observed, and sperm number was counted under microscope, and sperm apoptosis was detected by flow cytometry. Meanwhile, testis index was calculated, testicular morphology was observed using haematoxylin-eosin (HE) staining, and testicular ultrastructure was observed under transmission electron microscopy. The permeability of blood-testis barrier (BTB) was detected by Evans Blue fluorescence colorimetry. The protein levels of Bcl-2 associated X protein (Bax), B-cell leukemia-lymphoma-2 (Bcl-2) and Cleaved caspase 3, promyelocytic leukaemia zinc finger (PLZF) and c-kit proto-oncogene (c-kit) in testes were determined by western blotting (WB). The location of apoptotic cells was confirmed by terminal deoxynucleotidyl transferase (TdT) enzymaticated dUTP nick end labelling (TUNEL) assay. The levels of tumor necrosis factor alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) were measured by the biochemical assay kit. Compared with sham group, the sperm quality of mice in radiation group showed decreased number and survival rate, along with increased abnormality and total apoptosis rate. The testis index of irradiated mice was lower, the testicular apoptosis was increased, and their testicular histology and ultrastructure was severely damaged. The permeability of BTB was increased, the level of PLZF in testis was decreased, and the level of c-kit was increased by irradiation. After irradiation, the levels of TNF-α, TGF-β1, IL-10, T-SOD and MDA in testes were significantly changed. Taken together, abscopal effects of thoracic X-ray irradiation on spermatogenesis were obvious, which could decrease sperm quality and damage testicular morphology and increase the permeability of BTB, and a series of inflammation and oxidative stress factors were involved in the process. These findings provide novel insights into prevention and treatment for male reproductive damage induced by clinical thoracic irradiation.
Collapse
Affiliation(s)
- Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xia Miao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
- *Correspondence: Gui-Rong Ding,
| |
Collapse
|
10
|
Sheikholeslami S, Aryafar T, Abedi-Firouzjah R, Banaei A, Dorri-Giv M, Zamani H, Ataei G, Majdaeen M, Farhood B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci 2021; 281:119721. [PMID: 34146555 DOI: 10.1016/j.lfs.2021.119721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Pneumonitis and lung fibrosis, as the most common compliances of lung irradiation, can affect the quality of life. The use of radio-protective agents can ameliorate these injuries. This study aimed to review the potential protective role of melatonin in the treatment of radiation-induced Pneumonitis and lung fibrosis. METHODS The current systematic study was conducted based on PRISMA guidelines to identify relevant literature on " the effect of melatonin on radiation-induced pneumonitis and lung fibrosis" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Eighty-one articles were screened in accordance with the inclusion and exclusion criteria of the study. Finally, eight articles were included in this systematic review. RESULTS The finding showed that the lung irradiation-induced pneumonitis and lung fibrosis. The co-treatment with melatonin could alleviate these compliances through its anti-oxidant and anti-inflammatory actions. Melatonin through upregulation of some enzymes such as catalase, superoxide dismutase, glutathione, NADPH oxidases 2 and 4, dual oxidases 1 and 2, and also downregulation of malondialdehyde reduced oxidative stress following lung radiation. Moreover, melatonin through its anti-inflammatory effects, can attenuate the increased levels of nuclear factor kappa B, tumor necrosis factor alpha, transforming growth factor beta 1, SMAD2, interleukin (IL)-4, IL-4 receptor-a1 (IL4ra1), and IL-1 beta following lung radiation. The histological damages induced by ionizing radiation were also alleviated by co-treatment with melatonin. CONCLUSION According to the obtained results, it was found that melatonin can have anti-pneumonitis and anti-fibrotic following lung irradiation.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tayebeh Aryafar
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Mukherjee S, Dutta A, Chakraborty A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108368. [PMID: 34083032 DOI: 10.1016/j.mrrev.2021.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Dutta
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Chakraborty
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India.
| |
Collapse
|
12
|
Motallebzadeh E, Tameh AA, Zavareh SAT, Farhood B, Aliasgharzedeh A, Mohseni M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J Cell Physiol 2020; 235:8791-8798. [PMID: 32324264 DOI: 10.1002/jcp.29722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to determine the effects of melatonin on irradiation-induced apoptosis and oxidative stress in the brainstem region of Wistar rats. Therefore, the animals underwent whole-brain X-radiation with a single dose of 25 Gy in the presence or absence of melatonin pretreatment at a concentration of 100 mg/kg BW. The rats were allocated into four groups (10 rats in each group): namely, vehicle control (VC), 100 mg/kg of melatonin alone (MLT), irradiation-only (RAD), and irradiation plus 100 mg/kg of melatonin (RAM). An hour before irradiation, the animals received intraperitoneal (IP) melatonin and then were killed after 6 hr, followed by measurement of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (TAC) in the brainstem region. Furthermore, the western blot analysis technique was performed to assess the caspase-3 expression level. Results showed significantly higher MDA and NO levels in the brainstem tissues for the RAD group when compared with the VC group (p < .001). Moreover, the irradiated rats exhibited a significant decrease in the levels of CAT, SOD, GPx, and TAC (p < .01, p < .001, p < .001, and p < .001, respectively) in comparison to the VC group. The results of apoptosis assessment revealed that the expression level of caspase-3 significantly rose in the RAD group in comparison with the VC group (p < .001). Pretreatment with melatonin ameliorated the radiation-induced adverse effects by decreasing the MDA and NO levels (p < .001) and increasing the antioxidant enzyme activities (p < .001). Consequently, the caspase-3 protein expression level in the RAM group showed a significant reduction in comparison with the RAD group (p < .001). In conclusion, melatonin approximately showed a capacity for neuroprotective activity in managing irradiation-induced oxidative stress and apoptosis in the brainstem of rats; however, the use of melatonin as a neuroprotective agent in humans requires further study, particularly clinical trials.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzedeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Shabeeb D, Musa AE, Keshavarz M, Hassanzadeh G, Hadian MR, Nowrouzi A, Shirazi A, Najafi M. Melatonin Ameliorates Radiation-induced Sciatic Nerve Injury. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190617160434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radiotherapy is a treatment method for cancer mostly utilized for about
60% of cancer patients. Peripheral neuropathy is one of the severe complications of radiotherapy.
Two stages of neuropathy will occur following irradiation; electrophysiological and biochemical
variations as the first stage, while the second stage involves fibrosis of soft tissues surrounding the
exposed nerve. This novel study aimed to investigate the radioprotective effects of melatonin against
ionizing radiation-induced sciatic nerve damage.
Methods:
60 rats were randomly assigned to four groups; C (Control), M (Melatonin), R (Radiation),
MR (Radiation + Melatonin). Their right legs were exposed to 30 Gy single dose gamma rays. Melatonin
(100 mg/kg) was administered 30 min before irradiation and once daily (5 mg/kg) till the day
of rats’ sacrifice. Their exposed nerve tissues were evaluated for biochemical changes in addition to
Electromyography (EMG) and Nerve Conduction Study (NCS).
Results:
4, 12 and 20 weeks post-irradiation, EMG and NCS examinations in R group showed reduced
Compound Muscle Action Potential (CMAP) representing axonal degeneration when compared
with C and M groups. Prolonged latency and a decrease in Conduction Velocity (CV) gave an
indication of demyelinating neuropathy at 12 and 20 weeks. EMG and NCS results of R group
showed partial nerve lesion. Biochemical assessments showed that irradiation of sciatic nerve led to
increased MDA level, as well as decreased CAT and SOD activities. However, in all cases, treatment
with melatonin can reverse these effects.
Conclusion:
We conclude that melatonin can improve electrophysiological, oxidative stress and
antioxidant defense features of irradiated rats’ sciatic nerves. We would also recommend the use of
melatonin in an optimal and safe dose. It should be administered over a long period of time for effective
protection of the peripheral nerve tissues, as well as improving the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Hadian
- Brain and Spinal Cord Injury, Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Amini P, Tooli LF, Shabeeb D. Melatonin Modulates Regulation of NOX2 and NOX4 Following Irradiation in the Lung. ACTA ACUST UNITED AC 2019; 14:224-231. [DOI: 10.2174/1574884714666190502151733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Background:
Exposure to ionizing radiation may lead to chronic upregulation of inflammatory
mediators and pro-oxidant enzymes, which give rise to continuous production of reactive
oxygen species (ROS). NADPH oxidases are among the most important ROS producing enzymes.
Their upregulation is associated with DNA damage and genomic instability. In the present
study, we sought to determine the expressions of NADPH oxidases; NOX2 and NOX4, in rat’s lung
following whole body or pelvis irradiation. In addition, we evaluated the protective effect of melatonin
on the expressions of NOX2 and NOX4, as well as oxidative DNA injury.
Materials and Methods:
35 male rats were divided into 7 groups, G1: control; G2: melatonin (100 mg/kg) treatment;
G3: whole body irradiation (2 Gy); G4: melatonin plus whole body irradiation; G5: local
irradiation to pelvis area; G6: melatonin treatment plus 2 Gy gamma rays to pelvis area; G7: scatter
group. All the rats were sacrificed after 24 h. afterwards, the expressions of TGFβR1, Smad2, NF-
κB, NOX2 and NOX4 were detected using real-time PCR. Also, the level of 8-OHdG was detected
by ELISA, and NOX2 and NOX4 protein levels were detected by western blot.
Results:
Whole body irradiation led to the upregulation of all genes, while local pelvis irradiation
caused upregulation of TGFβR1, NF-κB, NOX2 and NOX4, as well as protein levels of NOX2 and
NOX4. Treatment with melatonin reduced the expressions of these genes and also alleviated oxidative
injury in both targeted and non-targeted lung tissues. Results also showed no significant reduction
for NOX2 and NOX4 in bystander tissues following melatonin treatment.
Conclusion:
It is possible that upregulation of NOX2 and NOX4 is involved in radiation-induced
targeted and non-targeted lung injury. Melatonin may reduce oxidative stress following upregulation
of these enzymes in directly irradiated lung tissues but not for bystander.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Farhadi Tooli
- Department of Microbiology, School of Biology, College of Sciences, Tehran University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| |
Collapse
|
15
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
16
|
Mercantepe T, Topcu A, Rakici S, Tumkaya L, Yilmaz A, Mercantepe F. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29085-29094. [PMID: 31392607 DOI: 10.1007/s11356-019-06110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was therefore to investigate the effects of radiotherapy on the kidney and the potential use of agents such as N-acetylcysteine (NAC) in developing a future therapeutic protocol for radiation-induced nephrotoxicity at the histopathological and biochemical levels. Our study consisted of three groups: control (oral saline solution only; group 1), irradiation (IR; group 2), and NAC + IR (group 3). The irradiation groups received a single dose of whole-body 6-Gy x-irradiation. The NAC group received 300 mg/kg by the oral route for 7 days, from 5 days before irradiation to 2 days after. All subjects were sacrificed under anesthesia 2 days after irradiation. IR increased tubular necrosis scores (TNS), MDA, and caspase-3 expression, while reducing renal tissue GSH levels. We also observed dilation in renal corpuscles and tubules. Capillary congestion was present in the intertubular spaces. NAC reduced the levels of TNS, MDA, and caspase-3 expression, but increased the levels of renal tissue GSH. ROS-scavenging antioxidants may represent a promising means of preventing renal injury in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
17
|
Histopathological and Functional Evaluation of Radiation-Induced Sciatic Nerve Damage: Melatonin as Radioprotector. ACTA ACUST UNITED AC 2019; 55:medicina55080502. [PMID: 31430996 PMCID: PMC6722514 DOI: 10.3390/medicina55080502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Radiotherapy uses ionizing radiation for cancer treatment. One of the side effects of radiotherapy is peripheral neuropathy. After irradiation, the first stage of neuropathy involves electrophysiological, biochemical and histopathological variations, while the fibrosis of soft tissues surrounding the exposed nerve occurs in the second stage. The present study aimed to examine the radioprotective effects of melatonin against ionizing radiation-induced sciatic nerve damage. Materials and Methods: Sixty male Wistar rats were assigned to four groups: C (Control + Vehicle), M (Melatonin), R (Radiation + Vehicle), MR (Radiation + Melatonin). Their right legs were irradiated with a 30 Gy single dose of gamma rays. Then, 100 mg/kg melatonin was administered to the animals 30 min before irradiation once daily (5 mg/kg) until the day of rats' sacrifice. Their exposed nerve tissues were assessed using the sciatic functional index (SFI) and histological evaluation. Results: Four, 12 and 20 weeks post irradiation, the SFI results showed that irradiation led to partial loss of motor nerve function after 12 and 20 weeks. Histological evaluation showed the various stages of axonal degeneration and demyelination compared to the C and M groups. Scar-like tissues were detected around the irradiated nerves in the R group at 20 weeks, but were absent in the MR group. The SFI and histological results of the R group showed partial nerve lesion. However, in all cases, treatment with melatonin prevented these effects. Conclusions: Results showed that melatonin has the potential to improve functional and morphological features of exposed sciatic nerves. This could possibly improve the therapeutic window of radiotherapy.
Collapse
|
18
|
Lu L, Sun C, Su Q, Wang Y, Li J, Guo Z, Chen L, Zhang H. Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance. Clin Exp Med 2019; 19:417-426. [PMID: 31313081 DOI: 10.1007/s10238-019-00571-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Cancer research has advanced throughout the years with respect to the personalization of the treatments and to targeting cancer-related molecular signatures on different organs. Still, the adverse events of the treatments such as radiotherapy are of high concern as they may increase the mortality rate due to their severity. With the improved efficiency of cancer treatments, patient survival has been increasing. Consequently, the number of patients with adverse effects from radiotherapy is also expected to increase in the forthcoming years. Therefore, approaches for personalized treatments include the elimination of adverse events and decreasing the toxicity in healthy tissues while increasing the efficiency of cancer cytotoxicity. In this context, this paper aims to discuss the recent advances in the field of thorax irradiation therapy and its related toxicities leading to radiation pneumonitis in cancer patients. Molecular mechanisms involved in the radiation-induced lung injury and approaches used to overcome this lung injury are discussed. The discourse covers approaches such as therapeutic administration of natural products, current and prospective radioprotective drugs, and applications of mesenchymal stem cells for radiation-induced lung injury.
Collapse
Affiliation(s)
- Lina Lu
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Qiong Su
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Yanbin Wang
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Jia Li
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lihua Chen
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China. .,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China.
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
19
|
Rakici SY, Tumkaya L, Edirvanli OC, Yazici U, Dursun E, Arpa M, Mercantepe T. Radioprotective effect of endogenous melatonin secretion associated with the circadian rhythm in irradiated rats. Int J Radiat Biol 2019; 95:1236-1241. [PMID: 31287351 DOI: 10.1080/09553002.2019.1642532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: We investigated the radioprotective effect of endogenous melatonin release at different times associated with the circadian rhythm on head and neck radiotherapy. Materials and methods: Two groups of animals were subjected daily to 8 Gy single fraction radiotherapy in the head and neck region from 5:00 to 6:00 (the morning group) or from 19:00 to 20:00 (the evening group). Corresponding untreated groups served as controls. Submandibular glands from rats sacrificed on the seventh day after irradiation were assessed biochemically and histopathologically. Melatonin, malondialdehyde and superoxide dismutase levels in blood collected immediately prior to irradiation were measured with rat-specific ELISA kits. Results: In irradiated rats, melatonin, malondialdehyde and superoxide dismutase levels were significantly higher in the evening group than in the morning group. In nonirradiated rats, melatonin and superoxide dismutase levels were significantly higher in the evening group than in the morning group. The areas of seromucous acinar cells were similar between the irradiated and nonirradiated evening groups, but the area was higher in the evening irradiated group than in the morning irradiated group. Conclusion: Consideration of endogenous melatonin secretion associated with the circadian rhythm may offer new therapeutic solutions for the complications of head and neck radiotherapy.
Collapse
Affiliation(s)
- Sema Yilmaz Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| | | | - Ufuk Yazici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Engin Dursun
- Department of Otorhinolaryngology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Medeni Arpa
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University , Rize , Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| |
Collapse
|
20
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Zhang X, Xia Q, Wei R, Song H, Mi J, Lin Z, Yang Y, Sun Z, Zou K. Melatonin protects spermatogonia from the stress of chemotherapy and oxidation via eliminating reactive oxidative species. Free Radic Biol Med 2019; 137:74-86. [PMID: 30986493 DOI: 10.1016/j.freeradbiomed.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Busulfan is a widely used chemotherapeutic drug for chronic myelogenous leukemia and bone marrow transplantation. As a cell cycle nonspecific alkylation agent, busulfan has a severe side effect on germ cells, especially on spermatogonia before meiosis. Studies have revealed that busulfan causes DNA strand crosslinks in spermatogonia and induces apoptosis, and many corresponding strategies have been developed to ameliorate the side effects. However, fertility maintenance after busulfan treatment is still a challenging project in the clinic. Here, we demonstrated that continuous injection of melatonin effectively alleviated germline cytotoxicity both in recipient mice and cultured spermatogonia, and busulfan/melatonin recipient mice produced normal litters. We further revealed that melatonin rescues spermatogonia from apoptosis by neutralizing reactive oxidative species (ROS) induced by busulfan and recovered the phosphorylation of ATM and p53 to normal levels, and as a result apoptosis in spermatogonial progenitor cells was avoided. This study reports that pineal gland hormone melatonin effectively protects spermatogonia from the stress of chemotherapy and oxidation and reveals the underlying molecular mechanisms, which will provide an important hint for fertility protection in clinic.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongfei Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Shabeeb D, Najafi M, Musa AE, Keshavarz M, Shirazi A, Hassanzadeh G, Hadian MR, Samandari H. Biochemical and Histopathological Evaluation of the Radioprotective Effects of Melatonin Against Gamma Ray-Induced Skin Damage. Curr Radiopharm 2019; 12:72-81. [PMID: 30465519 DOI: 10.2174/1874471012666181120163250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiotherapy is one of the treatment methods for cancers using ionizing radiations. About 70% of cancer patients undergo radiotherapy. Radiation effect on the skin is one of the main complications of radiotherapy and dose limiting factor. To ameliorate this complication, we used melatonin as a radioprotective agent due to its antioxidant and anti-inflammatory effects, free radical scavenging, improving overall survival after irradiation as well as minimizing the degree of DNA damage and frequency of chromosomal abrasions. METHODS Sixty male Wistar rats were randomly assigned to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). A single dose of 30 Gy gamma radiation was exposed to the right hind legs of the rats while 40 mg/ml of melatonin was administered 30 minutes before irradiation and 2 mg/ml once daily in the afternoon for one month till the date of rat's sacrifice. Five rats from each group were sacrificed 4, 12 and 20 weeks after irradiation. Afterwards, their exposed skin tissues were examined histologically and biochemically. RESULTS In biochemical analysis, we found that malondialdehyde (MDA) levels significantly increased in R group and decreased significantly in M and MR groups after 4, 12, and 20 weeks, whereas catalase (CAT) and superoxide dismutase (SOD) activities decreased in the R group and increased in M and MR groups during the same time periods compared with the C group (p<0.05). Histopathological examination found there were statistically significant differences between R group compared with the C and M groups for the three different time periods (p<0.005, p<0.004 and p<0.004) respectively, while R group differed significantly with MR group (p<0.013). No significant differences were observed between C and M compared with MR group (p>0.05) at 4 and 20 weeks except for inflammation and hair follicle atrophy, while there were significant effects at 12 weeks (p<0.05). CONCLUSION Melatonin can be successfully used for the prevention and treatment of radiation-induced skin injury. We recommend the use of melatonin in optimal and safe doses. These doses should be administered over a long period of time for effective radioprotection and amelioration of skin damages as well as improving the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Iraq
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Hadian
- Brain and Spinal Cord Injury, Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hedayat Samandari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
An investigation of the effects of N-acetylcysteine on radiotherapy-induced testicular injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:147-157. [DOI: 10.1007/s00210-018-1581-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
|
25
|
Wang JW, Wang JW, Zhang J, Wu CS, Fang Y, Su WW, Fan YC, Wang K. Decreased Methylation of IFNAR Gene Promoter from Peripheral Blood Mononuclear Cells Is Associated with Oxidative Stress in Chronic Hepatitis B. J Interferon Cytokine Res 2018; 38:480-490. [PMID: 30383464 DOI: 10.1089/jir.2018.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type I interferons (IFNs) play an antiviral effect by binding to type I interferon receptor (IFNAR). Oxidative stress might induce the gene promoter methylation. The purpose of our study was to evaluate the potential relationship between the methylation of IFNAR promoter and the status of oxidative stress in chronic hepatitis B (CHB). The methylation level of the IFNAR promoter in patients with CHB and healthy controls (HCs) was determined by methylation-specific polymerase chain reaction (MS-PCR). The quantitative real-time PCR (RT-qPCR) was used to evaluate the IFNAR mRNA status in peripheral blood mononuclear cells from CHB and HCs. Level of plasma-soluble IFNAR and oxidative stress parameters, including malondialdehyde (MDA) and glutathione (GSH) were determined by enzyme-linked immunosorbent assay (ELISA). The frequency of IFNAR promoter methylation in CHB patients was significantly lower than that of HCs. The IFNAR mRNA level of patients with CHB was higher than HCs. MDA level was higher in CHB patients, whereas GSH level was lower in CHB patients than that of HCs. In CHB patients, plasma MDA level was significantly higher with IFNAR promoter methylation than unmethylation, and soluble IFNAR in the circulation of methylated patients with CHB was decreased than unmethylated patients with CHB. Our results indicated that the IFNAR promoter methylation might have a potential relationship with the status of oxidative stress.
Collapse
Affiliation(s)
- Jing-Wen Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Jing-Wei Wang
- 2 Department of Infectious Diseases, Qilu Hospital of Shandong University (Qingdao) , Qingdao, China
| | - Jun Zhang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Chen-Si Wu
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu Fang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Wei-Wei Su
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu-Chen Fan
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China .,3 Institute of Hepatology, Shandong University , Jinan, China
| | - Kai Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China .,3 Institute of Hepatology, Shandong University , Jinan, China
| |
Collapse
|
26
|
Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14:937-950. [PMID: 30118646 DOI: 10.1080/17425255.2018.1513492] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
BSTRACT Introduction: The aim of this study was to investigate the potential role of melatonin in the prevention of chemotherapy-induced nephrotoxicity at the preclinical level. Areas to be covered: To illuminate the possible role of melatonin in preventing chemotherapy-related nephrotoxicity, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed. A comprehensive search strategy was developed to include PubMed, Web of Science, Scopus, and Embase electronic databases from their inception to May 2018. Based on a set of prespecified inclusion and exclusion criteria, 21 non-clinical articles were ultimately included in the study. Expert opinion: Our findings clearly demonstrate that melatonin has a protective role in the prevention of chemotherapy-induced nephrotoxicity which may be caused by different chemotherapy agents such as cyclophosphamide, cisplatin, doxorubicin, methotrexate, oxaliplatin, etoposide, and daunorubicin. On the basis of current review of non-clinical studies, this protective effect of melatonin is attributed to different mechanisms such as reduction of oxidative stress, apoptosis, and inflammation. The findings presented in this review are based on non-clinical studies and thus conducting appropriate clinical trials to evaluate the real effectiveness of the concurrent use of chemotherapy agents with melatonin in the cancer patients is necessary.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Bagher Farhood
- b Departmentof Medical Physics and Radiology, Faculty of Paramedical Sciences , Kashan University of Medical Sciences , Kashan , Iran
| | - Mahban Rahimifard
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Tina Didari
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Baeeri
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Shokoufeh Hassani
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Rohollah Hosseini
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
27
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
28
|
Yahyapour R, Amini P, Rezapour S, Cheki M, Rezaeyan A, Farhood B, Shabeeb D, Musa AE, Fallah H, Najafi M. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5:9. [PMID: 29554942 PMCID: PMC5859747 DOI: 10.1186/s40779-018-0156-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Currently, ionizing radiation (IR) plays a key role in the agricultural and medical industry, while accidental exposure resulting from leakage of radioactive sources or radiological terrorism is a serious concern. Exposure to IR has various detrimental effects on normal tissues. Although an increased risk of carcinogenesis is the best-known long-term consequence of IR, evidence has shown that other diseases, particularly diseases related to inflammation, are common disorders among irradiated people. Autoimmune disorders are among the various types of immune diseases that have been investigated among exposed people. Thyroid diseases and diabetes are two autoimmune diseases potentially induced by IR. However, the precise mechanisms of IR-induced thyroid diseases and diabetes remain to be elucidated, and several studies have shown that chronic increased levels of inflammatory cytokines after exposure play a pivotal role. Thus, cytokines, including interleukin-1(IL-1), tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ), play a key role in chronic oxidative damage following exposure to IR. Additionally, these cytokines change the secretion of insulin and thyroid-stimulating hormone(TSH). It is likely that the management of inflammation and oxidative damage is one of the best strategies for the amelioration of these diseases after a radiological or nuclear disaster. In the present study, we reviewed the evidence of radiation-induced diabetes and thyroid diseases, as well as the potential roles of inflammatory responses. In addition, we proposed that the mitigation of inflammatory and oxidative damage markers after exposure to IR may reduce the incidence of these diseases among individuals exposed to radiation.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Zip code: 8813833435, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Saeed Rezapour
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Zip code: 6135715794, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Zip code: 1449614535, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Zip code: 3715835155, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Zip code: 1417613151, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research center for molecular and cellular imaging, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Zip code: 3836119131, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Zip code: 6714869914, Iran.
| |
Collapse
|
29
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Norouzi
- Science and Research Branch, Azad University, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Talib WH. Melatonin and Cancer Hallmarks. Molecules 2018; 23:molecules23030518. [PMID: 29495398 PMCID: PMC6017729 DOI: 10.3390/molecules23030518] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a natural indoleamine produced by the pineal gland that has many functions, including regulation of the circadian rhythm. Many studies have reported the anticancer effect of melatonin against a myriad of cancer types. Cancer hallmarks include sustained proliferation, evading growth suppressors, metastasis, replicative immortality, angiogenesis, resisting cell death, altered cellular energetics, and immune evasion. Melatonin anticancer activity is mediated by interfering with various cancer hallmarks. This review summarizes the anticancer role of melatonin in each cancer hallmark. The studies discussed in this review should serve as a solid foundation for researchers and physicians to support basic and clinical studies on melatonin as a promising anticancer agent.
Collapse
Affiliation(s)
- Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan.
| |
Collapse
|
31
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|