1
|
Hayes SH, Patel SV, Arora P, Zhao L, Schormans AL, Whitehead SN, Allman BL. Neurophysiological, structural, and molecular alterations in the prefrontal and auditory cortices following noise-induced hearing loss. Neurobiol Dis 2024; 200:106619. [PMID: 39079581 DOI: 10.1016/j.nbd.2024.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.
Collapse
Affiliation(s)
- Sarah H Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Department of Otolaryngology, University of Rochester, 601 Elmwood Ave, Box 629, Rochester, NY 14642, USA.
| | - Salonee V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Parinita Arora
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Lin Zhao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Shen WD, Yang S, Wang F. Transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus. Exp Biol Med (Maywood) 2024; 249:10057. [PMID: 38562529 PMCID: PMC10984379 DOI: 10.3389/ebm.2024.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Tinnitus is a disturbing condition defined as the occurrence of acoustic hallucinations with no actual sound. Although the mechanisms underlying tinnitus have been explored extensively, the pathophysiology of the disease is not completely understood. Moreover, genes and potential treatment targets related to auditory hallucinations remain unknown. In this study, we examined transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus in rats by performing RNA sequencing and validated differentially expressed genes via quantitative polymerase chain reaction analysis. The rat model of tinnitus was established by analyzing startle behavior based on gap-pre-pulse inhibition of acoustic startles. We identified 87 differently expressed genes, of which 40 were upregulated and 47 were downregulated. Pathway-enrichment analysis revealed that the differentially enriched genes in the tinnitus group were associated with pathway terms, such as coronavirus disease COVID-19, neuroactive ligand-receptor interaction. Protein-protein-interaction networks were established, and two hub genes (Rpl7a and AC136661.1) were identified among the selected genes. Further studies focusing on targeting and modulating these genes are required for developing potential treatments for noise-induced tinnitus in patients.
Collapse
Affiliation(s)
- Peng Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Xinmiao Xue
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Chi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Hanwen Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Zhiwei Ding
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Yuke Jiang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Wei-Dong Shen
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Shiming Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| |
Collapse
|
3
|
Bakay WMH, Cervantes B, Lao-Rodríguez AB, Johannesen PT, Lopez-Poveda EA, Furness DN, Malmierca MS. How 'hidden hearing loss' noise exposure affects neural coding in the inferior colliculus of rats. Hear Res 2024; 443:108963. [PMID: 38308936 DOI: 10.1016/j.heares.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Exposure to brief, intense sound can produce profound changes in the auditory system, from the internal structure of inner hair cells to reduced synaptic connections between the auditory nerves and the inner hair cells. Moreover, noisy environments can also lead to alterations in the auditory nerve or to processing changes in the auditory midbrain, all without affecting hearing thresholds. This so-called hidden hearing loss (HHL) has been shown in tinnitus patients and has been posited to account for hearing difficulties in noisy environments. However, much of the neuronal research thus far has investigated how HHL affects the response characteristics of individual fibres in the auditory nerve, as opposed to higher stations in the auditory pathway. Human models show that the auditory nerve encodes sound stochastically. Therefore, a sufficient reduction in nerve fibres could result in lowering the sampling of the acoustic scene below the minimum rate necessary to fully encode the scene, thus reducing the efficacy of sound encoding. Here, we examine how HHL affects the responses to frequency and intensity of neurons in the inferior colliculus of rats, and the duration and firing rate of those responses. Finally, we examined how shorter stimuli are encoded less effectively by the auditory midbrain than longer stimuli, and how this could lead to a clinical test for HHL.
Collapse
Affiliation(s)
- Warren M H Bakay
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Blanca Cervantes
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; School of Medicine, University Anáhuac Puebla, Mexico
| | - Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Surgery, Faculty of Medicine, University of Salamanca, Spain
| | - David N Furness
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
4
|
Bowe SN, Faucett EA. The integration of sex and gender considerations in otolaryngology. HEALTHCARE DISPARITIES IN OTOLARYNGOLOGY 2024:41-64. [DOI: 10.1016/b978-0-443-10714-6.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Krishnan PS, Lauer AM, Ward BK, Seal SM, Nieman CL, Andresen NS. Sex and Race Representation in Temporal Bone Histopathology Studies in the United States: A Systematic Review. Ear Hear 2023; 44:661-669. [PMID: 36763469 PMCID: PMC10331314 DOI: 10.1097/aud.0000000000001340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The author's objective was to evaluate sex and race representation in temporal bone histopathology studies. DESIGN PubMed, Embase, Cochrane, Web of Science, and Scopus were searched for studies written in English examining temporal bone histopathology specimens from U.S.-based institutions from January 1, 1947, to September 1, 2021. Two authors then performed "snowballing" by reviewing references from the initial search and included the studies that fulfilled the inclusion criteria. For each study, the following information was collected: publication details, study design, funding, institution from where temporal bone specimens were procured, number of study specimens, and donor demographical information. RESULTS The authors found that out of 300 studies, 166 (55%) report sex while only 15 (5%) reported race information. Over the past 70 years, the ratio of studies reporting sex to those that do not has increased from 1.00 to 2.19 and the number of female temporal bone histopathology subjects relative to male has increased from 0.67 to 0.75. Over 90% of studies that do report this information feature participant racial compositions that do not reflect the diversity of the U.S. population. CONCLUSIONS Studies of temporal bone histopathology often do not report participant sex or race. The reporting of participant sex and the inclusion of specimens from female donors have both increased over time. However, temporal bone histopathology study cohorts are not representative of the racial diversity of the U.S. population. The otolaryngology community must strive to build temporal bone histopathology libraries that are representative of the diverse U.S. population.
Collapse
Affiliation(s)
- Pavan S. Krishnan
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Amanda M. Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bryan K. Ward
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stella M. Seal
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carrie L. Nieman
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cochlear Center for Hearing & Public Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Center for Innovative Care in Aging, Johns Hopkins University School of Nursing, Baltimore, Maryland
| | - Nicholas S. Andresen
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Baek JY, Kim BH, Kim DW, Lee WY, Kim CE, Kim HY, Pyo J, Park ES, Kang KS. Hair Growth Effect of DN106212 in C57BL/6 Mouse and Its Network Pharmacological Mechanism of Action. Curr Issues Mol Biol 2023; 45:5071-5083. [PMID: 37367071 DOI: 10.3390/cimb45060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Centipeda minima (CMX) has been widely investigated using network pharmacology and clinical studies for its effects on hair growth via the JAK/STAT signaling pathway. Human hair follicle papilla cells exhibit hair regrowth through the expression of Wnt signaling-related proteins. However, the mechanism of action of CMX in animals has not been elucidated fully. This study examined the effect of induced hair loss and its side-effects on the skin, and observed the mechanism of action of an alcoholic extract of CMX (DN106212) on C57BL/6 mice. Our results showed that DN106212 was more effective in promoting hair growth than dimethyl sulfoxide in the negative control and tofacitinib (TF) in the positive control when mice were treated with DN106212 for 16 days. We confirmed that DN106212 promotes the formation of mature hair follicles through hematoxylin and eosin staining. We also found that the expression of vascular endothelial growth factor (Vegfa), insulin-like growth factor 1 (Igf1), and transforming growth factor beta 1 (Tgfb1) is related to hair growth using PCR. DN106212-treated mice had significantly higher expression of Vegfa and Igf1 than TF-treated ones, and inhibiting the expression of Tgfb1 had similar effects as TF treatment. In conclusion, we propose that DN106212 increases the expression of hair growth factors, promotes the development of hair follicles, and promotes hair growth. Although additional experiments are needed, DN106212 may serve as an experimental basis for research on natural hair growth-promoting agents.
Collapse
Affiliation(s)
- Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Byoung Ha Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Won-Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chang Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyun-Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
7
|
Reavis KM, Bisgaard N, Canlon B, Dubno JR, Frisina RD, Hertzano R, Humes LE, Mick P, Phillips NA, Pichora-Fuller MK, Shuster B, Singh G. Sex-Linked Biology and Gender-Related Research Is Essential to Advancing Hearing Health. Ear Hear 2023; 44:10-27. [PMID: 36384870 PMCID: PMC10234332 DOI: 10.1097/aud.0000000000001291] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
There is robust evidence that sex (biological) and gender (behavioral/social) differences influence hearing loss risk and outcomes. These differences are noted for animals and humans-in the occurrence of hearing loss, hearing loss progression, and response to interventions. Nevertheless, many studies have not reported or disaggregated data by sex or gender. This article describes the influence of sex-linked biology (specifically sex-linked hormones) and gender on hearing and hearing interventions, including the role of sex-linked biology and gender in modifying the association between risk factors and hearing loss, and the effects of hearing loss on quality of life and functioning. Most prevalence studies indicate that hearing loss begins earlier and is more common and severe among men than women. Intrinsic sex-linked biological differences in the auditory system may account, in part, for the predominance of hearing loss in males. Sex- and gender-related differences in the effects of noise exposure or cardiovascular disease on the auditory system may help explain some of these differences in the prevalence of hearing loss. Further still, differences in hearing aid use and uptake, and the effects of hearing loss on health may also vary by sex and gender. Recognizing that sex-linked biology and gender are key determinants of hearing health, the present review concludes by emphasizing the importance of a well-developed research platform that proactively measures and assesses sex- and gender-related differences in hearing, including in understudied populations. Such research focus is necessary to advance the field of hearing science and benefit all members of society.
Collapse
Affiliation(s)
- Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Judy R. Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert D. Frisina
- Department of Medical Engineering and Communication Sciences & Disorders, University of South Florida, Tampa, Florida, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry E. Humes
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, USA
| | - Paul Mick
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Sanchez VA, Arnold ML, Moore DR, Clavier O, Abrams HB. Speech-in-noise testing: Innovative applications for pediatric patients, underrepresented populations, fitness for duty, clinical trials, and remote services. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2336. [PMID: 36319253 PMCID: PMC9722269 DOI: 10.1121/10.0014418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Speech perception testing, defined as providing standardized speech stimuli and requiring a listener to provide a behavioral and scored response, has been an integral part of the audiologic test battery since the beginning of the audiology profession. Over the past several decades, limitations in the diagnostic and prognostic validity of standard speech perception testing as routinely administered in the clinic have been noted, and the promotion of speech-in-noise testing has been highlighted. This review will summarize emerging and innovative approaches to speech-in-noise testing with a focus on five applications: (1) pediatric considerations promoting the measurement of sensory and cognitive components separately; (2) appropriately serving underrepresented populations with special attention to racial, ethnic, and linguistic minorities, as well as considering biological sex and/or gender differences as variables of interest; (3) binaural fitness for duty assessments of functional hearing for occupational settings that demand the ability to detect, recognize, and localize sounds; (4) utilization of speech-in-noise tests in pharmacotherapeutic clinical trials with considerations to the drug mechanistic action, the patient populations, and the study design; and (5) online and mobile applications of hearing assessment that increase accessibility and the direct-to-consumer market.
Collapse
Affiliation(s)
- Victoria A Sanchez
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 73, Tampa, Florida 33612, USA
| | - Michelle L Arnold
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33612, USA
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | | | - Harvey B Abrams
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
9
|
Han E, Lee DH, Park S, Rah YC, Park HC, Choi JW, Choi J. Noise-induced hearing loss in zebrafish model: Characterization of tonotopy and sex-based differences. Hear Res 2022; 418:108485. [DOI: 10.1016/j.heares.2022.108485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022]
|
10
|
Gao Y, Kamogashira T, Fujimoto C, Iwasaki S, Yamasoba T. Beneficial effects of time‐restricted feeding on gentamicin cytotoxicity in mouse cochlea and vestibular organs. Laryngoscope Investig Otolaryngol 2022; 7:530-539. [PMID: 35434314 PMCID: PMC9008174 DOI: 10.1002/lio2.748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ying Gao
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine University of Tokyo Tokyo Japan
- Department of Otolaryngology and Head and Neck Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine University of Tokyo Tokyo Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine University of Tokyo Tokyo Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology & Head and Neck Surgery Nagoya City University Graduate School of Medicine Nagoya Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine University of Tokyo Tokyo Japan
| |
Collapse
|
11
|
Han KH, Cho H, Han KR, Mun SK, Kim YK, Park I, Chang M. Role of microRNA‑375‑3p‑mediated regulation in tinnitus development. Int J Mol Med 2021; 48:136. [PMID: 34036397 PMCID: PMC8148091 DOI: 10.3892/ijmm.2021.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in the dorsal cochlear nucleus (DCN) following exposure to noise play an important role in the development of tinnitus. As the development of several diseases is known to be associated with microRNAs (miRNAs/miRs), the aim of the present study was to identify the miRNAs that may be implicated in pathogenic changes in the DCN, resulting in tinnitus. A previously developed tinnitus animal model was used for this study. The study consisted of four stages, including identification of candidate miRNAs involved in tinnitus development using miRNA microarray analysis, validation of miRNA expression using reverse transcription-quantitative PCR (RT-qPCR), evaluation of the effects of candidate miRNA overexpression on tinnitus development through injection of a candidate miRNA mimic or mimic negative control, and target prediction of candidate miRNAs using mRNA microarray analysis and western blotting. The miRNA microarray and RT-qPCR analyses revealed that miR-375-3p expression was significantly reduced in the tinnitus group compared with that in the non-tinnitus group. Additionally, miR-375-3p overexpression via injection of miR-375-3p mimic reduced the proportion of animals with persistent tinnitus. Based on mRNA microarray and western blot analyses, connective tissue growth factor (CTG.) was identified as a potential target for miR-375-3p. Thus, it was inferred that CTGF downregulation by miR-375-3p may weaken with the decrease in miRNA expression, and the increased pro-apoptotic activity of CTGF may result in more severe neuronal damage, contributing to tinnitus development. These findings are expected to contribute significantly to the development of a novel therapeutic approach to tinnitus, thereby bringing about a significant breakthrough in the treatment of this potentially debilitating condition.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyeeun Cho
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kyeo-Rye Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Ilyong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, Chungcheongnam-do 16890, Republic of Korea
| | - Munyoung Chang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
13
|
Sex-based Differences in Hearing Loss: Perspectives From Non-clinical Research to Clinical Outcomess. Otol Neurotol 2021; 41:290-298. [PMID: 31789968 DOI: 10.1097/mao.0000000000002507] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION It is estimated over 466 million people worldwide have disabling hearing loss, and untreated hearing loss is associated with poorer health outcomes. The influence of sex as a biological variable on hearing loss is not well understood, especially for differences in underlying mechanisms which are typically elucidated through non-clinical research. Although the inclusion of sex as a biological variable in clinical studies has been required since 1993, sex reporting has only been recently mandated in National Institutes of Health funded non-clinical studies. OBJECTIVE This article reviews the literature on recent non-clinical and clinical research concerning sex-based differences in hearing loss primarily since 1993, and discusses implications for knowledge gaps in the translation from non-clinical to clinical realms. CONCLUSIONS The disparity between sex-based requirements for non-clinical versus clinical research may inhibit a comprehensive understanding of sex-based mechanistic differences. Such disparities may play a role in understanding and explaining clinically significant sex differences and are likely necessary for developing robust clinical treatment options.
Collapse
|
14
|
Machado-Fragua MD, Struijk EA, Yévenes-Briones H, Caballero FF, Rodríguez-Artalejo F, Lopez-Garcia E. Coffee consumption and risk of hearing impairment in men and women. Clin Nutr 2020; 40:3429-3435. [PMID: 33298331 DOI: 10.1016/j.clnu.2020.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hearing loss is the fifth leading cause of disability in the world. Coffee consumption might have a beneficial effect on hearing function because of the antioxidant and anti-inflammatory properties of some of its compounds. However, no previous longitudinal study has assessed the association between coffee consumption and the risk of hearing impairment. OBJECTIVE To assess the prospective association between coffee consumption and risk of disabling hearing impairment in middle and older men and women from the UK Biobank study. METHODS Analytical cohort with 36,923 participants (16,142 men and 20,781 women) [mean (SD): 56.6 (7.8) years, 1.6 (1.4) cups/d, and -7.6 (1.3) dB for age, total coffee consumption and speech reception threshold in noise at baseline, respectively]. At baseline, coffee consumption was measured with 3-5 multiple-pass 24-h food records. Hearing function was measured with a digit triplet test, and disabling hearing impairment was defined as a speech reception threshold in noise > -3.5 dB in any physical exam during the follow-up. Analyses were stratified by sex and Cox regression models were used to assess the prospective association proposed. RESULTS Over 10 years of follow-up, 343 men and 345 women developed disabling hearing impairment. Among men, compared with those who consumed <1 cup/d of coffee, those who consumed 1, and ≥2 cups/d had a lower risk of hearing impairment (hazard ratio [95% confidence interval]: 0.72 [0.54-0.97] and 0.72 [0.56-0.92], respectively; P-trend: 0.01). This association was similar for caffeinated and decaffeinated coffee, and for filtered and non-filtered coffee, and was stronger in those with obesity (hazard ratio [95% confidence interval] for consumption of ≥2 vs. <1 cups/d: 0.39 [0.21-0.74]). No association was found between coffee and hearing function among women. CONCLUSIONS Coffee consumption was associated with lower risk of disabling hearing impairment in men but not in women. The association appeared to be independent of the coffee type and the preparation method.
Collapse
Affiliation(s)
- Marcos D Machado-Fragua
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Humberto Yévenes-Briones
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Francisco Félix Caballero
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain.; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain.; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Gogokhia N, Japaridze N, Tizabi Y, Pataraya L, Zhvania MG. Gender differences in anxiety response to high intensity white noise in rats. Neurosci Lett 2020; 742:135543. [PMID: 33278506 DOI: 10.1016/j.neulet.2020.135543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
Prolong exposure to high intensity white noise (HIWN), defined as a heterogeneous mixture of sound waves extending over a wide frequency range, has detrimental peripheral and central consequences including cardiovascular and emotional effects. Anxiety is a common manifestation of HIWN. Although gender-dependent differences in manifestation of anxiety and/or response to treatment of this condition has been amply documented, potential differences in response to HIWN, a common exposure in combat, construction and rave disco, has not been adequately investigated. In this study, both male and female Wistar rats were subjected to HIWN for 10 consecutive days, 1 h/day. On day 11, a day after the last exposure, the performance of the rats in open field (OF) and elevated plus maze (EPM) was evaluated. Male rats showed a higher anxiety-like response to HIWN as evidenced by: lower number of entries into the open arm of the EPM, lower number of entries into central zone of OF, excess grooming in OF and more boluses in closed arm of EPM. These results indicate that gender-related differences in anxiety in general, and in response to HIWN, in particular, has to be taken into consideration when investigating the neurobiological components and/or treatment modalities.
Collapse
Affiliation(s)
- Nino Gogokhia
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia; Medical School, New Vision University, 1A Evgeni Mikeladze Street, 0159 Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Lizi Pataraya
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia
| | - Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia.
| |
Collapse
|
16
|
Integrated stress response inhibition provides sex-dependent protection against noise-induced cochlear synaptopathy. Sci Rep 2020; 10:18063. [PMID: 33093490 PMCID: PMC7582887 DOI: 10.1038/s41598-020-75058-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a common health concern with significant social, psychological, and cognitive implications. Moderate levels of acoustic overstimulation associated with tinnitus and impaired speech perception cause cochlear synaptopathy, characterized physiologically by reduction in wave I of the suprathreshold auditory brainstem response (ABR) and reduced number of synapses between sensory hair cells and auditory neurons. The unfolded protein response (UPR), an endoplasmic reticulum stress response pathway, has been implicated in the pathogenesis and treatment of NIHL as well as neurodegeneration and synaptic damage in the brain. In this study, we used the small molecule UPR modulator Integrated Stress Response InhiBitor (ISRIB) to treat noise-induced cochlear synaptopathy in a mouse model. Mice pretreated with ISRIB prior to noise-exposure were protected against noise-induced synapse loss. Male, but not female, mice also exhibited ISRIB-mediated protection against noise-induced suprathreshold ABR wave-I amplitude reduction. Female mice had higher baseline wave-I amplitudes but greater sensitivity to noise-induced wave-I reduction. Our results suggest that the UPR is implicated in noise-induced cochlear synaptopathy, and can be targeted for treatment.
Collapse
|
17
|
Han JH, Shin JE, Lee SM, Eun HS, Park MS, Park KI. Hearing Impairments in Preterm Infants: Factors Associated with Discrepancies between Screening and Confirmatory Test Results. NEONATAL MEDICINE 2020. [DOI: 10.5385/nm.2020.27.3.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
18
|
Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. J Neurosci Res 2020; 98:1705-1720. [PMID: 32557661 DOI: 10.1002/jnr.24647] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has long been known that age-related hearing loss (ARHL) is more common, more severe, and with an earlier onset in men compared to women. Even in the absence of confounding factors such as noise exposure, these sexdifferences in susceptibility to ARHL remain. In the last decade, insight into the pleiotrophic nature by which estrogen signaling can impact multiple signaling mechanisms to mediate downstream changes in gene expression and/or elicit rapid changes in cellular function has rapidly gathered pace, and a role for estrogen signaling in the biological pathways that confer neuroprotection is becoming undeniable. Here I review the evidence why we need to consider sex as a biological variable (SABV) when investigating the etiology of ARHL. Loss of auditory function with aging is frequency-specific and modulated by SABV. Evidence also suggests that differences in cochlear physiology between women and men are already present from birth. Understanding the molecular basis of these sex differences in ARHL will accelerate the development of precision medicine therapies for ARHL.
Collapse
Affiliation(s)
- Lisa S Nolan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
19
|
Behavioral and neuroanatomical effects on exposure to White noise in rats. Neurosci Lett 2020; 728:134898. [DOI: 10.1016/j.neulet.2020.134898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
|
20
|
Delhez A, Lefebvre P, Péqueux C, Malgrange B, Delacroix L. Auditory function and dysfunction: estrogen makes a difference. Cell Mol Life Sci 2020; 77:619-635. [PMID: 31522250 PMCID: PMC11105012 DOI: 10.1007/s00018-019-03295-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Estrogen is the major female hormone involved in reproductive functions, but it also exerts a variety of additional roles in non-reproductive organs. In this review, we highlight the preclinical and clinical studies that have pointed out sex differences and estrogenic influence on audition. We also describe the experimental evidences supporting a protective role of estrogen towards acquired forms of hearing loss. Although a high level of endogenous estrogen is associated with a better hearing function, hormonal treatments at menopause have provided contradictory outcomes. The various factors that are likely to explain these discrepancies include the treatment regimen as well as the hormonal status and responsiveness of the patients. The complexity of estrogen signaling is being untangled and many downstream effectors of its genomic and non-genomic actions have been identified in other systems. Based on these advances and on the common physio-pathological events that underlie age-related, drug or noise-induced hearing loss, we discuss potential mechanisms for their protective actions in the cochlea.
Collapse
Affiliation(s)
- Amandine Delhez
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
- Department of ENT, CHU de Liege, Liege, Belgium
| | | | - Christel Péqueux
- GIGA-Cancer, Laboratory of Tumors Biology and Development, University of Liege, Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium.
| |
Collapse
|
21
|
Kühl A, Dixon A, Hali M, Apawu AK, Muca A, Sinan M, Warila J, Braun RD, Berkowitz BA, Holt AG. Novel QUEST MRI In Vivo Measurement of Noise-induced Oxidative Stress in the Cochlea. Sci Rep 2019; 9:16265. [PMID: 31700007 PMCID: PMC6838338 DOI: 10.1038/s41598-019-52439-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023] Open
Abstract
Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.
Collapse
Affiliation(s)
- André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Angela Dixon
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aaron K Apawu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Moaz Sinan
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Warila
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
- John D. Dingell Veteran Affairs Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
22
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
23
|
Shuster BZ, Depireux DA, Mong JA, Hertzano R. Sex differences in hearing: Probing the role of estrogen signaling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3656. [PMID: 31255106 PMCID: PMC6588519 DOI: 10.1121/1.5111870] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/18/2019] [Indexed: 05/08/2023]
Abstract
Hearing loss is the most common form of sensory impairment in humans, with an anticipated rise in incidence as the result of recreational noise exposures. Hearing loss is also the second most common health issue afflicting military veterans. Currently, there are no approved therapeutics to treat sensorineural hearing loss in humans. While hearing loss affects both men and women, sexual dimorphism is documented with respect to peripheral and central auditory physiology, as well as susceptibility to age-related and noise-induced hearing loss. Physiological differences between the sexes are often hormone-driven, and an increasing body of literature demonstrates that the hormone estrogen and its related signaling pathways may in part, modulate the aforementioned differences in hearing. From a mechanistic perspective, understanding the underpinnings of the hormonal modulation of hearing may lead to the development of therapeutics for age related and noise induced hearing loss. Here the authors review a number of studies that range from human populations to animal models, which have begun to provide a framework for understanding the functional role of estrogen signaling in hearing, particularly in normal and aberrant peripheral auditory physiology.
Collapse
Affiliation(s)
- Benjamin Z Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Didier A Depireux
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| |
Collapse
|
24
|
Farzal Z, Stephenson ED, Kilpatrick LA, Senior BA, Zanation AM. Sex bias: Is it pervasive in otolaryngology clinical research? Laryngoscope 2018; 129:858-864. [PMID: 30443906 DOI: 10.1002/lary.27497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS Recent initiatives highlight substantial sex bias in biomedical research. The objective was to determine whether sex bias is present in otolaryngology and whether sex is appropriately analyzed as an independent variable in otolaryngology clinical research. STUDY DESIGN Literature review. METHODS We systematically reviewed all 2016 articles in three major otolaryngology journals: The Laryngoscope, JAMA Otolaryngology-Head and Neck Surgery, and Otolaryngology-Head and Neck Surgery. Extracted data included study origin, location, subspecialty, number/sex of subjects, ≥50% sex matching (SM≥50 ), and sex-based statistical analysis. RESULTS Six hundred of 1,209 articles comprising original clinical research were reviewed including 8,997,345,495 subjects (males: 3,898,559,264 [43.3%]; females: 5,095,592,583 [56.6%]; and unknown: 3,193,648 [0.04%]). There were 533/600 (88.8%) studies that included both sexes, eight (1.3%) included females only, five (0.8%) included males only, and 56 (9.3%) did not document participant sex. Only 280 studies (46.7%) analyzed data by sex, and 330 studies (60.7%) had SM≥ 50 . Sex-based statistical analysis and SM≥ 50 were similar in domestic and international studies (48.7% vs. 42.8% and 60.9% vs. 62%, respectively). Database studies performed sex-based statistical analysis more frequently than single and multi-institutional studies (79.1% vs. 40.4% and 43.4%, P < .00001). Analysis by sex was more frequently performed in head and neck surgery (53.6%) and pediatric otolaryngology (51.3%), whereas SM≥50 was highest in pediatric otolaryngology (86.8%) and otology (82.4%). CONCLUSIONS Sex bias exists in the clinical otolaryngology literature, with less than half the studies analyzing sex. Acknowledging the intertwinement of sex with disease pathophysiology and outcomes is important. Eliminating sex bias in research and clinical care should become a major focus for otolaryngologists. LEVEL OF EVIDENCE NA Laryngoscope, 129:858-864, 2019.
Collapse
Affiliation(s)
- Zainab Farzal
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Elizabeth D Stephenson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Lauren A Kilpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Adam M Zanation
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
25
|
Stephenson ED, Farzal Z, Kilpatrick LA, Senior BA, Zanation AM. Sex bias in basic science and translational otolaryngology research. Laryngoscope 2018; 129:613-618. [PMID: 30408174 DOI: 10.1002/lary.27498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Recent studies revealed sex bias in surgical research. Although many diseases exhibit sex-based clinically relevant differences, otolaryngology research has not been evaluated for sex reporting and sex-based analysis. We postulate that a similar bias is prevalent in otolaryngology literature. STUDY DESIGN Literature review. METHODS Articles published from 2016 to 2017 in The Laryngoscope, Otolaryngology-Head and Neck Surgery, and JAMA Otolaryngology-Head and Neck Surgery were reviewed. Articles with animal subjects, human subject cells, or commercial cell lines were included. Data collected included study type, cell/animal sex, and sex-based data analysis. RESULTS One hundred forty-four basic/translational research articles were identified. Sixty-nine (47.9%) of those lacked sex reporting. Of 75 studies that reported sex, 22 (29.3%) included both sexes, and 11 (14.7%) analyzed data by sex. One hundred five (72.9%) used animal subjects, of which 54 (51.9%) lacked sex breakdown. Among animal studies, 48/105 included only one sex, and three articles analyzed data by sex. Fifty-four studies used commercial cell lines (N = 23) or human/animal subject cells (N = 31). Among cell groups, 28/54 (51.9%) were of unknown sex, and seven were single sex. Eight (14.8%) studies included data analysis by sex. Domestic studies exhibited a lower rate of sex reporting in both animal and cell studies, and a lower rate of sex-based analysis in cell studies. CONCLUSIONS Sex may influence outcomes significantly but is underreported and underanalyzed in basic/translational otolaryngology research. Because this research frequently lays the groundwork for clinical trials and standards of care, future research must address these sex-based discrepancies. LEVEL OF EVIDENCE NA Laryngoscope, 129:613-618, 2019.
Collapse
Affiliation(s)
- Elizabeth D Stephenson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Zainab Farzal
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Lauren A Kilpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Adam M Zanation
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
26
|
Balthazar P, Moreno CC, Jalilvand A, Vey BL, Mulvey TR, Duszak R. Gender Reporting in Radiology Human Subjects Research. J Am Coll Radiol 2018; 15:1341-1345. [DOI: 10.1016/j.jacr.2018.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 11/28/2022]
|
27
|
Stephenson ED, Farzal Z, Zanation AM, Senior BA. Sex bias in rhinology research. Int Forum Allergy Rhinol 2018; 8:1469-1475. [PMID: 30028087 DOI: 10.1002/alr.22179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Analysis of general surgery literature has revealed noteworthy sex bias and underreporting. Our objective was to determine the prevalence of sex bias and underreporting in rhinology. METHODS All articles in 2016 issues of Rhinology, the American Journal of Rhinology and Allergy (AJRA), and the International Forum of Allergy and Rhinology (IFAR) were reviewed. Of 369 articles, 248 met inclusion criteria. Excluded studies were cadaveric, meta-analysis/review, and editorial. Data collected included study type, demographics, and sex-based statistical analysis. RESULTS There were 202 clinical and 46 basic science/translational studies. From 188 of 202 clinical studies with known sex, 1 included participants of a single sex. Sex matching >50% (SM50 ) was found in 81.9%, and 55.9% performed sex-based statistical analysis. Domestic clinical studies performed sex-based analysis more frequently than international (54.9% vs 44.4%) and exhibited a higher rate of SM50 (84.5% vs 80.3%), though these differences were not statistically significant. For basic/translational studies, 54.5% (24/44) provided sex breakdown. Among these, 29.2% included 1 sex, and 8.3% performed sex-based analysis. Of 10 using animals, 70.0% utilized 1 sex. The remaining 30.0% did not report sex. None of 4 cell line studies reported cell sex. Less than half (46.2%) of domestic and 56.3% of international studies reported sex breakdown; 7.7% of domestic and 3.0% of international studies performed sex-based analysis. CONCLUSION Although sex may impact outcomes, research without sex reporting and analysis is prevalent, particularly among basic science/translational studies. Future research must account for sex in demographics and analysis to best inform evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Elizabeth D Stephenson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Zainab Farzal
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Adam M Zanation
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
28
|
Villavisanis DF, Schrode KM, Lauer AM. Sex bias in basic and preclinical age-related hearing loss research. Biol Sex Differ 2018; 9:23. [PMID: 29898787 PMCID: PMC6000973 DOI: 10.1186/s13293-018-0185-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aims to determine if there is sex bias in basic and preclinical research on age-related hearing loss for the 10-year period of 2006–2015, prior to the NIH mandate of including sex as a biological variable in 2016. Design Manuscripts were identified in PubMed for the query “age-related hearing loss” for the 10-year period of 2006 to 2015. Manuscripts were included if they were original research (not reviews or meta-analyses), written in English, contained an abstract, used animals, and were primarily on age-related hearing loss. These criteria yielded 231 unique manuscripts for inclusion in the study analysis. The text of each manuscript was screened for the sex of the animals, the number of male and female animals, the discussion of sex-based results, the study site (US or international), and the year of publication. Results Only two thirds of manuscripts reported the sex of animals used in the experiments, and of these, 54% used both sexes, 34% used males only, and 13% used females only. In papers reporting sex and number of animals used, 67% were males and 33% were females. Over twice as many internationally based studies used males only compared to US-based studies. Only 15% of all manuscripts discussed sex-based results. Conclusions Sex bias is present in basic and preclinical age-related hearing loss research for the manuscripts screened in the 10-year period. Equal inclusion of both males and females in basic and preclinical age-related hearing loss research is critical for understanding sex-based differences in mechanisms and for effective treatment options.
Collapse
Affiliation(s)
- Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing and Balance, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| |
Collapse
|
29
|
Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 2018; 9:12. [PMID: 29530094 PMCID: PMC5848513 DOI: 10.1186/s13293-018-0171-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is the most prevalent form of acquired hearing loss and affects about 40 million US adults. Among the suggested therapeutics tested in rodents, suberoylanilide hydroxamic acid (SAHA) has been shown to be otoprotective from NIHL; however, these results were limited to male mice. METHODS Here we tested the effect of SAHA on the hearing of 10-week-old B6CBAF1/J mice of both sexes, which were exposed to 2 h of octave-band noise (101 dB SPL centered at 11.3 kHz). Hearing was assessed by measuring auditory brainstem responses (ABR) at 8, 16, 24, and 32 kHz, 1 week before, as well as at 24 h and 15-21 days following exposure (baseline, compound threshold shift (CTS) and permanent threshold shift (PTS), respectively), followed by histologic analyses. RESULTS We found significant differences in the CTS and PTS of the control (vehicle injected) mice to noise, where females had a significantly smaller CTS at 16 and 24 kHz (p < 0.0001) and PTS at 16, 24, and 32 kHz (16 and 24 kHz p < 0.001, 32 kHz p < 0.01). This sexual dimorphic effect could not be explained by a differential loss of sensory cells or synapses but was reflected in the amplitude and amplitude progression of wave I of the ABR, which correlates with outer hair cell (OHC) function. Finally, the frequency of the protective effect of SAHA differed significantly between males (PTS, 24 kHz, p = 0.002) and females (PTS, 16 kHz, p = 0.003), and the magnitude of the protection was smaller in females than in males. Importantly, the magnitude of the protection by SAHA was smaller than the effect of sex as a biological factor in the vehicle-injected mice. CONCLUSIONS These results indicate that female mice are significantly protected from NIHL in comparison to males and that therapeutics for NIHL may have a different effect in males and females. The data highlight the importance of analyzing NIHL experiments from males and females, separately. Finally, these data also raise the possibility of effectors in the estrogen signaling pathway as novel therapeutics for NIHL.
Collapse
Affiliation(s)
- Béatrice Milon
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Sunayana Mitra
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Yang Song
- 0000 0001 2175 4264grid.411024.2Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zachary Margulies
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Ryan Casserly
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Virginia Drake
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Jessica A. Mong
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Didier A. Depireux
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA ,0000 0001 0941 7177grid.164295.dInstitute for Systems Research, University of Maryland, College Park, MD 20742 USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD, 21201, USA. .,Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|