1
|
Zhang X, Ma S, Huebner JL, Naz SI, Alnemer N, Soderblom EJ, Aliferis C, Kraus VB. Immune system-related plasma extracellular vesicles in healthy aging. Front Immunol 2024; 15:1355380. [PMID: 38633262 PMCID: PMC11021711 DOI: 10.3389/fimmu.2024.1355380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives To identify age-related plasma extracellular vehicle (EVs) phenotypes in healthy adults. Methods EV proteomics by high-resolution mass spectrometry to evaluate EV protein stability and discover age-associated EV proteins (n=4 with 4 serial freeze-thaws each); validation by high-resolution flow cytometry and EV cytokine quantification by multiplex ELISA (n=28 healthy donors, aged 18-83 years); quantification of WI-38 fibroblast cell proliferation response to co-culture with PKH67-labeled young and old plasma EVs. The EV samples from these plasma specimens were previously characterized for bilayer structure, intra-vesicle mitochondria and cytokines, and hematopoietic cell-related surface markers. Results Compared with matched exo-EVs (EV-depleted supernatants), endo-EVs (EV-associated) had higher mean TNF-α and IL-27, lower mean IL-6, IL-11, IFN-γ, and IL-17A/F, and similar mean IL-1β, IL-21, and IL-22 concentrations. Some endo-EV and exo-EV cytokine concentrations were correlated, including TNF-α, IL-27, IL-6, IL-1β, and IFN-γ, but not IL-11, IL-17A/F, IL-21 or IL-22. Endo-EV IFN-γ and exo-EV IL-17A/F and IL-21 declined with age. By proteomics and confirmed by flow cytometry, we identified age-associated decline of fibrinogen (FGA, FGB and FGG) in EVs. Age-related EV proteins indicated predominant origins in the liver and innate immune system. WI-38 cells (>95%) internalized similar amounts of young and old plasma EVs, but cells that internalized PKH67-EVs, particularly young EVs, underwent significantly greater cell proliferation. Conclusion Endo-EV and exo-EV cytokines function as different biomarkers. The observed healthy aging EV phenotype reflected a downregulation of EV fibrinogen subpopulations consistent with the absence of a pro-coagulant and pro-inflammatory condition common with age-related disease.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Noor Alnemer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hwang J, Zheng M, Wiraja C, Cui M, Yang L, Xu C. Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. NANOSCALE ADVANCES 2020; 2:5254-5262. [PMID: 36132036 PMCID: PMC9419214 DOI: 10.1039/d0na00572j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 05/27/2023]
Abstract
Macrophages can be polarized to M1 or M2 type with pro-inflammatory or anti-inflammatory properties. Nanoparticles have recently been found to be a promising platform to polarize macrophages to desired phenotypes. This article explores the usage of cell membrane-derived nanoparticles (nanoghosts) for reprogramming macrophages. The efficacy and efficiency of this technology are examined via cytokine analysis and immunostaining of the nanoghost-treated cells. We find that several cytokines/chemokines are highly expressed on nanoghosts. In addition, a 2D wound healing model is deployed to reveal their potential application in clinical settings.
Collapse
Affiliation(s)
- Jangsun Hwang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Lixia Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
- National Dental Centre of Singapore 5 Second Hospital Ave 168938 Singapore
- Department of Biomedical Engineering, City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| |
Collapse
|
4
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
5
|
Thi VAD, Jeon HM, Park SM, Lee H, Kim YS. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice. Mol Cells 2019; 42:869-883. [PMID: 31760731 PMCID: PMC6939657 DOI: 10.14348/molcells.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancercell vaccine using mitomycin C (MMC)-treated IL-15:IL15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) longterm protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hyung Min Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
6
|
de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 2018; 43:25-37. [PMID: 29954665 DOI: 10.1016/j.cytogfr.2018.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy in regenerative medicine and for the treatment of inflammatory/autoimmune diseases. Importantly, MSCs have emerged as an important contributor to the tumor stroma with both pro- and anti-tumorigenic effects. However, the successful translation of MSCs to the clinic and the prevention of their tumorigenic and metastatic effect require a greater understanding of factors controlling their proliferation, differentiation, migration and immunomodulation in vitro and in vivo. The transforming growth factor(TGF)-β1, 2 and 3 are involved in almost every aspect of MSC function. The aim of this review is to highlight the roles that TGF-β play in the biology and therapeutic applications of MSCs. We will discuss the how TGF-β modulate MSC function as well as the paracrine effects of MSC-derived TGF-β on other cell types in the context of tissue regeneration, immune responses and cancer. Finally, taking all these aspects into consideration we discuss how modulation of TGF-β signaling/production in MSCs could be of clinical interest.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain; Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Ana Belén Carrillo-Gálvez
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Francisco Martín
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Per Anderson
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain.
| |
Collapse
|
7
|
Ezh2 spares KitL from the cutter. Blood 2018; 131:2180-2181. [PMID: 29773542 DOI: 10.1182/blood-2018-04-841890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Do Thi VA, Park SM, Lee H, Kim YS. Ectopically Expressed Membrane-bound Form of IL-9 Exerts Immune-stimulatory Effect on CT26 Colon Carcinoma Cells. Immune Netw 2018; 18:e12. [PMID: 29503742 PMCID: PMC5833119 DOI: 10.4110/in.2018.18.e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
IL-9 is a known T cell growth factor with pleiotropic immunological functions, especially in parasite infection and colitis. However, its role in tumor growth is controversial. In this study, we generated tumor clones expressing the membrane-bound form of IL-9 (MB-IL-9) and investigated their influences on immune system. MB-IL-9 tumor clones showed reduced tumorigenicity but shortened survival accompanied with severe body weight loss in mice. MB-IL-9 expression on tumor cells had no effect on cell proliferation or major histocompatibility complex class I expression in vitro. MB-IL-9 tumor clones were effective in amplifying CD4+ and CD8+ T cells and increasing cytotoxic activity against CT26 cells in vivo. We also observed a prominent reduction in body weights and survival period of mice injected intraperitoneally with MB-IL-9 clones compared with control groups. Ratios of IL-17 to interferon (IFN)-γ in serum level and tumor mass were higher in mice implanted with MB-IL-9 tumor clones than those observed in mice implanted with control cells. These results indicate that the ectopic expression of the MB-IL-9 on tumor cells exerts an immune-stimulatory effect with toxicity. To exploit its benefits as a tumor vaccine, a strategy to control the toxicity of MB-IL-9 tumor clones should be developed.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea.,Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Huang CC, Kuo KK, Cheng TC, Chuang CH, Kao CH, Hsieh YC, Cheng KH, Wang JY, Cheng CM, Chen CS, Cheng TL. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine. PLoS One 2015; 10:e0133470. [PMID: 26186692 PMCID: PMC4506079 DOI: 10.1371/journal.pone.0133470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/25/2015] [Indexed: 12/30/2022] Open
Abstract
The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies.
Collapse
Affiliation(s)
- Chien-Chiao Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Kai Kuo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Han Kao
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
- * E-mail: (CSC); (TLC)
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail: (CSC); (TLC)
| |
Collapse
|
10
|
Lim H, Do SA, Park SM, Kim YS. Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by CD8(+) T Cells. Immune Netw 2013; 13:63-9. [PMID: 23700396 PMCID: PMC3659257 DOI: 10.4110/in.2013.13.2.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 12/01/2022] Open
Abstract
IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membrane-bound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-α. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the CD8+ T cell-depleted mice than in CD4+ T cell-depleted or normal mice. These results suggest that CD8+ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and CD4+ helper T cells.
Collapse
Affiliation(s)
- Hoyong Lim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | |
Collapse
|
11
|
Membrane-bound form of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy in a model of hepatocellular carcinoma. Cancer Gene Ther 2012; 19:312-9. [PMID: 22402625 DOI: 10.1038/cgt.2012.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Suicide gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system combined with monocyte chemoattractant protein-1 (MCP-1) provides significant antitumor efficacy. The current study was designed to evaluate the antitumor immunity of a newly developed membrane-bound form of MCP-1 (mMCP-1) in an immunocompetent mouse model of hepatocellular carcinoma (HCC). A recombinant adenovirus vector (rAd) harboring the human MCP-1 gene and the membrane-spanning domain of the CX3CL1 gene was used. Large amounts of MCP-1 protein were expressed and accumulated on the tumor cell surface. The growth of subcutaneous tumors was markedly suppressed when tumors were treated with mMCP-1, as compared with soluble MCP-1, in combination with the HSV-tk/GCV system (P<0.01). The numbers of Mac-1-, CD4- and CD8a-positive cells were significantly higher in tumor tissues (P<0.05), and tumor necrosis factor (TNF) mRNA expression levels with mMCP-1 were almost five-fold higher than those with soluble MCP-1. These results indicate that the delivery of the mMCP-1 gene greatly enhanced antitumor effects following the apoptotic stimuli by promoting the recruitment and activation of macrophages and T lymphocytes, suggesting a novel strategy of immune-based gene therapy in the treatment of patients with HCC.
Collapse
|
12
|
Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol Ther 2012; 20:927-37. [PMID: 22334018 DOI: 10.1038/mt.2012.10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin-12 (IL-12) has potent antitumor activity, but its clinical application is limited by severe systemic toxicity, which might be alleviated by the use of membrane-anchored IL-12. In the present study, a new membrane-bound IL-12 containing murine single-chain IL-12 and B7-1 transmembrane and cytoplasmic domains (scIL-12-B7TM) was constructed and its efficacy in cancer treatment examined and its protective antitumor mechanism investigated. Surface expression of scIL-12-B7TM on colon adenocarcinoma cells significantly inhibited the growth of subcutaneous tumors, suppressed lung metastasis, and resulted in local and systemic suppression of unmodified tumors. Intratumoral injection of an adenoviral vector encoding scIL-12-B7TM not only resulted in complete regression of a majority of local tumors, but also significantly suppressed the growth of distant, untreated tumors. Moreover, mice that had been treated with scIL-12-B7TM developed memory responses against subsequent tumor challenge. Immunohistochemical staining and in vivo depletion of lymphocyte subpopulations demonstrated that both CD8(+) T cells and CD4(+) T cells contributed to the antitumor activity of scIL-12-B7TM. Importantly, the potent antitumor activities of scIL-12-B7TM were achieved with only negligible amounts of IL-12 in the circulation. Our data demonstrate that cancer immunotherapy using membrane-bound IL-12 has the advantage of minimizing systemic IL-12 levels without compromising its antitumor efficacy.
Collapse
|
13
|
Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K, Mi T, Maiti S, Kebriaei P, Lee DA, Champlin RE, Cooper LJN. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011; 71:3516-27. [PMID: 21558388 DOI: 10.1158/0008-5472.can-10-3843] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy.
Collapse
Affiliation(s)
- Harjeet Singh
- Division of Pediatrics, Children's Cancer Hospital, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|