1
|
Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer's disease in aging women. Metab Brain Dis 2023; 38:783-793. [PMID: 36640216 DOI: 10.1007/s11011-023-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERα) is a transcription factor activated by estrogenic hormones to regulate gene expression in certain organs, including the brain. In the brain, estrogen signaling pathways are central for maintaining cognitive functions. Herein, we review the neuroprotective effects of estrogens mediated by ERα. The estrogen/ERα pathways are affected by the reduction of estrogens in menopause, and this event may be a risk factor for neurodegeneration associated with Alzheimer's disease in women. Thus, developing a better understanding of estrogen/ERα signaling may be critical for defining new biomarkers and potential therapeutic targets for Alzheimer's disease in women.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico.
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| |
Collapse
|
2
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
3
|
Gohar EY, Almutlaq RN, Daugherty EM, Butt MK, Jin C, Pollock JS, Pollock DM, De Miguel C. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R297-R306. [PMID: 33407017 PMCID: PMC7988769 DOI: 10.1152/ajpregu.00267.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Recent evidence indicates a crucial role for G protein-coupled estrogen receptor 1 (GPER1) in the maintenance of cardiovascular and kidney health in females. The current study tested whether GPER1 activation ameliorates hypertension and kidney damage in female Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. Adult female rats were implanted with telemetry transmitters for monitoring blood pressure and osmotic minipumps releasing G1 (selective GPER1 agonist, 400 μg/kg/day ip) or vehicle. Two weeks after pump implantation, rats were shifted from a normal-salt (NS) diet (0.4% NaCl) to a matched HS diet (4.0% NaCl) for 2 wk. Twenty-four hour urine samples were collected during both diet periods and urinary markers of kidney injury were assessed. Histological assessment of kidney injury was conducted after the 2-wk HS diet period. Compared with values during the NS diet, 24-h mean arterial pressure markedly increased in response to HS, reaching similar values in vehicle-treated and G1-treated rats. HS also significantly increased urinary excretion of protein, albumin, nephrin (podocyte damage marker), and KIM-1 (proximal tubule injury marker) in vehicle-treated rats. Importantly, G1 treatment prevented the HS-induced proteinuria, albuminuria, and increase in KIM-1 excretion but not nephrinuria. Histological analysis revealed that HS-induced glomerular damage did not differ between groups. However, G1 treatment preserved proximal tubule brush-border integrity in HS-fed rats. Collectively, our data suggest that GPER1 activation protects against HS-induced proteinuria and albuminuria in female Dahl SS rats by preserving proximal tubule brush-border integrity in a blood pressure-independent manner.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rawan N Almutlaq
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth M Daugherty
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maryam K Butt
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Yang K, Yao Y. Mechanism of GPER promoting proliferation, migration and invasion of triple-negative breast cancer cells through CAF. Am J Transl Res 2019; 11:5858-5868. [PMID: 31632554 PMCID: PMC6789253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is an important histological subtype of breast cancer. Abnormal GPER expression has been reported in human breast cancer. However, the functional mechanism of GPER through carcinoma-associated fibroblast (CAF) in TNBC needed further investigations. The proliferation and cycle progression of the MDA-MB-231 cells were respectively analyzed by CCK-8 assay and flow cytometry, while cell migration and invasion were examined by wound healing assay and transwell assay. GPER expression in TNBC tissues and MDA-MB-231 cells was investigated by RT-qPCR, western blotting and immunohistochemistry. Collagen-1 was measured using ELISA. In addition, the role of GPER through CAF was investigated through cells were transfected with GPER interference plasmid and treated with GPER agonist, respectively. The transfection effects were verified by RT-qPCR. The results demonstrated that CAF could promote proliferation, migration and invasion of MDA-MB-231 cells compared with normal fibroblast (NF). GPER expression was decreased in TNBC tissues and MDA-MB-231 cells in comparison with the adjacent normal tissues and MCF-10A cells. GPER expression could affect the expression of Coll-1 in CAF. Downregulation of GPER inhibited Coll-1 expression in CAF, thereby inducing the decrease of cell proliferation, arrest of S phase and suppression of migration and invasion of MDA-MB-231 cells, while GPER agonist could be resulted in the opposite effects. In conclusion, the present data demonstrated that GPER promoted proliferation, migration and invasion of TNBC cells through CAF. Furthermore, GPER expression was positively related to the prognosis of TNBC.
Collapse
Affiliation(s)
- Kaihua Yang
- Department of Radiotherapy, Affiliated Hospital of Jiangnan University & Wuxi No. 4 People’s HospitalWuxi 214062, P. R. China
| | - Yufeng Yao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, P. R. China
| |
Collapse
|
5
|
G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci 2019; 20:ijms20020306. [PMID: 30646517 PMCID: PMC6359026 DOI: 10.3390/ijms20020306] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled estrogen receptor (GPER), an alternate estrogen receptor (ER) with a structure distinct from the two canonical ERs, being ERα, and ERβ, is expressed in 50% to 60% of breast cancer tissues and has been presumed to be associated with the development of tamoxifen resistance in ERα positive breast cancer. On the other hand, triple-negative breast cancer (TNBC) constitutes 15% to 20% of breast cancers and frequently displays a more aggressive behavior. GPER is prevalent and involved in TNBC and can be a therapeutic target. However, contradictory results exist regarding the function of GPER in breast cancer, proliferative or pro-apoptotic. A better understanding of the GPER, its role in breast cancer, and the interactions with the ER and epidermal growth factor receptor will be beneficial for the disease management and prevention in the future.
Collapse
|
6
|
Martin SG, Lebot MN, Sukkarn B, Ball G, Green AR, Rakha EA, Ellis IO, Storr SJ. Low expression of G protein-coupled oestrogen receptor 1 (GPER) is associated with adverse survival of breast cancer patients. Oncotarget 2018; 9:25946-25956. [PMID: 29899833 PMCID: PMC5995224 DOI: 10.18632/oncotarget.25408] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled oestrogen receptor 1 (GPER), also called G protein-coupled receptor 30 (GPR30), is attracting considerable attention for its potential role in breast cancer development and progression. Activation by oestrogen (17β-oestradiol; E2) initiates short term, non-genomic, signalling events both in vitro and in vivo. Published literature on the prognostic value of GPER protein expression in breast cancer indicates that further assessment is warranted. We show, using immunohistochemistry on a large cohort of primary invasive breast cancer patients (n=1245), that low protein expression of GPER is not only significantly associated with clinicopathological and molecular features of aggressive behaviour but also significantly associated with adverse survival of breast cancer patients. Furthermore, assessment of GPER mRNA levels in the METABRIC cohort (n=1980) demonstrates that low GPER mRNA expression is significantly associated with adverse survival of breast cancer patients. Using artificial neural networks, genes associated with GPER mRNA expression were identified; these included notch-4 and jagged-1. These results support the prognostic value for determination of GPER expression in breast cancer.
Collapse
Affiliation(s)
- Stewart G Martin
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Marie N Lebot
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Bhudsaban Sukkarn
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Graham Ball
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG1 4BU, UK
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Sarah J Storr
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| |
Collapse
|
7
|
Wróbel AM, Gregoraszczuk EŁ. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett 2015; 238:110-6. [PMID: 26253279 DOI: 10.1016/j.toxlet.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
In the present study, we examined cAMP levels and activation of the MAPK/ERK1/2 and PI3K/Akt signaling pathways in response to the actions of parabens on GPR30 in MCF-7 and MCF-10A cells. Cells were exposed to methyl-, propyl- or butylparaben at a concentration of 20nM; 17-β-estradiol (10nM) was used as a positive control. 17β-estradiol and all tested parabens increased GPR30 gene and protein expression in MCF-7 and MCF-10A cells. No parabens affected cAMP levels in either cell line, with the exception of propylparaben in MCF-10A cells. 17β-estradiol, propylparaben, and butylparaben increased phosphorylation of ERK1/2 in MCF-7 cells, whereas 17β-estradiol, methyl- and butylparaben, but not propylparaben, increased phosphorylation of ERK1/2 in MCF-10A cells. Akt activation was noted only in MCF-7 cells and only with propylparaben treatment. Collectively, the data presented here point to a nongenomic mechanism of action of parabens in activation GPR30 in both cancer and non-cancer breast cell lines through βγ dimer-mediated activation of the ERK1/2 pathway, but not the cAMP/PKA pathway. Moreover, among investigated parabens, propylparaben appears to inhibit apoptosis in cancer cells through activation of Akt kinases, confirming conclusions suggested by our previously published data. Nevertheless, continuing research on the carcinogenic action of parabens is warranted.
Collapse
Affiliation(s)
- Anna Maria Wróbel
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, Li F, Yu FX, Sun Y, Yuan H, Zhu H, Xiong Y, Lei QY, Guan KL. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest 2015; 125:2123-35. [PMID: 25893606 DOI: 10.1172/jci79573] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/12/2015] [Indexed: 01/09/2023] Open
Abstract
The G protein-coupled estrogen receptor (GPER) mediates both the genomic and nongenomic effects of estrogen and has been implicated in breast cancer development. Here, we compared GPER expression in cancerous tissue and adjacent normal tissue in patients with invasive ductal carcinoma (IDC) of the breast and determined that GPER is highly upregulated in cancerous cells. Additionally, our studies revealed that GPER stimulation activates yes-associated protein 1 (YAP) and transcriptional coactivator with a PDZ-binding domain (TAZ), 2 homologous transcription coactivators and key effectors of the Hippo tumor suppressor pathway, via the Gαq-11, PLCβ/PKC, and Rho/ROCK signaling pathways. TAZ was required for GPER-induced gene transcription, breast cancer cell proliferation and migration, and tumor growth. Moreover, TAZ expression positively correlated with GPER expression in human IDC specimens. Together, our results suggest that the Hippo/YAP/TAZ pathway is a key downstream signaling branch of GPER and plays a critical role in breast tumorigenesis.
Collapse
MESH Headings
- Acyltransferases
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/physiopathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/physiopathology
- Cell Division
- Cell Movement
- Cell Transformation, Neoplastic
- Estrogens/pharmacology
- Estrogens/physiology
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred BALB C
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/physiopathology
- Phospholipase C beta/physiology
- Phosphoproteins/physiology
- Phosphorylation
- Protein Kinase C/physiology
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases/analysis
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- RNA Interference
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/physiology
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/physiology
- Serine-Threonine Kinase 3
- Signal Transduction/physiology
- Transcription Factors/physiology
- Transcription, Genetic
- Tumor Suppressor Proteins/analysis
- Tumor Suppressor Proteins/physiology
- YAP-Signaling Proteins
- rho-Associated Kinases/physiology
Collapse
|
9
|
Weber R, Bertoni APS, Bessestil LW, Brum IS, Furlanetto TW. Decreased Expression of GPER1 Gene and Protein in Goiter. Int J Endocrinol 2015; 2015:869431. [PMID: 25861267 PMCID: PMC4377492 DOI: 10.1155/2015/869431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/28/2023] Open
Abstract
Goiter is more common in women, suggesting that estrogen could be involved in its physiopathology. The presence of classical estrogen receptors (ERα and ERβ) has been described in thyroid tissue, suggesting a direct effect of estrogen on the gland. A nonclassic estrogen receptor, the G-protein-coupled estrogen receptor (GPER1), has been described recently in several tissues. However, in goiter, the presence of this receptor has not been studied yet. We investigated GPER1 gene and protein expressions in normal thyroid and goiter using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. In normal thyroid (n = 16) and goiter (n = 19), GPER1 gene was expressed in all samples, while GPER1 protein was expressed in all samples of normal thyroid (n = 15) but in only 72% of goiter samples (n = 13). When comparing GPER1 gene and protein levels in both conditions, gene expression and protein levels were higher in normal thyroid than in goiter, suggesting a role of this receptor in this condition. Further studies are needed to elucidate the role of GPER1 in normal thyroid and goiter.
Collapse
Affiliation(s)
- Raquel Weber
- Programa de Pós Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 90035-903 Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Laura Walter Bessestil
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170 Porto Alegre, RS, Brazil
| | - Ilma Simoni Brum
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170 Porto Alegre, RS, Brazil
| | - Tania Weber Furlanetto
- Programa de Pós Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 90035-903 Porto Alegre, RS, Brazil
- *Tania Weber Furlanetto:
| |
Collapse
|
10
|
Weißenborn C, Ignatov T, Poehlmann A, Wege AK, Costa SD, Zenclussen AC, Ignatov A. GPER functions as a tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. J Cancer Res Clin Oncol 2014; 140:663-71. [PMID: 24515910 DOI: 10.1007/s00432-014-1598-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients, and its expression is favorable for patients' survival. We investigated the role of GPER as a potential tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. METHODS The effect of GPER agonist G-1 in cell culture was used to determine whether GPER inhibit cell growth. The methylation status of GPER promoter was investigated by methylation-specific PCR. RESULTS GPER-specific agonist G-1 inhibited breast cancer cell proliferation in concentration-dependent manner via induction of the cell cycle arrest in M-phase, enhanced phosphorylation of histone 3 and cell apoptosis. Analysis of the methylation status of the GPER promoter in MCF-7 and SK-BR-3 cells revealed that GPER expression is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Overall, our results are consistent with our recent findings in triple-negative breast cancer cells, and the cell surface expression of GPER makes it an excellent potential therapeutic target for non-triple-negative breast cancer.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cyclopentanes/pharmacology
- DNA Methylation/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Promoter Regions, Genetic/genetics
- Quinolines/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Estrogen/agonists
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Christine Weißenborn
- Department of Obstetrics and Gynecology, University Clinic Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Ignatov T, Modl S, Thulig M, Weißenborn C, Treeck O, Ortmann O, Zenclussen A, Costa SD, Kalinski T, Ignatov A. GPER-1 acts as a tumor suppressor in ovarian cancer. J Ovarian Res 2013; 6:51. [PMID: 23849542 PMCID: PMC3723961 DOI: 10.1186/1757-2215-6-51] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/12/2013] [Indexed: 02/05/2023] Open
Abstract
Background It is known that the new membrane-bound estrogen receptor GPER-1 acts suppressive in breast cancer cells and its expression decreases during disease progression. This study was conducted to evaluate the GPER-1 expression in ovarian cancer and its correlation with progression. Its function was tested in vitro in ovarian cancer cells. Patients and methods GPER-1 expression was analyzed by immunohistochemistry in 35 benign ovarian tumors, 35 tumors of low-malignant potential and in 124 ovarian cancers. GPER-1 expression was correlated to the prospectively evaluated disease-free survival of ovarian cancer patients. We also tested GPER-1 expression in ovarian cancer cells and the effect of GPER-1 stimulation on cell growth. Results GPER-1 expression was significantly lower in ovarian cancer tissue than in benign and low-malignant ovarian tumors. GPER-1 expression was observed in 83.1% of malignant tumors and was higher in early stage cancers and tumors with high histological differentiation. GPER-1 expression was associated with favourable clinical outcome. The difference in 2-year disease-free survival by GPER-1 expression was significant, 28.6% for GPER-1 negative and 59.2% for GPER-1 positive cases (p = 0.002). GPER-1 expression was observed in SKOV-3 and OVCAR-3 ovarian cancer cell lines. G-1, a selective GPER-1 agonist, suppressed proliferation of the two cell types via inhibition of cell cycle progression in G2/M phase and stimulation of caspase-dependent apoptosis. The blockade in G2/M phase was associated with increased expression of cyclin B1 and Cdc2 and phosphorylation of histone 3. Conclusion GPER-1 emerges as a new tumor suppressor with unsuspected therapeutic potential for ovarian cancer.
Collapse
Affiliation(s)
- Tanja Ignatov
- Department of Obstetrics and Gynecology, Otto-von-Guericke University, G,-Hauptmann Str, 35, 39108, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Krakstad C, Trovik J, Wik E, Engelsen IB, Werner HMJ, Birkeland E, Raeder MB, Øyan AM, Stefansson IM, Kalland KH, Akslen LA, Salvesen HB. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br J Cancer 2012; 106:1682-8. [PMID: 22415229 PMCID: PMC3349187 DOI: 10.1038/bjc.2012.91] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The G protein-coupled oestrogen receptor, GPER, has been suggested as an alternative oestrogen receptor. Our purpose was to investigate the potential of GPER as a prognostic and predictive marker in endometrial carcinoma and to search for new drug candidates to improve treatment of aggressive disease. MATERIALS AND METHOD A total of 767 primary endometrial carcinomas derived from three patient series, including an external dataset, were studied for protein and mRNA expression levels to investigate and validate if GPER loss identifies poor prognosis and new targets for therapy in endometrial carcinoma. Gene expression levels, according to ERα/GPER status, were used to search the connectivity map database for small molecular inhibitors with potential for treatment of metastatic disease for receptor status subgroups. RESULTS Loss of GPER protein is significantly correlated with low GPER mRNA, high FIGO stage, non-endometrioid histology, high grade, aneuploidy and ERα loss (all P-values ≤0.05). Loss of GPER among ERα-positive patients identifies a subgroup with poor prognosis that until now has been unrecognised, with reduced 5-year survival from 93% to 76% (P=0.003). Additional loss of GPER from primary to metastatic lesion counterparts further supports that loss of GPER is associated with disease progression. CONCLUSION These results support that GPER status adds clinically relevant information to ERα status in endometrial carcinoma and suggest a potential for new inhibitors in the treatment of metastatic endometrial cancers with ERα expression and GPER loss.
Collapse
Affiliation(s)
- C Krakstad
- Department of Clinical Medicine, Section for Gynecology and Obstetrics, University of Bergen, Jonas Lies Vei 72, Bergen 5020, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|