1
|
Lee YS, Woo JS, Jhun J, Choi JW, Lee AR, Lee KH, Choi H, Park SH, Cho ML. SARS-CoV-2 spike aggravates lupus nephritis and lung fibrosis in systemic lupus erythematosus. Lupus Sci Med 2024; 11:e001104. [PMID: 39349051 PMCID: PMC11448135 DOI: 10.1136/lupus-2023-001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/29/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE COVID-19 induces the development of autoimmune diseases, including SLE, which are characterised by inflammation, autoantibodies and thrombosis. However, the effects of COVID-19 on SLE remain unclear. METHODS We investigated the effects of COVID-19 on SLE development and progression in three animal models. Plasmids encoding SARS-CoV-2 spike protein and ACE2 receptor were injected into R848-induced BALB/C lupus mice, R848-induced IL-1 receptor antagonist knockout (KO) lupus mice and MRL/lpr mice. Serum levels of albumin and autoantibodies, lymphocyte phenotypes and tissue histology were evaluated. RESULTS In R848-induced BALB/C lupus mice, the SARS-CoV-2 spike protein increased autoantibody and albumin levels compared with vehicle and mock treatments. These mice also exhibited splenomegaly, which was further exacerbated by the spike protein. Flow cytometric analysis revealed elevated T helper 1 cell counts, and histological analysis indicated increased levels of the fibrosis marker protein α-smooth muscle actin. In KO mice, the spike protein induced splenomegaly, severe kidney damage and pronounced lung fibrosis. In the MRL/lpr group, spike protein increased the serum levels of autoantibodies, albumin and the thrombosis marker chemokine (C-X-C motif) ligand 4. CONCLUSION COVID-19 accelerated the development and progression of lupus by inducing autoantibody production, fibrosis and thrombosis.
Collapse
Affiliation(s)
- Yeon Su Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, The Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, The Catholic University of Korea, Seoul, South Korea
| | - Kun Hee Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
2
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Takahagi S, Tanaka A. A Case of Graham-Little-Piccardi-Lasseur Syndrome Successfully Treated with Minocycline. Acta Derm Venereol 2024; 104:adv40008. [PMID: 38813743 PMCID: PMC11161807 DOI: 10.2340/actadv.v104.40008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Dermatology, JA Hiroshima General Hospital,1-3-3 Jigozen, Hatsukaichi, Hiroshima 738-8503, Japan.
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Altan F, Corum O, Durna Corum D, Uney K, Terzi E, Bilen S, Sonmez AY, Elmas M. Pharmacokinetic behaviour and pharmacokinetic-pharmacodynamic integration of doxycycline in rainbow trout (Oncorhynchus mykiss) after intravascular, intramuscular and oral administrations. Vet Med Sci 2024; 10:e1419. [PMID: 38520701 PMCID: PMC10960609 DOI: 10.1002/vms3.1419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE Doxycycline (DO) has been used in fish for a long time, but there are some factors that have not yet been clarified regarding its pharmacokinetic (PK) and pharmacodynamic (PD) properties. Therefore, the aim of this study was to investigate the PK and PK/PD targets of DO after 20 mg/kg intravascular (IV), intramuscular (IM) and oral (OR) gavage administration in rainbow trout (Oncorhynchus mykiss). METHODS Plasma samples were collected at specific time points and subsequently analysed by HPLC-ultraviolet. The PK/PD indices were calculated based on the MIC90 (Aeromonas hydrophila and Aeromonas sobria) values obtained for the respective bacteria and the PK parameters obtained for DO following both IM and OR administration. RESULTS After IV administration, the elimination half-life (t1/2 ʎz), area under the concentration vs. time curve (AUC), apparent volume of distribution at steady-state and total body clearance of DO were 34.81 h, 723.82 h µg/mL, 1.24 L/kg and 0.03 L/kg/h, respectively. The t1/2λz of the DO was found to be 37.39 and 39.78 h after IM, and OR administration, respectively. The bioavailability was calculated 57.02% and 32.29%, respectively, after IM and OR administration. The MIC90 of DO against A. hydrophila and A. sobria was 4 µg/mL. The PK/PD integration showed that DO (20 mg/kg dose) for A. hydrophila and A. sobria with MIC90 ≤4 µg/mL achieved target AUC/MIC value after IM administration. CONCLUSIONS These results suggest that when rainbow trout was treated with 20 mg/kg IV and IM administered DO, therapeutically effective concentrations were reached in the control of infections caused by A. hydrophila and A. sobria.
Collapse
Affiliation(s)
- Feray Altan
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineDokuz Eylul UniversityIzmirTurkiye
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityHatayTurkiye
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityHatayTurkiye
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineSelcuk UniversityKonyaTurkiye
| | - Ertugrul Terzi
- Department of Aquaculture, Faculty of FisheriesKastamonu UniversityKastamonuTurkiye
| | - Soner Bilen
- Department of Basic Sciences, Faculty of FisheriesKastamonu UniversityKastamonuTurkiye
| | - Adem Yavuz Sonmez
- Department of Basic Sciences, Faculty of FisheriesKastamonu UniversityKastamonuTurkiye
| | - Muammer Elmas
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineSelcuk UniversityKonyaTurkiye
| |
Collapse
|
6
|
Chang H, Kuo CF, Yu TS, Ke LY, Hung CL, Tsai SY. Increased risk of chronic fatigue syndrome following infection: a 17-year population-based cohort study. J Transl Med 2023; 21:804. [PMID: 37951920 PMCID: PMC10638797 DOI: 10.1186/s12967-023-04636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Previous serological studies have indicated an association between viruses and atypical pathogens and Chronic Fatigue Syndrome (CFS). This study aims to investigate the correlation between infections from common pathogens, including typical bacteria, and the subsequent risk of developing CFS. The analysis is based on data from Taiwan's National Health Insurance Research Database. METHODS From 2000 to 2017, we included a total of 395,811 cases aged 20 years or older newly diagnosed with infection. The cases were matched 1:1 with controls using a propensity score and were followed up until diagnoses of CFS were made. RESULTS The Cox proportional hazards regression analysis was used to estimate the relationship between infection and the subsequent risk of CFS. The incidence density rates among non-infection and infection population were 3.67 and 5.40 per 1000 person-years, respectively (adjusted hazard ratio [HR] = 1.5, with a 95% confidence interval [CI] 1.47-1.54). Patients infected with Varicella-zoster virus, Mycobacterium tuberculosis, Escherichia coli, Candida, Salmonella, Staphylococcus aureus and influenza virus had a significantly higher risk of CFS than those without these pathogens (p < 0.05). Patients taking doxycycline, azithromycin, moxifloxacin, levofloxacin, or ciprofloxacin had a significantly lower risk of CFS than patients in the corresponding control group (p < 0.05). CONCLUSION Our population-based retrospective cohort study found that infection with common pathogens, including bacteria, viruses, is associated with an increased risk of developing CFS.
Collapse
Affiliation(s)
- Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Teng-Shun Yu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Liang-Yin Ke
- Medical Laboratory Science & Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan.
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, 104, Taiwan.
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Mandal S, Annamalai RT. Carbonized Tetracycline: a new class of nanomaterial with tuneable antioxidant, reduced cytotoxicity, immunomodulatory, and osteogenic properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564661. [PMID: 37961326 PMCID: PMC10634966 DOI: 10.1101/2023.10.30.564661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tetracycline (TET), a broad-spectrum antibiotic, also possesses different non-antibiotic activities such as inhibition of metalloproteinase (MMP), anti-inflammatory, antioxidant, high bone affinity, etc. However, the comparatively low efficacy of these non-antibiotic properties along with adverse effects such as hyperpigmentation, phototoxicity, long-term skeletal retention, etc. have not helped their broad utilization similar to their use as an antibiotic. In a unique attempt to improve the non-antibiotic properties while reducing the adverse effects, we converted the TET to nano-carbons through partial carbonization. After sorting out two water-dispersible C-TETs (C-TET HT - hydrothermal and C-TET HP - hot plate) based on their improved antioxidant activity, they have been characterized through a host of analytical techniques that showed distinct differences in morphology, size, shape, and surface functionality. Excitingly, the C-TET HT and C-TET HP have shown differential biological activity in a dosage and time-dependent manner in terms of cytotoxicity, immunomodulation, and osteogenic activity that was found to be associated with their carbonized parameters. Overall, the carbonized nano-drugs, C-TET HT and C-TET HP have presented substantial early promises on their non-antibiotic properties that could be further explored to develop into some effective therapeutics.
Collapse
|
8
|
Wang Q, Gao QC, Wang QC, Wu L, Yu Q, He PF. A compendium of mitochondrial molecular characteristics provides novel perspectives on the treatment of rheumatoid arthritis patients. J Transl Med 2023; 21:561. [PMID: 37608254 PMCID: PMC10463924 DOI: 10.1186/s12967-023-04426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that exhibits a high degree of heterogeneity, marked by unpredictable disease flares and significant variations in the response to available treatments. The lack of optimal stratification for RA patients may be a contributing factor to the poor efficacy of current treatment options. The objective of this study is to elucidate the molecular characteristics of RA through the utilization of mitochondrial genes and subsequently construct and authenticate a diagnostic framework for RA. Mitochondrial proteins were obtained from the MitoCarta database, and the R package limma was employed to filter for differentially expressed mitochondrial genes (MDEGs). Metascape was utilized to perform enrichment analysis, followed by an unsupervised clustering algorithm using the ConsensuClusterPlus package to identify distinct subtypes based on MDEGs. The immune microenvironment, biological pathways, and drug response were further explored in these subtypes. Finally, a multi-biomarker-based diagnostic model was constructed using machine learning algorithms. Utilizing 88 MDEGs present in transcript profiles, it was possible to classify RA patients into three distinct subtypes, each characterized by unique molecular and cellular signatures. Subtype A exhibited a marked activation of inflammatory cells and pathways, while subtype C was characterized by the presence of specific innate lymphocytes. Inflammatory and immune cells in subtype B displayed a more modest level of activation (Wilcoxon test P < 0.05). Notably, subtype C demonstrated a stronger correlation with a superior response to biologics such as infliximab, anti-TNF, rituximab, and methotrexate/abatacept (P = 0.001) using the fisher test. Furthermore, the mitochondrial diagnosis SVM model demonstrated a high degree of discriminatory ability in distinguishing RA in both training (AUC = 100%) and validation sets (AUC = 80.1%). This study presents a pioneering analysis of mitochondrial modifications in RA, offering a novel framework for patient stratification and potentially enhancing therapeutic decision-making.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Lee AR, Woo JS, Lee SY, Lee YS, Jung J, Lee CR, Park SH, Cho ML. SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal 2023; 21:44. [PMID: 36864432 PMCID: PMC9978284 DOI: 10.1186/s12964-023-01044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) induces inflammation, autoantibody production, and thrombosis, which are common symptoms of autoimmune diseases, including rheumatoid arthritis (RA). However, the effect of COVID-19 on autoimmune disease is not yet fully understood. METHODS This study was performed to investigate the effects of COVID-19 on the development and progression of RA using a collagen-induced arthritis (CIA) animal model. Human fibroblast-like synoviocytes (FLS) were transduced with lentivirus carrying the SARS-CoV-2 spike protein gene in vitro, and the levels of inflammatory cytokine and chemokine expression were measured. For in vivo experiments, CIA mice were injected with the gene encoding SARS-CoV-2 spike protein, and disease severity, levels of autoantibodies, thrombotic factors, and inflammatory cytokine and chemokine expression were assessed. In the in vitro experiments, the levels of inflammatory cytokine and chemokine expression were significantly increased by overexpression of SARS-CoV-2 spike protein in human FLS. RESULTS The incidence and severity of RA in CIA mice were slightly increased by SARS-CoV-2 spike protein in vivo. In addition, the levels of autoantibodies and thrombotic factors, such as anti-CXC chemokine ligand 4 (CXCL4, also called PF4) antibodies and anti-phospholipid antibodies were significantly increased by SARS-CoV-2 spike protein. Furthermore, tissue destruction and inflammatory cytokine level in joint tissue were markedly increased in CIA mice by SARS-CoV-2 spike protein. CONCLUSIONS The results of the present study suggested that COVID-19 accelerates the development and progression of RA by increasing inflammation, autoantibody production, and thrombosis. Video Abstract.
Collapse
Affiliation(s)
- A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yeon Su Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jooyeon Jung
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Chae Rim Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
10
|
Aniagyei W, Adjei JK, Adankwah E, Seyfarth J, Mayatepek E, Antwi Berko D, Sakyi SA, Batsa Debrah L, Debrah AY, Hoerauf A, Owusu DO, Phillips RO, Jacobsen M. Doxycycline Treatment of Mansonella perstans-Infected Individuals Affects Immune Cell Activation and Causes Long-term T-cell Polarization. Clin Infect Dis 2023; 76:e1399-e1407. [PMID: 35657028 DOI: 10.1093/cid/ciac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Doxycycline is used for treatment of Mansonella perstans infection. Immune modulatory effects of both M. perstans and doxycycline have been described but long-term implications on host immune response are not defined. Here we determined multiple immune parameters of M. perstans-infected individuals before and after doxycycline treatment to characterize doxycycline effects on host T-cell immunity. METHODS Immune characterization of doxycycline-treated M. perstans-infected individuals was performed as part of an open-label randomized clinical trial. Immune cell population phenotyping by flow cytometry and functional in vitro T-cell assays were performed at baseline, 6 months, and "long term" (18-24 months) after treatment start. Treatment efficacy, based on peripheral blood microfilaria (mf) burden, was correlated with immune parameters and effects on immune response against concomitant Mycobacterium tuberculosis infection were determined. RESULTS Immune population phenotyping indicated changes in functional T-cell responses after doxycycline treatment. Constitutive and superantigen-induced T-cell activation and polarization towards T-helper type (TH) 1 phenotype at baseline declined after doxycycline treatment, whereas low proportions of TH17 and TH1* cells at baseline increased significantly at follow-up. In accordance, long-term decline in antigen-specific TH1 responses against concomitant M. tuberculosis infection was seen. Notably, only TH17 and TH1* changes after 6 months and TH17 at baseline were negatively correlated with M. perstans microfilaria burden or reduction, whereas long-term changes were not associated with treatment efficacy. CONCLUSIONS We found long-term immune modulatory effects of doxycycline treatment leading to decreased constitutive T-cell activation, polarization towards TH17/TH1*, and impaired immune response against concomitant M. tuberculosis infection.
Collapse
Affiliation(s)
- Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Jonathan Kofi Adjei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Antwi Berko
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Alexander Yaw Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,Faculty of Allied Health Sciences of Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn-Cologne, Germany
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
11
|
dos Santos Pereira M, do Nascimento GC, Bortolanza M, Michel PP, Raisman-Vozari R, Del Bel E. Doxycycline attenuates l-DOPA-induced dyskinesia through an anti-inflammatory effect in a hemiparkinsonian mouse model. Front Pharmacol 2022; 13:1045465. [PMID: 36506543 PMCID: PMC9728610 DOI: 10.3389/fphar.2022.1045465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
The pharmacological manipulation of neuroinflammation appears to be a promising strategy to alleviate l-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Doxycycline (Doxy), a semisynthetic brain-penetrant tetracycline antibiotic having interesting anti-inflammatory properties, we addressed the possibility that this compound could resolve LID in l-DOPA-treated C57BL/6 mice presenting either moderate or intermediate lesions of the mesostriatal dopaminergic pathway generated by intrastriatal injections of 6-OHDA. Doxy, when given subcutaneously before l-DOPA at doses of 20 mg kg-1 and 40 mg kg-1, led to significant LID reduction in mice with moderate and intermediate dopaminergic lesions, respectively. Importantly, Doxy did not reduce locomotor activity improved by l-DOPA. To address the molecular mechanism of Doxy, we sacrificed mice with mild lesions 1) to perform the immunodetection of tyrosine hydroxylase (TH) and Fos-B and 2) to evaluate a panel of inflammation markers in the striatum, such as cyclooxygenase-2 and its downstream product Prostaglandin E2 along with the cytokines TNF-α, IL-1β and IL-6. TH-immunodetection revealed that vehicle and Doxy-treated mice had similar striatal lesions, excluding that LID improvement by Doxy could result from neurorestorative effects. Importantly, LID inhibition by Doxy was associated with decreased Fos-B and COX-2 expression and reduced levels of PGE2, TNF-α, and IL-1β in the dorsolateral striatum of dyskinetic mice. We conclude 1) that Doxy has the potential to prevent LID regardless of the intensity of dopaminergic lesioning and 2) that the anti-inflammatory effects of Doxy probably account for LID attenuation. Overall, the present results further indicate that Doxy might represent an attractive and alternative treatment for LID in PD.
Collapse
Affiliation(s)
| | | | - Mariza Bortolanza
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Zhao J, Esmaeli B. Oral Doxycycline for Mild Thyroid Eye Disease. JAMA Ophthalmol 2022; 140:1083-1084. [PMID: 36173646 DOI: 10.1001/jamaophthalmol.2022.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiawei Zhao
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
13
|
The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur J Pharm Sci 2022; 175:106237. [PMID: 35710076 DOI: 10.1016/j.ejps.2022.106237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are still a challenge for effective treatments. The high cost of approved drugs, severity of side effects, injection site pain, and restrictions on drug delivery to the Central Nervous System (CNS) can overshadow the management of these diseases. Due to the chronic and progressive evolution of neurodegenerative disorders and since there is still no cure for them, new therapeutic strategies such as the combination of several drugs or the use of existing drugs with new therapeutic applications are valuable strategies. Tetracyclines are traditionally classified as antibiotics. However, in this class of drugs, doxycycline and minocycline exhibit also anti-inflammatory effects by inhibiting microglia/macrophages. Hence, they have been studied as potential agents for the treatment of neurodegenerative diseases. The results of in vitro and in vivo studies confirm the effective role of these two drugs as anti-inflammatory agents in experimentally induced models of neurodegenerative diseases. In clinical studies, satisfactory results have been obtained in Multiple sclerosis (MS) but not yet in other disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), or Amyotrophic lateral sclerosis (ALS). In recent years, researchers have developed and evaluated nanoparticulate drug delivery systems to improve the clinical efficacy of these two tetracyclines for their potential application in neurodegenerative diseases. This study reviews the neuroprotective roles of minocycline and doxycycline in four of the main neurodegenerative disorders: AD, PD, ALS and MS. Moreover, the potential applications of nanoparticulate delivery systems developed for both tetracyclines are also reviewed.
Collapse
|
14
|
Song A, Lee SE, Kim JH. Immunopathology and Immunotherapy of Inflammatory Skin Diseases. Immune Netw 2022; 22:e7. [PMID: 35291649 PMCID: PMC8901701 DOI: 10.4110/in.2022.22.e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/01/2022] Open
Abstract
Recently, there have been impressive advancements in understanding of the immune mechanisms underlying cutaneous inflammatory diseases. To understand these diseases on a deeper level and clarify the therapeutic targets more precisely, numerous studies including in vitro experiments, animal models, and clinical trials have been conducted. This has resulted in a paradigm shift from non-specific suppression of the immune system to selective, targeted immunotherapies. These approaches target the molecular pathways and cytokines responsible for generating inflammatory conditions and reinforcing feedback mechanisms to aggravate inflammation. Among the numerous types of skin inflammation, psoriasis and atopic dermatitis (AD) are common chronic cutaneous inflammatory diseases. Psoriasis is a IL-17–mediated disease driven by IL-23, while AD is predominantly mediated by Th2 immunity. Autoimmune bullous diseases are autoantibody-mediated blistering disorders, including pemphigus and bullous pemphigoid. Alopecia areata is an organ-specific autoimmune disease mediated by CD8+ T-cells that targets hair follicles. This review will give an updated, comprehensive summary of the pathophysiology and immune mechanisms of inflammatory skin diseases. Moreover, the therapeutic potential of current and upcoming immunotherapies will be discussed.
Collapse
Affiliation(s)
- Ahreum Song
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|