1
|
Metri NA, Mandl A, Paller CJ. Harnessing nature's therapeutic potential: A review of natural products in prostate cancer management. Urol Oncol 2025:S1078-1439(24)01041-X. [PMID: 39794185 DOI: 10.1016/j.urolonc.2024.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in the United States. The global burden of this disease is rising, placing significant strain on healthcare systems worldwide. Although definitive therapies like surgery and radiation are often effective, prostate cancer can recur and progress to castration-resistant prostate cancer in some cases. Conventional treatments for prostate cancer often have substantial side effects that can greatly impact patients' quality of life. Therefore, many patients turn to complementary therapies to improve outcomes, manage side effects, and enhance overall well-being. Natural products show promise as complementary treatments for prostate cancer, offering anticancer properties with a low risk of adverse effects. While preclinical research has produced encouraging results, their role in prostate cancer treatment remains controversial, largely due to inconsistent and limited success in clinical trials. This review explores the mechanisms of action of key natural products in prostate cancer management and summarizes clinical trials evaluating their efficacy and safety. It underscores the need for high-quality, rigorously designed, and adequately powered studies to validate the therapeutic potential and safety of these supplements in cancer care. Additionally, we propose future directions to enhance their role in addressing the complex challenges associated with prostate cancer.
Collapse
Affiliation(s)
- Nicole A Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Channing J Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
2
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
3
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
4
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
5
|
Li W, Wang F, Wang X, Xu W, Liu F, Hu R, Li S. Curcumin inhibits prostate cancer by upregulating miR-483-3p and inhibiting UBE2C. J Biochem Mol Toxicol 2024; 38:e23645. [PMID: 38348716 DOI: 10.1002/jbt.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fujun Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xiaoxiang Wang
- Department of Urinary Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wei Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangmin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Rong Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shanyi Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| |
Collapse
|
6
|
Boccellino M, Ambrosio P, Ballini A, De Vito D, Scacco S, Cantore S, Feola A, Di Donato M, Quagliuolo L, Sciarra A, Galasso G, Crocetto F, Imbimbo C, Boffo S, Di Zazzo E, Di Domenico M. The Role of Curcumin in Prostate Cancer Cells and Derived Spheroids. Cancers (Basel) 2022; 14:cancers14143348. [PMID: 35884410 PMCID: PMC9320241 DOI: 10.3390/cancers14143348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Pasqualina Ambrosio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Correspondence: (A.B.); (S.C.)
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Stefania Cantore
- Independent Researcher, 70129 Bari, Italy
- Correspondence: (A.B.); (S.C.)
| | - Antonia Feola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Antonella Sciarra
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Silvia Boffo
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| |
Collapse
|
7
|
Establishment of an orthotopic prostate cancer xenograft mouse model using microscope-guided orthotopic injection of LNCaP cells into the dorsal lobe of the mouse prostate. BMC Cancer 2022; 22:173. [PMID: 35168543 PMCID: PMC8848828 DOI: 10.1186/s12885-022-09266-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
Background Orthotopic LNCaP xenograft mouse models closely mimic the progression of androgen-dependent prostate cancer in humans; however, orthotopic injection of LNCaP cells into the mouse prostate remains a challenge. Methods Under the guidance of a stereoscopic microscope, the anatomy of the individual prostate lobes in male Balb/c athymic nude mice was investigated, and LNCaP cells were inoculated into the mouse dorsal prostate (DP) to generate orthotopic tumors that mimicked the pathophysiological process of prostate cancer in humans. Real-time ultrasound imaging was used to monitor orthotopic prostate tumorigenesis, contrast-enhanced ultrasonography (CEUS) was used to characterize tumor angiogenesis, and macroscopic and microscopic characteristics of tumors were described. Results The DP had a trigonal bipyramid-shape and were located at the base of the seminal vesicles. After orthotopic inoculation, gray scale ultrasound imaging showed progressive changes in tumor echotexture, shape and location, and tumors tended to protrude into the bladder. After 8 weeks, the tumor take rate was 65% (n = 13/20 mice). On CEUS, signal intensity increased rapidly, peaked, and decreased gradually. Observations of gross specimens showed orthotopic prostate tumors were well circumscribed, round, dark brown, and soft, with a smooth outer surface and a glossy appearance. Microscopically, tumor cells were arranged in acini encircled by fibrous septa with variably thickened walls, mimicking human adenocarcinoma. Conclusions This study describes a successful approach to establishing an orthotopic LNCaP xenograft Balb/c athymic nude mouse model. The model requires a thorough understanding of mouse prostate anatomy and proper technique. The model represents a valuable tool for the in vivo study of the biological processes involved in angiogenesis in prostate cancer and preclinical evaluations of novel anti-angiogenic therapies.
Collapse
|
8
|
Curcumin for the Treatment of Prostate Diseases: A Systematic Review of Controlled Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:345-362. [PMID: 34331700 DOI: 10.1007/978-3-030-56153-6_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the significant causes of morbidity and mortality worldwide. Benign prostatic hyperplasia is another condition of the prostate which, like prostate cancer, is more common among ageing men and is linked to inflammation. In this study, a systematic review was undertaken to estimate the effect of turmeric or curcumin supplementation on prostate diseases. A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science and Google Scholar up to 15 April 2020 to identify clinical trials assessing the effects of curcumin/turmeric alone or in combination with other herbs on prostate diseases. This led to the identification of 11 records comprising 745 patients who met the eligibility criteria. Eight studies were conducted on patients with prostate cancer, and three were on other diseases of the prostate. Although outcomes across the studies were heterogeneous, in some studies curcumin/turmeric supplementation had some favourable effects. This included beneficial effects on the levels of prostate-specific antigen (PSA) (2/6 studies), quality of life (1/2 studies), as well as on oxidative stress markers, feelings of incomplete bladder emptying, urination frequency, intermittency, urgency, weak stream, straining and nocturia. Curcumin/turmeric supplementation had no significant adverse effects among patients. This study demonstrated that turmeric or curcumin supplementation might have beneficial effects on some parameters related to prostate diseases, but it should be noted that some studies showed no effect. Therefore, further studies using curcumin-related compounds, particularly in highly bioavailable forms, are needed to assess the impact of curcumin on prostate conditions.
Collapse
|
9
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
10
|
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W, Głowniak-Lipa A, Helon P. MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Front Pharmacol 2021; 11:613464. [PMID: 33584291 PMCID: PMC7873640 DOI: 10.3389/fphar.2020.613464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is with rising incidence in male population globally. It is a complex anomaly orchestrated by a plethora of cellular processes. Transforming growth factor-beta (TGF-β) signaling is one of the key signaling pathways involved in the tumorigenesis of PCa. TGF-β signaling has a dual role in the PCa, making it difficult to find a suitable therapeutic option. MicroRNAs (miRNAs) mediated regulation of TGF-β signaling is responsible for the TGF-ß paradox. These are small molecules that modulate the expression of target genes and regulate cancer progression. Thus, miRNAs interaction with different signaling cascades is of great attention for devising new diagnostic and therapeutic options for PCa. Natural compounds have been extensively studied due to their high efficacy and low cytotoxicity. Here, we discuss the involvement of TGF-ß signaling in PCa with the interplay between miRNAs and TGF-β signaling and also review the role of natural compounds for the development of new therapeutics for PCa.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University in Kielce, Sandomierz, Poland
| |
Collapse
|
11
|
Curcumin against Prostate Cancer: Current Evidence. Biomolecules 2020; 10:biom10111536. [PMID: 33182828 PMCID: PMC7696488 DOI: 10.3390/biom10111536] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition characterized by remarkably enhanced rates of cell proliferation paired with evasion of cell death. These deregulated cellular processes take place following genetic mutations leading to the activation of oncogenes, the loss of tumor suppressor genes, and the disruption of key signaling pathways that control and promote homeostasis. Plant extracts and plant-derived compounds have historically been utilized as medicinal remedies in different cultures due to their anti-inflammatory, antioxidant, and antimicrobial properties. Many chemotherapeutic agents used in the treatment of cancer are derived from plants, and the scientific interest in discovering plant-derived chemicals with anticancer potential continues today. Curcumin, a turmeric-derived polyphenol, has been reported to possess antiproliferative and proapoptotic properties. In the present review, we summarize all the in vitro and in vivo studies examining the effects of curcumin in prostate cancer.
Collapse
|
12
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
13
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
15
|
Yang YCS, Li ZL, Shih YJ, Bennett JA, Whang-Peng J, Lin HY, Davis PJ, Wang K. Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers. Nutrients 2019; 11:nu11122979. [PMID: 31817534 PMCID: PMC6949899 DOI: 10.3390/nu11122979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pro-inflammatory hormones and cytokines (leptin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6) rise in obesity. Elevated levels of hormones and cytokines are linked with several comorbidities such as diabetes, heart disease, and cancer. The checkpoint programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) plays an important role in obesity and cancer proliferation. L-thyroxine (T4) and steroid hormones up-regulate PD-L1 accumulation and promote inflammation in cancer cells and diabetics. On the other hand, resveratrol and other herbal medicines suppress PD-L1 accumulation and reduce diabetic effects. In addition, they induce anti-cancer proliferation in various types of cancer cells via different mechanisms. In the current review, we discuss new findings and visions into the antagonizing effects of hormones on herbal medicine-induced anti-cancer properties.
Collapse
Affiliation(s)
- Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - James A. Bennett
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY 12208, USA;
| | - Jaqueline Whang-Peng
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12208, USA;
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Gracia E, Mancini A, Colapietro A, Mateo C, Gracia I, Festuccia C, Carmona M. Impregnation of Curcumin into a Biodegradable (Poly-lactic-co-glycolic acid, PLGA) Support, to Transfer Its Well Known In Vitro Effect to an In Vivo Prostate Cancer Model. Nutrients 2019; 11:E2312. [PMID: 31569529 PMCID: PMC6835253 DOI: 10.3390/nu11102312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in older men and is associated with high mortality. Despite advances in screening for early detection of PCa, a large proportion of patients continue to be diagnosed with metastatic disease, with ~20% of men showing a high tumor grade and stage. Medicinal plant extracts have a great potential to prevent/treat PCa, as well as to reduce its incidence/prevalence and improve survival rates. One of the most promising extracts is curcumin, which is a major, nontoxic, bioactive compound of Curcuma longa. Curcumin has strong antitumor activity in vitro. However, its potential beneficial in vivo affects are limited by its low intestinal absorption and rapid metabolism. In this study, curcumin was impregnated into a biodegradable poly(lactic-co-glycolic) acid (PLGA) support and characterized by FTIR and DSC, and its release by UV spectrophotometry. PLGA-curcumin was tested in different subcutaneous PCa xenograft models (PC3, 22rv1, and DU145 PCa cell-lines), and its effects evaluated by tumor progression an immuno-histochemical analysis (Trichromic, Ki67 and TUNEL stainings), were compared with those of a commercial curcumin preparation. Our results indicate that curcumin-impregnated PLGA is significantly more active (~2-fold increase) with respect to oral curcumin, which supports its use for subcutaneous administration.
Collapse
Affiliation(s)
- Eulalio Gracia
- Institute of Chemical and Environmental Technology (ITQUIMA), Department of Chemical Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cristina Mateo
- Food Technology Lab, School of Architecture, Engineering and Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Ignacio Gracia
- Institute of Chemical and Environmental Technology (ITQUIMA), Department of Chemical Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Manuel Carmona
- Food Technology Lab, School of Architecture, Engineering and Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| |
Collapse
|
17
|
Choi YH, Han DH, Kim SW, Kim MJ, Sung HH, Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate 2019; 79:614-621. [PMID: 30671976 DOI: 10.1002/pros.23766] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The anti-cancer activities of curcumin are well-documented from preclinical studies using prostate cancer models. Our objective was to evaluate the anti-cancer activity of oral curcumin in patients with prostate cancer. METHODS This randomized, double-blind, placebo-controlled trial was performed on patients with prostate cancer who received intermittent androgen deprivation (IAD). Participants who finished the first on-treatment period of IAD were randomized into a curcumin or placebo group. The patients took oral curcumin (1440 mg/day) or placebo for six months and were followed up until the beginning of the second on-treatment. The primary end-point was duration of the first off-treatment. The secondary end-points were change in PSA and testosterone levels during 6 months, PSA progression rate, and health-related quality of life (HRQOL) scores at 6 months. Safety assessments included adverse event, adverse drug reaction, and serious adverse event. RESULTS A total of 97 participants were randomized 1:1 to curcumin (n = 49) and placebo (n = 48) groups. Among them, 82 patients (84.5%) were evaluable for the analysis (39 and 43 patients in the curcumin and placebo groups, respectively). The median off-treatment duration was 16.3 months (95% confidence interval [CI] 12.3-20.3 months) and 18.5 months (95% CI 12.5-23.0 months) in the curcumin and placebo groups, respectively. There was no significant difference in the curve of off-treatment duration between the two groups (P = 0.4816). The proportion of patients with PSA progression during the active curcumin treatment period (6 months) was significantly lower in the curcumin group than the placebo group (10.3% vs 30.2%, P = 0.0259). The change of PSA, testosterone levels during 6 months, and HRQOL scores at 6 months were not different between curcumin and placebo groups. Adverse events were higher in the placebo group (16 of 46 vs 7 of 45 patients, P = 0.0349). No significant differences in the adverse drug reaction were found between the two groups. CONCLUSIONS Six months' intake of oral curcumin did not significantly affect the overall off-treatment duration of IAD. However, PSA elevation was suppressed with curcumin intake during the curcumin administration period. Curcumin at this dose was well tolerated and safe.
Collapse
Affiliation(s)
- Young Hyo Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Deok Hyun Han
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon-Woo Kim
- Statistics and Data center, Samsung Medical Center, Seoul, Korea
| | - Min-Ji Kim
- Statistics and Data center, Samsung Medical Center, Seoul, Korea
| | - Hyun Hwan Sung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Il Seo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Moo Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Han Yong Choi
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Celik H, Aydin T, Solak K, Khalid S, Farooqi AA. Curcumin on the "flying carpets" to modulate different signal transduction cascades in cancers: Next-generation approach to bridge translational gaps. J Cell Biochem 2018; 119:4293-4303. [PMID: 29384224 DOI: 10.1002/jcb.26749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Curcumin, a bioactive and pharmacologically efficient component isolated from Curcuma longa has attracted considerable attention because of its ability to modulate diverse cellular and physiological pathways. WNT, TGF/SMAD, NOTCH, and SHH are fundamentally different signaling cascades, but their choreographed activation is strongly associated with cancer development and progression. In this review we have attempted to set spotlight on regulation of different cell signaling pathways by curcumin in different cancers. We partition this multi-component review into in-depth biological understanding of various signal transduction cascades and how curcumin targets intracellular signal transducers of deregulated pathways to inhibit cancer development and progression. Rapidly broadening landscape of both established and candidate oncogenic driver mutations identified in different cancers is a major stumbling block in the standardization of drugs having significant clinical outcome. Intra and inter-tumor heterogeneity had leveraged the complexity of therapeutic challenges to another level. Multi-pronged approach and molecularly guided treatments will be helpful in improving the clinical outcome.
Collapse
Affiliation(s)
- Hulya Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Kubra Solak
- Institute of Science, Ataturk University, Erzurum, Turkey
| | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
19
|
Zhong ZF, Tan W, Tian K, Yu H, Qiang WA, Wang YT. Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro. Oncol Rep 2017; 37:2016-2024. [PMID: 28184941 DOI: 10.3892/or.2017.5435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Furanodiene is one of the major bioactive components isolated from the natural product of the plant, Curcuma wenyujin Y.H. Chen et C. Ling. Furanodiene has been found to exert anticancer effects in various types of cancer cell lines, as well as exhibit antimetastatic activities. However, the antimetastatic capacity of furanodiene in combination with the common chemotherapy drug doxorubicin has not been investigated. We found that doxorubicin at a non-toxic concentration induced cell migration and cell invasion in highly metastatic breast cancer cells. Combinational treatments with furanodiene and doxorubicin blocked the invasion and migration of MDA-MB-231 breast cancer cells in vitro. We also clarified the effects of the combination on the signaling pathways involved in migration, invasion, and cytoskeletal organization. When combined with doxorubicin, furanodiene downregulated the expression of integrin αV and β-catenin and inhibited the phosphorylation of paxillin, Src, focal adhesion kinase (FAK), p85, and Akt. Moreover, combinational treatments also resulted in a decrease in matrix metalloproteinase-9 (MMP-9). Further study demonstrated that the co-treatments with furanodiene did not significantly alter the effects of doxorubicin on the tubulin cytoskeleton, represented by no influence on the expression levels of RhoA, Cdc42, N-WASP, and α/β tubulin. These observations indicate that furanodiene is a potential agent that may be utilized to improve the anticancer efficacy of doxorubicin and overcome the risk of chemotherapy in highly metastatic breast cancer.
Collapse
Affiliation(s)
- Zhang-Feng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ke Tian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, P.R. China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Yi-Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| |
Collapse
|
20
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
21
|
Schmidt KT, Figg WD. The potential role of curcumin in prostate cancer: the importance of optimizing pharmacokinetics in clinical studies. Transl Cancer Res 2016; 5:S1107-S1110. [PMID: 30613476 DOI: 10.21037/tcr.2016.11.04] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Keith T Schmidt
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Jordan BC, Mock CD, Thilagavathi R, Selvam C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci 2016; 152:135-44. [PMID: 27018446 DOI: 10.1016/j.lfs.2016.03.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Abstract
Primary prostate cancer, also known as prostate adenocarcinoma (PCa), is a devastating cancer in men worldwide. Europe and developing countries of Asia have fewer reported cases of prostate cancer compared to increasing cases in the United States with higher incidence in Black men. Risk factors associated with prostate cancer are aging, genetics, lifestyle, high body mass index as well as carcinogenic exposure to carbon-containing fuels, tobacco, and charbroiled meats. Hormone therapy and radical prostatectomy are commonly implemented treatments. The >20.000 prostate cancer deaths of 2013 suggest that there exists a need for enhanced chemopreventive and therapeutic agents for prostate cancer treatment. Fruits, vegetables, and red wines contain high levels of polyphenolic levels. Consumption of these products may provide chemoprevetion of PCa. Curcumin, the major compound from the turmeric rhizome Curcuma longa has long been used for medicinal purposes as an antiseptic and wound healing. This review focuses on curcumin's therapeutic effectiveness in vitro and in vivo in prostate cancer models. The review will highlight the mechanisms of actions of curcumin in the signaling pathways of prostate cancer.
Collapse
Affiliation(s)
- Brian C Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Charlotta D Mock
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|