1
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
2
|
Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun Biol 2022; 5:319. [PMID: 35388167 PMCID: PMC8987030 DOI: 10.1038/s42003-022-03279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation of the complex relationships and dependencies of multiple cellular processes that govern cardiac physiology and pathophysiology requires simultaneous dynamic assessment of multiple parameters. In this study, we introduce triple-parametric optical mapping to simultaneously image metabolism, electrical excitation, and calcium signaling from the same field of view and demonstrate its application in the field of drug testing and cardiovascular research. We applied this metabolism-excitation-contraction coupling (MECC) methodology to test the effects of blebbistatin, 4-aminopyridine and verapamil on cardiac physiology. While blebbistatin and 4-aminopyridine alter multiple aspects of cardiac function suggesting off-target effects, the effects of verapamil were on-target and it altered only one of ten tested parameters. Triple-parametric optical mapping was also applied during ischemia and reperfusion; and we identified that metabolic changes precede the effects of ischemia on cardiac electrophysiology.
Collapse
|
3
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Liu J, Fu Z, Gong Y, Xia L. Investigating two kinds of cellular alternans and corresponding TWA induced by impaired calcium cycling in myocardial ischemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7648-7665. [PMID: 34814268 DOI: 10.3934/mbe.2021379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The utility of T wave alternans (TWA) in identifying arrhythmia risk has been demonstrated. During myocardial ischemia (MI), TWA could be induced by cellular alternans. However, the relationship between cellular alternans patterns and TWA patterns in MI has not been investigated thoroughly. METHODS We set MI conditions to simulate alternans. Either prolonging Ca2+ release or increasing spark-induced sparks (secondary sparks) can give rise to different patterns of APD alternans and TWA. In addition, different ischemic zones and reduced conduction velocity are also considered in one dimensional simulation. RESULTS Delay of Ca2+ release can produce discordant Ca2+-driven alternans in single cell simulation. Increasing secondary sparks leads to concordant alternans. Correspondingly, morphology and magnitude of TWA vary in two different cellular alternans. Epi ischemia results in alternans concentrating in the first half of T wave. Endo and transmural ischemia lead to fluctuations in the second half of T wave. In addition, slowing conduction velocity has no effect on TWA magnitude. CONCLUSION Specific ionic channel dysfunction and ischemic zones affect TWA patterns.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenyin Fu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinglan Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Kharkovskaya EЕ, Osipov GV, Mukhina IV. Ventricular fibrillation induced by 2-aminoethoxydiphenyl borate under conditions of hypoxia/reoxygenation. Minerva Cardioangiol 2020; 68:619-628. [DOI: 10.23736/s0026-4725.20.05376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 2020; 12:865-878. [PMID: 32696300 DOI: 10.1007/s12551-020-00736-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Excitation-contraction coupling links excitation of the sarcolemmal surface membrane to mechanical contraction. In the heart this link is established via a Ca2+-induced Ca2+ release process, which, following sarcolemmal depolarisation, prompts Ca2+ release from the sarcoplasmic reticulum (SR) though the ryanodine receptor (RyR2). This substantially raises the cytoplasmic Ca2+ concentration to trigger systole. In diastole, Ca2+ is removed from the cytoplasm, primarily via the sarcoplasmic-endoplasmic reticulum Ca2+-dependent ATPase (SERCA) pump on the SR membrane, returning Ca2+ to the SR store. Ca2+ movement across the SR is thus fundamental to the systole/diastole cycle and plays an essential role in maintaining cardiac contractile function. Altered SR Ca2+ homeostasis (due to disrupted Ca2+ release, storage, and reuptake pathways) is a central tenet of heart failure and contributes to depressed contractility, impaired relaxation, and propensity to arrhythmia. This review will focus on the molecular mechanisms that underlie asynchronous Ca2+ cycling around the SR in the failing heart. Further, this review will illustrate that the combined effects of expression changes and disruptions to RyR2 and SERCA2a regulatory pathways are critical to the pathogenesis of heart failure.
Collapse
|
7
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia Enhances the Acute Stretch-Induced Increase in Calcium Spark Rate in Ventricular Myocytes. Front Physiol 2020; 11:289. [PMID: 32372969 PMCID: PMC7179564 DOI: 10.3389/fphys.2020.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch. Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 μM Fluo-4, 10 min) or ROS (1 μM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy. Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s−1·100 μm−2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s−1·100 μm−2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s−1·100 μm−2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s−1·100 μm−2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s−1·100 μm−2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001). Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.
Collapse
Affiliation(s)
- Breanne A Cameron
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hiroaki Kai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiko Kaihara
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gentaro Iribe
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Exploring Impaired SERCA Pump-Caused Alternation Occurrence in Ischemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:8237071. [PMID: 31827590 PMCID: PMC6885202 DOI: 10.1155/2019/8237071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Impaired sarcoplasmic reticulum (SR) calcium transport ATPase (SERCA) gives rise to Ca2+ alternans and changes of the Ca2+release amount. These changes in Ca2+ release amount can reveal the mechanism underlying how the interaction between Ca2+ release and Ca2+ uptake induces Ca2+ alternans. This study of alternans by calculating the values of Ca2+ release properties with impaired SERCA has not been explored before. Here, we induced Ca2+ alternans by using an impaired SERCA pump under ischemic conditions. The results showed that the recruitment and refractoriness of the Ca2+ release increased as Ca2+ alternans occurred. This indicates triggering Ca waves. As the propagation of Ca waves is linked to the occurrence of Ca2+ alternans, the “threshold” for Ca waves reflects the key factor in Ca2+ alternans development, and it is still controversial nowadays. We proposed the ratio between the diastolic network SR (NSR) Ca content (Cansr) and the cytoplasmic Ca content (Cai) (Cansr/Cai) as the “threshold” of Ca waves and Ca2+ alternans. Diastolic Cansr, Cai, and their ratio were recorded at the onset of Ca2+ alternans. Compared with certain Cansr and Cai, the “threshold” of the ratio can better explain the comprehensive effects of the Ca2+ release and the Ca2+ uptake on Ca2+ alternans onset. In addition, these ratios are related with the function of SERCA pumps, which vary with different ischemic conditions. Thus, values of these ratios could be used to differentiate Ca2+ alternans from different ischemic cases. This agrees with some experimental results. Therefore, the certain value of diastolic Cansr/Cai can be the better “threshold” for Ca waves and Ca2+ alternans.
Collapse
|
10
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
11
|
Nerol Attenuates Ouabain-Induced Arrhythmias. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5935921. [PMID: 30984275 PMCID: PMC6431517 DOI: 10.1155/2019/5935921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Nerol (C10H18O) is a monoterpene found in many essential oils, such as lemon balm and hop. In this study, we explored the contractile and electrophysiological properties of nerol and demonstrated its antiarrhythmic effects in guinea pig heart preparation. Nerol effects were evaluated on atrial and ventricular tissue contractility, electrocardiogram (ECG), voltage-dependent L-type Ca2+ current (ICa,L), and ouabain-triggered arrhythmias. Overall our results revealed that by increasing concentrations of nerol (from 0.001 to 30 mM) there was a significant decrease in left atrium contractile force. This effect was completely and rapidly reversible after washing out (~ 2 min). Nerol (at 3 mM concentration) decreased the left atrium positive inotropic response evoked by adding up CaCl2 in the extracellular medium. Interestingly, when using a lower concentration of nerol (30 μM), it was not possible to clearly observe any significant ECG signal alterations but a small reduction of ventricular contractility was observed. In addition, 300 μM nerol promoted a significant decrease on the cardiac rate and contractility. Important to note is the fact that in isolated cardiomyocytes, peak ICa,L was reduced by 58.9 ± 6.31% after perfusing 300 μM nerol (n=7, p<0.05). Nerol, at 30 and 300 μM, delayed the time of onset of ouabain-triggered arrhythmias and provoked a decrease in the diastolic tension induced by the presence of ouabain (50 μM). Furthermore, nerol preincubation significantly attenuated arrhythmia severity index without changes in the positive inotropism elicited by ouabain exposure. Taken all together, we may be able to conclude that nerol primarily by reducing Ca2+ influx through L-type Ca2+ channel blockade lessened the severity of ouabain-triggered arrhythmias in mammalian heart.
Collapse
|
12
|
Abstract
This Special Collection will gather all studies highlighting recent advances in theoretical and experimental studies of arrhythmia, with a specific focus on research seeking to elucidate links between calcium homeostasis in cardiac cells and organ-scale disruption of heart rhythm.
Collapse
Affiliation(s)
- Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Seth H Weinberg
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|