1
|
Leandro LNR, Barra Grande MF, Pelegrine AA, Nishioka RS, Teixeira ML, Basting RT. Stress distribution on implant- supported zirconia crown of maxillary first molar: effect of oblique load on natural and antagonist tooth. Comput Methods Biomech Biomed Engin 2024; 27:599-608. [PMID: 37022099 DOI: 10.1080/10255842.2023.2195962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
This study evaluated the stress distribution on an implant-supported zirconia crown of a mandibular first molar subjected to oblique loading by occlusal contact with the natural maxillary first molar by using the 3D finite element method. Two virtual models were made to simulate the following situations: (1) occlusion between maxillary and mandibular natural first molars; (2) occlusion between zirconia implant-supported ceramic crown on a mandibular first molar and maxillary natural first molar. The models were designed virtually in a modeling program or CAD (Computer Aided Design) (Rhinoceros). An oblique load of 100 N was uniformly applied to the zirconia framework of the crown. The results were obtained by the Von Mises criterion of stress distribution. Replacement of the mandibular tooth by an implant caused a slight increase in stress on portions of the maxillary tooth roots. The crown of the maxillary model in occlusion with natural antagonist tooth showed 12% less stress when compared with the maxillary (model in occlusion with the) implant-supported crown. The mandibular crown of the implant show 35% more stress when compared with the mandibular antagonist crown on the natural tooth. The presence of the implant to replace the mandibular tooth increased the stresses on the maxillary tooth, especially in the region of the mesial and distal buccal roots.
Collapse
|
2
|
Comuzzi L, Ceddia M, Di Pietro N, Inchingolo F, Inchingolo AM, Romasco T, Tumedei M, Specchiulli A, Piattelli A, Trentadue B. Crestal and Subcrestal Placement of Morse Cone Implant-Abutment Connection Implants: An In Vitro Finite Element Analysis (FEA) Study. Biomedicines 2023; 11:3077. [PMID: 38002077 PMCID: PMC10669349 DOI: 10.3390/biomedicines11113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The issue of dental implant placement relative to the alveolar crest, whether in supracrestal, equicrestal, or subcrestal positions, remains highly controversial, leading to conflicting data in various studies. Three-dimensional (3D) Finite Element Analysis (FEA) can offer insights into the biomechanical aspects of dental implants and the surrounding bone. A 3D model of the jaw was generated using computed tomography (CT) scans, considering a cortical thickness of 1.5 mm. Subsequently, Morse cone implant-abutment connection implants were virtually positioned at the model's center, at equicrestal (0 mm) and subcrestal levels (-1 mm and -2 mm). The findings indicated the highest stress within the cortical bone around the equicrestally placed implant, the lowest stress in the -2 mm subcrestally placed implant, and intermediate stresses in the -1 mm subcrestally placed implant. In terms of clinical relevance, this study suggested that subcrestal placement of a Morse cone implant-abutment connection (ranging between -1 and -2 mm) could be recommended to reduce peri-implant bone resorption and achieve longer-term implant success.
Collapse
Affiliation(s)
- Luca Comuzzi
- Independent Researcher, San Vendemiano-Conegliano, 31020 Treviso, Italy;
| | - Mario Ceddia
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (M.C.); (B.T.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (F.I.); (A.M.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (F.I.); (A.M.I.)
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Margherita Tumedei
- Department of Medical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Alessandro Specchiulli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Bartolomeo Trentadue
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (M.C.); (B.T.)
| |
Collapse
|
3
|
Ellendula Y, Chandra Sekar A, Nalla S, Basany RB, Sailasri K, Thandu A. Biomechanical Evaluation of Stress Distribution in Equicrestal and Sub-crestally Placed, Platform-Switched Morse Taper Dental Implants in D3 Bone: Finite Element Analysis. Cureus 2022; 14:e24591. [PMID: 35664406 PMCID: PMC9148546 DOI: 10.7759/cureus.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
Aim The aim of the study was to assess the effect of implant placement depth on stress distribution in bone around a platform-switched and Morse taper dental implants placed at the equi-crestal and 1 mm and 2 mm sub-crestal levels in a D3 bone using the 3D finite element analysis. Methodology A mechanical model of a partially edentulous maxilla was generated from a computerized tomography (CT) scan of an edentulous patient, as it can give exact bony contours of cortical bone. Also, from accurate geometric measurements obtained from the manufacturer, 3D models of Morse taper and platform-switched implants were manually drawn. The implant and bone models were then superimposed to simulate implant insertion in bone. Three implant positioning levels such as the equi-crestal, 1 mm sub-crestal, and 2 mm sub-crestal models were created, and meshing was done to create the number of elements for distribution of applying loads. The elastic properties of cortical bone and implant, such as Young's modulus and Poisson's ratio (µ), were determined. A load (axial and oblique) of 200N that simulated masticatory force was applied. Results On comparing stresses within the bone around the equi-crestal and 1 mm and 2 mm sub-crestal implants, it was observed that the maximum stresses were seen within cortical bone around the equi-crestally placed implant (21.694), the least in the 2 mm sub-crestally placed implant (18.85), and intermediate stresses were seen within the 1 mm sub-crestally placed implant (18.876). Conclusion Sub-crestal (1-2mm) placement of a Morse taper and a platform-switched implant is recommended for long-term success, as maximum von Mises stresses were found within cortical bone around the equi-crestal implant followed by the 1 mm sub-crestal implant and then the 2 mm sub-crestal implant.
Collapse
Affiliation(s)
- Yashaswini Ellendula
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Anam Chandra Sekar
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Sandeep Nalla
- Department of Prosthodontics and Crown & Bridge, SVS Institute Of Dental Sciences, Mahabubnagar, IND
| | - Ram B Basany
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Kunchala Sailasri
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Ashwini Thandu
- Department of Prosthodontics and Crown & Bridge, SVS Institute Of Dental Sciences, Mahabubnagar, IND
| |
Collapse
|
4
|
Ausiello P, Tribst JPM, Ventre M, Salvati E, di Lauro AE, Martorelli M, Lanzotti A, Watts DC. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dent Mater 2021; 37:1688-1697. [PMID: 34497022 DOI: 10.1016/j.dental.2021.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of three different dental implant neck geometries, under a combined compressive/shear load using finite element analysis (FEA). The implant neck was positioned in D2 quality bone at the crestal level or 2 mm below. METHODS One dental implant (4.2 × 9 mm) was digitized by reverse engineering techniques using micro CT and imported into Computer Aided Design (CAD) software. Non-uniform rational B-spline surfaces were reconstructed, generating a 3D volumetric model similar to the digitized implant. Three different models were generated with different implant neck configurations, namely 0°, 10° and 20°. D2 quality bone, composed of cortical and trabecular structure, was modeled using data from CT scans. The implants were included in the bone model using a Boolean operation. Two different fixture insertion depths were simulated for each implant: 2 mm below the crestal bone and exactly at the level of the crestal bone. The obtained models were imported to FEA software in STEP format. Von Mises equivalent strains were analyzed for the peri-implant D2 bone type, considering the magnitude and volume of the affected surrounding cortical and trabecular bone. The highest strain values in both cortical and trabecular tissue at the peri-implant bone interface were extracted and compared. RESULTS All implant models were able to distribute the load at the bone-implant contact (BIC) with a similar strain pattern between the models. At the cervical region, however, differences were observed: the models with 10° and 20° implant neck configurations (Model B and C), showed a lower strain magnitude when compared to the straight neck (Model A). These values were significantly lower when the implants were situated at crestal bone levels. In the apical area, no differences in strain values were observed. SIGNIFICANCE The implant neck configuration influenced the strain distribution and magnitude in the cortical bone and cancellous bone tissues. To reduce the strain values and improve the load dissipation in the bone tissue, implants with 10° and 20 neck configuration should be preferred instead of straight implant platforms.
Collapse
Affiliation(s)
- Pietro Ausiello
- School of Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Enrico Salvati
- Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 206, Udine, Italy
| | - Alessandro E di Lauro
- School of Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Massimo Martorelli
- Fraunhofer JL IDEAS, Department of Industrial Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Antonio Lanzotti
- Fraunhofer JL IDEAS, Department of Industrial Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, UK
| |
Collapse
|
5
|
Influence of Dental Implant Diameter and Bone Quality on the Biomechanics of Single-Crown Restoration. A Finite Element Analysis. Dent J (Basel) 2021; 9:dj9090103. [PMID: 34562977 PMCID: PMC8464909 DOI: 10.3390/dj9090103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Success of an implant-supported prosthesis is highly dependent on implant diameter and bone quality. The objective of this study is to assess these two variables under axial or 30° angulated loading. Methods: The study was conducted using finite element model simulations of dental implants with an unchanging length of 6.5 mm and varying diameters of Ø3.3; Ø3.5; Ø3.75; Ø4, Ø4.25 and Ø4.75 mm. The implants were placed in an axial position and a 2 mm high straight transepithelial (intermediate abutment) was used to perform a single tooth restoration. Four bone quality scenarios, Type IV, III, II or 0-I bone, were simulated from a simplified model of the mandible. A 200N load was applied both axially and at a 30° angle to the occlusal surface of the prosthesis, which was 11 mm above the implant platform, and the equivalent Von Mises stress in the bone was analyzed. Results: The maximum stress value was obtained for the Ø3.3 implant in Type IV bone (235 MPa), while the lowest value was obtained for the Ø4.75 implant and in Type 0-I bone (41 MPa). Regardless of the implant diameter, an improvement in bone quality produced a reduction in bone stress. The same effect was observed as the implant diameter was increased, being this effect even more pronounced. Conclusions: Implant diameter has an important effect on bone stress, with a reduction in stress as the implant diameter increases.
Collapse
|