1
|
Yoshida Y, Hirayama A, Arakawa K. Transcriptome analysis of the tardigrade Hypsibius exemplaris exposed to the DNA-damaging agent bleomycin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:414-428. [PMID: 38839369 DOI: 10.2183/pjab.pjab.100.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Tardigrades are microscopic animals that are renowned for their capabilities of tolerating near-complete desiccation by entering an ametabolic state called anhydrobiosis. However, many species also show high tolerance against radiation in the active state as well, suggesting cross-tolerance via the anhydrobiosis mechanism. Previous studies utilized indirect DNA damaging agents to identify core components of the cross-tolerance machinery in species with high anhydrobiosis capacities. However, it was difficult to distinguish whether transcriptomic changes were specific to DNA damage or mutual with anhydrobiosis. To this end, we performed transcriptome analysis on bleomycin-exposed Hypsibius exemplaris. We observed induction of several tardigrade-specific gene families, including a previously identified novel anti-oxidative stress family, which may be a core component of the cross-tolerance mechanism. We also identified enrichment of the tryptophan metabolism pathway, for which metabolomic analysis suggested engagement of this pathway in stress tolerance. These results provide several candidates for the core component of cross-tolerance, as well as possible anhydrobiosis machinery.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
2
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Kayastha P, Wieczorkiewicz F, Pujol M, Robinson A, Michalak M, Kaczmarek Ł, Poprawa I. Elevated external temperature affects cell ultrastructure and heat shock proteins (HSPs) in Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. Sci Rep 2024; 14:5097. [PMID: 38429316 PMCID: PMC10907573 DOI: 10.1038/s41598-024-55295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Increasing temperature influences the habitats of various organisms, including microscopic invertebrates. To gain insight into temperature-dependent changes in tardigrades, we isolated storage cells exposed to various temperatures and conducted biochemical and ultrastructural analysis in active and tun-state Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. The abundance of heat shock proteins (HSPs) and ultrastructure of the storage cells were examined at different temperatures (20 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 42 °C) in storage cells isolated from active specimens of Pam. experimentalis. In the active animals, upon increase in external temperature, we observed an increase in the levels of HSPs (HSP27, HSP60, and HSP70). Furthermore, the number of ultrastructural changes in storage cells increased with increasing temperature. Cellular organelles, such as mitochondria and the rough endoplasmic reticulum, gradually degenerated. At 42 °C, cell death occurred by necrosis. Apart from the higher electron density of the karyoplasm and the accumulation of electron-dense material in some mitochondria (at 42 °C), almost no changes were observed in the ultrastructure of tun storage cells exposed to different temperatures. We concluded that desiccated (tun-state) are resistant to high temperatures, but not active tardigrades (survival rates of tuns after 24 h of rehydration: 93.3% at 20 °C, 60.0% at 35 °C, 33.3% at 37 °C, 33.3% at 40 °C, and 20.0% at 42 °C).
Collapse
Affiliation(s)
- Pushpalata Kayastha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Filip Wieczorkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Myriam Pujol
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alison Robinson
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| |
Collapse
|
4
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
5
|
Smythers AL, Joseph KM, O'Dell HM, Clark TA, Crislip JR, Flinn BB, Daughtridge MH, Stair ER, Mubarek SN, Lewis HC, Salas AA, Hnilica ME, Kolling DRJ, Hicks LM. Chemobiosis reveals tardigrade tun formation is dependent on reversible cysteine oxidation. PLoS One 2024; 19:e0295062. [PMID: 38232097 DOI: 10.1371/journal.pone.0295062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Tardigrades, commonly known as 'waterbears', are eight-legged microscopic invertebrates renowned for their ability to withstand extreme stressors, including high osmotic pressure, freezing temperatures, and complete desiccation. Limb retraction and substantial decreases to their internal water stores results in the tun state, greatly increasing their ability to survive. Emergence from the tun state and/or activity regain follows stress removal, where resumption of life cycle occurs as if stasis never occurred. However, the mechanism(s) through which tardigrades initiate tun formation is yet to be uncovered. Herein, we use chemobiosis to demonstrate that tardigrade tun formation is mediated by reactive oxygen species (ROS). We further reveal that tuns are dependent on reversible cysteine oxidation, and that this reversible cysteine oxidation is facilitated by the release of intracellular reactive oxygen species (ROS). We provide the first empirical evidence of chemobiosis and map the initiation and survival of tardigrades via osmobiosis, chemobiosis, and cryobiosis. In vivo electron paramagnetic spectrometry suggests an intracellular release of reactive oxygen species following stress induction; when this release is quenched through the application of exogenous antioxidants, the tardigrades can no longer survive osmotic stress. Together, this work suggests a conserved dependence of reversible cysteine oxidation across distinct tardigrade cryptobioses.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Kara M Joseph
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Hayden M O'Dell
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Trace A Clark
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Jessica R Crislip
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Brendin B Flinn
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Meredith H Daughtridge
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Saher N Mubarek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hailey C Lewis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Abel A Salas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Megan E Hnilica
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Derrick R J Kolling
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
6
|
Giovannini I, Manfrin C, Greco S, Vincenzi J, Altiero T, Guidetti R, Giulianini P, Rebecchi L. Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species. Front Physiol 2023; 14:1258932. [PMID: 37766751 PMCID: PMC10520964 DOI: 10.3389/fphys.2023.1258932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The Antarctic region has been experiencing some of the planet's strongest climatic changes, including an expected increase of the land temperature. The potential effects of this warming trend will lead ecosystems to a risk of losing biodiversity. Antarctic mosses and lichens host different microbial groups, micro-arthropods and meiofaunal organisms (e.g., tardigrades, rotifers). The eutardigrade Acutuncus antarcticus is considered a model animal to study the effect of increasing temperature due to global warming on Antarctic terrestrial communities. In this study, life history traits and fitness of this species are analyzed by rearing specimens at two different and increasing temperatures (5°C vs. 15°C). Moreover, the first transcriptome analysis on A. antarcticus is performed, exposing adult animals to a gradual increase of temperature (5°C, 10°C, 15°C, and 20°C) to find differentially expressed genes under short- (1 day) and long-term (15 days) heat stress. Acutuncus antarcticus specimens reared at 5°C live longer (maximum life span: 686 days), reach sexual maturity later, lay more eggs (which hatch in longer time and in lower percentage) compared with animals reared at 15°C. The fitness decreases in animals belonging to the second generation at both rearing temperatures. The short-term heat exposure leads to significant changes at transcriptomic level, with 67 differentially expressed genes. Of these, 23 upregulated genes suggest alterations of mitochondrial activity and oxido-reductive processes, and two intrinsically disordered protein genes confirm their role to cope with heat stress. The long-term exposure induces alterations limited to 14 genes, and only one annotated gene is upregulated in response to both heat stresses. The decline in transcriptomic response after a long-term exposure indicates that the changes observed in the short-term are likely due to an acclimation response. Therefore, A. antarcticus could be able to cope with increasing temperature over time, including the future conditions imposed by global climate change.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Joel Vincenzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Altiero
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Education and Humanities, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Piero Giulianini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
7
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
8
|
Nguyen K, Kc S, Gonzalez T, Tapia H, Boothby TC. Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance. Commun Biol 2022; 5:1046. [PMID: 36182981 PMCID: PMC9526748 DOI: 10.1038/s42003-022-04015-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to survive extreme desiccation. Unlike many desiccation-tolerant organisms that accumulate high levels of the disaccharide trehalose to protect themselves during drying, tardigrades accumulate little or undetectable levels. Using comparative metabolomics, we find that despite being enriched at low levels, trehalose is a key biomarker distinguishing hydration states of tardigrades. In vitro, naturally occurring stoichiometries of trehalose and CAHS proteins, intrinsically disordered proteins with known protective capabilities, were found to produce synergistic protective effects during desiccation. In vivo, this synergistic interaction is required for robust CAHS-mediated protection. This demonstrates that trehalose acts not only as a protectant, but also as a synergistic cosolute. Beyond desiccation tolerance, our study provides insights into how the solution environment tunes intrinsically disordered proteins’ functions, many of which are vital in biological contexts such as development and disease that are concomitant with large changes in intracellular chemistry. The disaccharide trehalose is a synergistic cosolute and key biomarker of desiccation tolerance in tardigrades.
Collapse
Affiliation(s)
- Kenny Nguyen
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Shraddha Kc
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Tyler Gonzalez
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Hugo Tapia
- California State University-Channel Islands, Biology Program, Camarillo, CA, USA
| | - Thomas C Boothby
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA.
| |
Collapse
|
9
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
10
|
Yoshida Y, Satoh T, Ota C, Tanaka S, Horikawa DD, Tomita M, Kato K, Arakawa K. Time-series transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and anhydrobiosis in tardigrades. BMC Genomics 2022; 23:405. [PMID: 35643424 PMCID: PMC9145152 DOI: 10.1186/s12864-022-08642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. RESULTS Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. CONCLUSIONS Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Chise Ota
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Sae Tanaka
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Daiki D Horikawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
11
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
12
|
Lantin S, Mendell S, Akkad G, Cohen AN, Apicella X, McCoy E, Beltran-Pardo E, Waltemathe M, Srinivasan P, Joshi PM, Rothman JH, Lubin P. Interstellar space biology via Project Starlight. ACTA ASTRONAUTICA 2022; 190:261-272. [PMID: 36710946 PMCID: PMC9881496 DOI: 10.1016/j.actaastro.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Our ability to explore the cosmos by direct contact has been limited to a small number of lunar and interplanetary missions. However, the NASA Starlight program points a path forward to send small, relativistic spacecraft far outside our solar system via standoff directed-energy propulsion. These miniaturized spacecraft are capable of robotic exploration but can also transport seeds and organisms, marking a profound change in our ability to both characterize and expand the reach of known life. Here we explore the biological and technological challenges of interstellar space biology, focusing on radiation-tolerant microorganisms capable of cryptobiosis. Additionally, we discuss planetary protection concerns and other ethical considerations of sending life to the stars.
Collapse
Affiliation(s)
- Stephen Lantin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, 32611, FL, USA
- Department of Chemical Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Sophie Mendell
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- College of Creative Studies, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Ghassan Akkad
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Alexander N. Cohen
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Xander Apicella
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Emma McCoy
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | | | | | - Prasanna Srinivasan
- Department of Electrical and Computer Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- Center for BioEngineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Pradeep M. Joshi
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Philip Lubin
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| |
Collapse
|
13
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Thermotolerance experiments on active and desiccated states of Ramazzottius varieornatus emphasize that tardigrades are sensitive to high temperatures. Sci Rep 2020; 10:94. [PMID: 31919388 PMCID: PMC6952461 DOI: 10.1038/s41598-019-56965-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Global warming is already having harmful effects on habitats worldwide and it is therefore important to gain an understanding of how rising temperatures may affect extant animals. Here, we investigate the tolerance to high temperatures of Ramazzottius varieornatus, a tardigrade frequently found in transient freshwater habitats. Using logistic modelling on activity we evaluate the effect of 24 hour temperature exposures on active tardigrades, with or without a short acclimation period, compared to exposures of desiccated tardigrades. We estimate that the 50% mortality temperature for non-acclimated active tardigrades is 37.1 °C, with a small but significant increase to 37.6 °C following acclimation. Desiccated specimens tolerate much higher temperatures, with an estimated 50% mortality temperature of 82.7 °C following 1 hour exposures, but with a significant decrease to 63.1 °C following 24 hour exposures. Our results show that metabolically active tardigrades are vulnerable to high temperatures, yet acclimatization could provide a tolerance increase. Desiccated specimens show a much higher resilience—exposure-time is, however, a limiting factor giving tardigrades a restricted window of high temperature tolerance. Tardigrades are renowned for their ability to tolerate extreme conditions, but their endurance towards high temperatures clearly has an upper limit—high temperatures thus seem to be their Achilles heel.
Collapse
|
15
|
Jönsson KI. Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine. Cancers (Basel) 2019; 11:E1333. [PMID: 31505739 PMCID: PMC6770827 DOI: 10.3390/cancers11091333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022] Open
Abstract
Tardigrades represent a phylum of very small aquatic animals in which many species have evolved adaptations to survive under extreme environmental conditions, such as desiccation and freezing. Studies on several species have documented that tardigrades also belong to the most radiation-tolerant animals on Earth. This paper gives an overview of our current knowledge on radiation tolerance of tardigrades, with respect to dose-responses, developmental stages, and different radiation sources. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unknown, but omics studies suggest that both mechanisms related to the avoidance of DNA damage and mechanisms of DNA repair are involved. The potential of tardigrades to provide knowledge of importance for medical sciences has long been recognized, but it is not until recently that more apparent evidence of such potential has appeared. Recent studies show that stress-related tardigrade genes may be transfected to human cells and provide increased tolerance to osmotic stress and ionizing radiation. With the recent sequencing of the tardigrade genome, more studies applying tardigrade omics to relevant aspects of human medicine are expected. In particular, the cancer research field has potential to learn from studies on tardigrades about molecular mechanisms evolved to maintain genome integrity.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, 291 88 Kristianstad, Sweden.
| |
Collapse
|
16
|
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics 2019; 20:607. [PMID: 31340759 PMCID: PMC6652013 DOI: 10.1186/s12864-019-5912-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. Results E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The “tardigrade unique proteins” (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. Conclusions Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12864-019-5912-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Kamilari
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| |
Collapse
|
17
|
Jönsson KI, Holm I, Tassidis H. Cell Biology of the Tardigrades: Current Knowledge and Perspectives. Results Probl Cell Differ 2019; 68:231-249. [PMID: 31598859 DOI: 10.1007/978-3-030-23459-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The invertebrate phylum Tardigrada has received much attention for containing species adapted to the most challenging environmental conditions where an ability to survive complete desiccation or freezing in a cryptobiotic state is necessary for persistence. Although research on tardigrades has a long history, the last decade has seen a dramatic increase in molecular biological ("omics") studies, most of them with the aim to reveal the biochemical mechanisms behind desiccation tolerance of tardigrades. Several other aspects of tardigrade cell biology have been studied, and we review some of them, including karyology, embryology, the role of storage cells, and the question of whether tardigrades are eutelic animals. We also review some of the theories about how anhydrobiotic organisms are able to maintain cell integrity under dry conditions, and our current knowledge on the role of vitrification and DNA protection and repair. Many aspects of tardigrade stress tolerance have relevance for human medicine, and the first transfers of tardigrade stress genes to human cells have now appeared. We expect this field to develop rapidly in the coming years, as more genomic information becomes available. However, many basic cell biological aspects remain to be investigated, such as immunology, cell cycle kinetics, cell metabolism, and culturing of tardigrade cells. Such development will be necessary to allow tardigrades to move from a nonmodel organism position to a true model organism with interesting associations with the current models C. elegans and D. melanogaster.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden.
| | - Ingvar Holm
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Helena Tassidis
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
18
|
Jönsson KI, Levine EB, Wojcik A, Haghdoost S, Harms-Ringdahl M. Environmental Adaptations: Radiation Tolerance. WATER BEARS: THE BIOLOGY OF TARDIGRADES 2018. [DOI: 10.1007/978-3-319-95702-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
|
20
|
Ito M, Saigo T, Abe W, Kubo T, Kunieda T. Establishment of an isogenic strain of the desiccation-sensitive tardigradeIsohypsibius myrops(Parachela, Eutardigrada) and its life history traits. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Makiko Ito
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Tokiko Saigo
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Wataru Abe
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
- Department of Biology; Dokkyo Medical University; Tochigi Japan
| | - Takeo Kubo
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Takekazu Kunieda
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
21
|
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 2016; 113:5053-5058. [PMID: 27035985 DOI: 10.1101/033464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.
Collapse
Affiliation(s)
- Georgios Koutsovoulos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Lewis Stevens
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jennifer Daub
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Claire Conlon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Habib Maroon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Fran Thomas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Aziz A Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
22
|
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 2016; 113:5053-8. [PMID: 27035985 PMCID: PMC4983863 DOI: 10.1073/pnas.1600338113] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.
Collapse
Affiliation(s)
- Georgios Koutsovoulos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Lewis Stevens
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jennifer Daub
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Claire Conlon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Habib Maroon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Fran Thomas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Aziz A Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
23
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
24
|
Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells. PLoS One 2015; 10:e0118272. [PMID: 25675104 PMCID: PMC4326354 DOI: 10.1371/journal.pone.0118272] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.
Collapse
|
25
|
Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun 2014; 5:4784. [PMID: 25216354 PMCID: PMC4175575 DOI: 10.1038/ncomms5784] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022] Open
Abstract
Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. The African chironomid midge, Polypedilum vanderplanki, is able to withstand extreme desiccation. Here the authors sequence the genomes of a desiccation-tolerant and desiccation-sensitive species of chironomid midge and pinpoint genes that may have a role in conferring resistance to desiccation.
Collapse
|
26
|
Bracken-Grissom H, Collins AG, Collins T, Crandall K, Distel D, Dunn C, Giribet G, Haddock S, Knowlton N, Martindale M, Medina M, Messing C, O'Brien SJ, Paulay G, Putnam N, Ravasi T, Rouse GW, Ryan JF, Schulze A, Wörheide G, Adamska M, Bailly X, Breinholt J, Browne WE, Diaz MC, Evans N, Flot JF, Fogarty N, Johnston M, Kamel B, Kawahara AY, Laberge T, Lavrov D, Michonneau F, Moroz LL, Oakley T, Osborne K, Pomponi SA, Rhodes A, Santos SR, Satoh N, Thacker RW, Van de Peer Y, Voolstra CR, Welch DM, Winston J, Zhou X. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered 2014; 105:1-18. [PMID: 24336862 DOI: 10.1093/jhered/est084] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.
Collapse
|
27
|
Wang C, Grohme MA, Mali B, Schill RO, Frohme M. Towards decrypting cryptobiosis--analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 2014; 9:e92663. [PMID: 24651535 PMCID: PMC3961413 DOI: 10.1371/journal.pone.0092663] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Background Many tardigrade species are capable of anhydrobiosis; however, mechanisms underlying their extreme desiccation resistance remain elusive. This study attempts to quantify the anhydrobiotic transcriptome of the limno-terrestrial tardigrade Milnesium tardigradum. Results A prerequisite for differential gene expression analysis was the generation of a reference hybrid transcriptome atlas by assembly of Sanger, 454 and Illumina sequence data. The final assembly yielded 79,064 contigs (>100 bp) after removal of ribosomal RNAs. Around 50% of them could be annotated by SwissProt and NCBI non-redundant protein sequences. Analysis using CEGMA predicted 232 (93.5%) out of the 248 highly conserved eukaryotic genes in the assembly. We used this reference transcriptome for mapping and quantifying the expression of transcripts regulated under anhdydrobiosis in a time-series during dehydration and rehydration. 834 of the transcripts were found to be differentially expressed in a single stage (dehydration/inactive tun/rehydration) and 184 were overlapping in two stages while 74 were differentially expressed in all three stages. We have found interesting patterns of differentially expressed transcripts that are in concordance with a common hypothesis of metabolic shutdown during anhydrobiosis. This included down-regulation of several proteins of the DNA replication and translational machinery and protein degradation. Among others, heat shock proteins Hsp27 and Hsp30c were up-regulated in response to dehydration and rehydration. In addition, we observed up-regulation of ployubiquitin-B upon rehydration together with a higher expression level of several DNA repair proteins during rehydration than in the dehydration stage. Conclusions Most of the transcripts identified to be differentially expressed had distinct cellular function. Our data suggest a concerted molecular adaptation in M. tardigradum that permits extreme forms of ametabolic states such as anhydrobiosis. It is temping to surmise that the desiccation tolerance of tradigrades can be achieved by a constitutive cellular protection system, probably in conjunction with other mechanisms such as rehydration-induced cellular repair.
Collapse
Affiliation(s)
- Chong Wang
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- * E-mail:
| | - Markus A. Grohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Brahim Mali
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Ralph O. Schill
- Biological Institute, Zoology, University of Stuttgart, Stuttgart, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
28
|
Herranz R, Manzano AI, van Loon JJWA, Christianen PCM, Medina FJ. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. ASTROBIOLOGY 2013; 13:217-24. [PMID: 23510084 DOI: 10.1089/ast.2012.0883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The environments included simulated 0 g* at B=10.1 T, an internal 1 g* control (B=16.5 T), and hypergravity (2 g* at B=10.1 T). Furthermore, samples were also exposed to altered gravity environments that were created with mechanical devices, such as the Random Positioning Machine (simulated μg) and the Large Diameter Centrifuge (2 g). We have determined the proteomic signature of cell cultures exposed to these altered-gravity environments by means of the difference gel electrophoresis (DiGE) technique, and we have compared the results with microarray-based transcriptomes from the same samples. The magnetic field itself produced a low number of proteomic alterations, but the combination of gravitational alteration and magnetic field exposure produced synergistic effects on the proteome of plants (the number of significant changes is 3-7 times greater). Tandem mass spectrometry identification of 19 overlapping spots in the different conditions corroborates a major role of abiotic stress and secondary metabolism proteins in the molecular adaptation of plants to unusual environments, including microgravity.
Collapse
Affiliation(s)
- Raul Herranz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | | | | | | | |
Collapse
|
29
|
Yamaguchi A, Tanaka S, Yamaguchi S, Kuwahara H, Takamura C, Imajoh-Ohmi S, Horikawa DD, Toyoda A, Katayama T, Arakawa K, Fujiyama A, Kubo T, Kunieda T. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS One 2012; 7:e44209. [PMID: 22937162 PMCID: PMC3429414 DOI: 10.1371/journal.pone.0044209] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/30/2012] [Indexed: 01/05/2023] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.
Collapse
Affiliation(s)
- Ayami Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sae Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shiho Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chizuko Takamura
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Daiki D. Horikawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiaki Katayama
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, Japan
| | - Asao Fujiyama
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Affiliation(s)
- John H. Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| |
Collapse
|
31
|
Halberg KA, Larsen KW, Jørgensen A, Ramløv H, Møbjerg N. Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes. J Exp Biol 2012; 216:1235-43. [DOI: 10.1242/jeb.075531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl- are the principle inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F-, SO42- and PO43- were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared to that of the external medium (Na+, ×70-800; K+, ×20-90; Ca2+ and Mg2+, ×30-200; F-, ×160-1040, Cl-, ×20-50; PO43-, ×700-2800; SO42-, ×30-150). In contrast, in the marine species H. crispae Na+, Cl- and SO42- are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F- are only slightly concentrated (×2-10). An anion deficit of ~120 mEq 1-1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg-1 in R. coronifer to 961±43 mOsm kg-1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.
Collapse
|