1
|
Andrade SM, de Oliveira Marques CC, de Lucena LC, Vieira da Costa K, de Souza IC, da Silva Machado CB, Queiroz MEBS, Costa LP, Silva STD. Effect of transcranial direct current stimulation and transcranial magnetic stimulation on the cognitive function of individuals with Alzheimer's disease: a systematic review with meta-analysis and meta-regression. Neurol Res 2024; 46:453-465. [PMID: 38634361 DOI: 10.1080/01616412.2024.2321779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/17/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE To analyze the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) on the cognitive function of individuals with Alzheimer's disease (AD). METHODS This systematic review with meta-analysis and meta-regression included randomized clinical trials published until 05/2022. We included studies conducted with individuals with AD of both sexes, aged between 55 and 85 years, treated with tDCS, TMS, or both. RESULTS Twenty-one studies were included in the systematic review and sixteen in the meta-analysis. Meta-regression suggested a significant influence of anodic tDCS with current intensity of 1.5 mA on cognitive function. Significant results were found with treatment frequencies of three and five days a week for two weeks. Subgroup analysis found that anodic tDCS influences cognitive function, regardless of AD stage. Similar was observed for TMS using a frequency of 20 Hz and current intensity of 90% of the resting motor threshold. DISCUSSION Anodal tDCS and 20 Hz TMS have demonstrated the ability to improve cognitive function in AD by modulating neural activity. These therapies are safe and well-tolerated, offering promise as adjuncts to available pharmacological treatments. Studies with greater methodological rigor and parameter standardization are warranted. Comprehensive investigations involving neuroimaging techniques may provide a better understanding of the interaction between induced electrical fields and the complex neural networks affected in AD, paving the way for more personalized and effective neurostimulation approaches.
Collapse
Affiliation(s)
| | - Clébya Candeia de Oliveira Marques
- Neuroscience and Aging Laboratory, Federal University of Paraíba, João Pessoa, Brazil
- Brazilian Hospital Services Company-EBSERH, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | | | | | - Larissa Pereira Costa
- Neuroscience and Aging Laboratory, Federal University of Paraíba, João Pessoa, Brazil
| | | |
Collapse
|
2
|
Walker NC, Philip NS, Kozel FA, Yesavage JA, Madore MR. Effectiveness of Prefrontal Transcranial Magnetic Stimulation for Depression in Older US Military Veterans. Am J Geriatr Psychiatry 2024; 32:315-325. [PMID: 37973487 PMCID: PMC11231732 DOI: 10.1016/j.jagp.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE While typical aging is associated with decreased cortical volume, major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) likely exacerbates this process. Cerebral atrophy leads to increased coil-to-cortex distance and when using transcranial magnetic stimulation (TMS), potentially reducing effectiveness in older adults. METHODS Data from a large-scale quality improvement project was used. Included veterans eligible for TMS and completed TMS treatment. Age was assessed as a predictive factor of depression outcomes after TMS treatment among veterans. Secondary analyses examined the impact of age on 1) MDD response and remission and 2) MDD change within MDD-only verses comorbid MDD and PTSD groups. RESULTS The entire sample included 471 veterans. Primary analysis revealed age as a negative predictor of depression outcomes (p = 0.019). Secondary analyses found age to be a significant predictor of remission (p = 0.004), but not clinical response. Age was not a predictive factor in depression outcomes between those with MDD-only compared to MDD+PTSD. CONCLUSIONS Increased age predicts greater MDD symptom reduction after TMS. Although age did not predict response rates, it did predict increased rates of remission in veterans. Age did not differentially predict depression outcomes between those with or without PTSD. The sample size was sufficient to discern a difference in efficaciousness, and limitations were those inherent to registry studies in veterans. This data indicates that TMS can be an important treatment option for older individuals.
Collapse
Affiliation(s)
- Nicole C Walker
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA
| | - Noah S Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System (NSP), Providence, RI; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University (NSP), Providence, RI
| | - F Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University (FAK), Tallahassee, FL
| | - Jerome A Yesavage
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA.
| |
Collapse
|
3
|
Saha C, Figley CR, Lithgow B, Fitzgerald PB, Koski L, Mansouri B, Anssari N, Wang X, Moussavi Z. Can Brain Volume-Driven Characteristic Features Predict the Response of Alzheimer's Patients to Repetitive Transcranial Magnetic Stimulation? A Pilot Study. Brain Sci 2024; 14:226. [PMID: 38539615 PMCID: PMC10968477 DOI: 10.3390/brainsci14030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 11/11/2024] Open
Abstract
This study is a post-hoc examination of baseline MRI data from a clinical trial investigating the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for patients with mild-moderate Alzheimer's disease (AD). Herein, we investigated whether the analysis of baseline MRI data could predict the response of patients to rTMS treatment. Whole-brain T1-weighted MRI scans of 75 participants collected at baseline were analyzed. The analyses were run on the gray matter (GM) and white matter (WM) of the left and right dorsolateral prefrontal cortex (DLPFC), as that was the rTMS application site. The primary outcome measure was the Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog). The response to treatment was determined based on ADAS-Cog scores and secondary outcome measures. The analysis of covariance showed that responders to active treatment had a significantly lower baseline GM volume in the right DLPFC and a higher GM asymmetry index in the DLPFC region compared to those in non-responders. Logistic regression with a repeated five-fold cross-validated analysis using the MRI-driven features of the initial 75 participants provided a mean accuracy of 0.69 and an area under the receiver operating characteristic curve of 0.74 for separating responders and non-responders. The results suggest that GM volume or asymmetry in the target area of active rTMS treatment (DLPFC region in this study) may be a weak predictor of rTMS treatment efficacy. These results need more data to draw more robust conclusions.
Collapse
Affiliation(s)
- Chandan Saha
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Chase R. Figley
- Department of Radiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian Lithgow
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Psychiatry (MAPRC), Monash University, Melbourne VIC 3004, Australia
| | - Paul B. Fitzgerald
- Department of Psychiatry (MAPRC), Monash University, Melbourne VIC 3004, Australia
| | - Lisa Koski
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC H3A 1G1, Canada
| | - Behzad Mansouri
- Brain, Vision and Concussion Clinic-iScope, Winnipeg, MB R2M 2X9, Canada
| | - Neda Anssari
- Brain, Vision and Concussion Clinic-iScope, Winnipeg, MB R2M 2X9, Canada
| | - Xikui Wang
- Warren Center for Actuarial Studies and Research, University of Manitoba, Winnipeg, MB R3T 5V4, Canada
| | - Zahra Moussavi
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
4
|
Pagali SR, Kumar R, LeMahieu AM, Basso MR, Boeve BF, Croarkin PE, Geske JR, Hassett LC, Huston J, Kung S, Lundstrom BN, Petersen RC, St Louis EK, Welker KM, Worrell GA, Pascual-Leone A, Lapid MI. Efficacy and safety of transcranial magnetic stimulation on cognition in mild cognitive impairment, Alzheimer's disease, Alzheimer's disease-related dementias, and other cognitive disorders: a systematic review and meta-analysis. Int Psychogeriatr 2024:1-49. [PMID: 38329083 PMCID: PMC11306417 DOI: 10.1017/s1041610224000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN Systematic review, Meta-Analysis. SETTING We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.
Collapse
Affiliation(s)
- Sandeep R Pagali
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MI, USA
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MI, USA
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| | - Allison M LeMahieu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MI, USA
| | - Michael R Basso
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MI, USA
| | | | - John Huston
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MI, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | | | | | | | - Kirk M Welker
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MI, USA
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Neurology, Harvard Medical School, Cambridge, MA, USA
| | - Maria I Lapid
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MI, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| |
Collapse
|
5
|
Uehara MA, Jacobson N, Moussavi Z. How accurate are coordinate systems being used for transcranial magnetic stimulation? Front Hum Neurosci 2024; 18:1342410. [PMID: 38352721 PMCID: PMC10861715 DOI: 10.3389/fnhum.2024.1342410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
When applying transcranial magnetic stimulation (TMS) to the brain, it is desired to be as precise as possible to reach a target area in the brain. For that, neuronavigational system using individuals' MRI scans were developed to guide TMS pulses delivery. All neuronavigational systems need coordinates of the target area to guide the TMS coil. Talairach coordinate system, which uses the Talairach-Tournoux atlas, is the most common system used with TMS pulses. In this study we investigated how an average Talairach coordinate from 50 healthy individuals is close to the actual location of the hand area of the primary motor cortex to investigate if that elicit a motor response in the hand; thus, investigating the fitness and accuracy of the Talairach coordinate system. We performed this experiment on six individuals (ages 61-82). When applying TMS single pulses to hand area with the given Talairach coordinate system adjusted with the MRI of each participant, three participants had involuntary twitch and three participants had no consistent physical response, as corroborated by electromyography of the abductor pollicis brevis and first dorsal interosseous muscles at the resting motor threshold intensity. Subsequently, by trial-and-error, the hand area was successfully stimulated on those three non-responder participants. The largest deviation from the Talairach coordinates was found to be 19.5 mm, measured on the surface of the cranium, between the true hand area and the mean Talairach coordinate. This finding implies that using generalized coordinates might be misleading when choosing the optimal location for brain stimulation.
Collapse
Affiliation(s)
- Maria Anabel Uehara
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Natasha Jacobson
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Moussavi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Benussi A, Borroni B. Brain Stimulation in Alzheimer's Disease Trials. J Alzheimers Dis 2024; 101:S545-S565. [PMID: 39422933 DOI: 10.3233/jad-230535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) continues to lack definitive curative therapies, necessitating an urgent exploration of innovative approaches. This review provides a comprehensive analysis of recent clinical trials focusing on invasive and non-invasive brain stimulation techniques as potential interventions for AD. Deep brain stimulation (DBS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are evaluated for their therapeutic efficacy, safety, and applicability. DBS, though invasive, has shown promising results in mitigating cognitive decline, but concerns over surgical risks and long-term effects persist. On the other hand, non-invasive methods like rTMS, tDCS, and tACS have demonstrated potential in enhancing cognitive performance and delaying disease progression, with minimal side effects, but with varied consistency. The evidence hints towards an individualized, patient-centric approach to brain stimulation, considering factors such as disease stage, genetic traits, and stimulation parameters. The review also highlights emerging technologies and potential future directions, emphasizing the need for larger, multi-center trials to confirm preliminary findings and establish robust clinical guidelines. In conclusion, while brain stimulation techniques present a promising avenue in AD therapy, further research is imperative for more comprehensive understanding and successful clinical implementation. Through this review, we aim to catalyze the scientific discourse and stimulate further investigation into these novel interventions for AD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
7
|
Chen H, Li M, Qin Z, Yang Z, Lv T, Yao W, Hu Z, Qin R, Zhao H, Bai F. Functional network connectivity patterns predicting the efficacy of repetitive transcranial magnetic stimulation in the spectrum of Alzheimer's disease. Eur Radiol Exp 2023; 7:63. [PMID: 37872457 PMCID: PMC10593644 DOI: 10.1186/s41747-023-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is potentially effective in enhancing cognitive performance in the spectrum of Alzheimer's disease (AD). We explored the effect of rTMS-induced network reorganization and its predictive value for individual treatment response. METHODS Sixty-two amnestic mild cognitive impairment (aMCI) and AD patients were recruited. These subjects were assigned to multimodal magnetic resonance imaging scanning before and after a 4-week stimulation. Then, we investigated the neural mechanism underlying rTMS treatment based on static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) analyses. Finally, the support vector regression was used to predict the individual rTMS treatment response through these functional features at baseline. RESULTS We found that rTMS at the left angular gyrus significantly induced cognitive improvement in multiple cognitive domains. Participants after rTMS treatment exhibited significantly the increased sFNC between the right frontoparietal network (rFPN) and left frontoparietal network (lFPN) and decreased sFNC between posterior visual network and medial visual network. We revealed remarkable dFNC characteristics of brain connectivity, which was increased mainly in higher-order cognitive networks and decreased in primary networks or between primary networks and higher-order cognitive networks. dFNC characteristics in state 1 and state 4 could further predict individual higher memory improvement after rTMS treatment (state 1, R = 0.58; state 4, R = 0.54). CONCLUSION Our findings highlight that neuro-navigated rTMS could suppress primary network connections to compensate for higher-order cognitive networks. Crucially, dynamic regulation of brain networks at baseline may serve as an individualized predictor of rTMS treatment response. RELEVANCE STATEMENT Dynamic reorganization of brain networks could predict the efficacy of repetitive transcranial magnetic stimulation in the spectrum of Alzheimer's disease. KEY POINTS • rTMS at the left angular gyrus could induce cognitive improvement. • rTMS could suppress primary network connections to compensate for higher-order networks. • Dynamic reorganization of brain networks could predict individual treatment response to rTMS.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengyun Li
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiming Qin
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Tingyu Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weina Yao
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
- Geriatric Medicine Center, Affiliated Hospital of Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Huang H, Zhu Y, Liao L, Gao S, Tao Y, Fang X, Lian Y, Gao C. The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice. Brain Res Bull 2023; 202:110735. [PMID: 37586425 DOI: 10.1016/j.brainresbull.2023.110735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Intermittent theta burst stimulation (iTBS), an emerging and highly efficient paradigm of repetitive transcranial magnetic stimulation (rTMS), has been demonstrated to mitigate cognitive impairment in Alzheimer's disease. Previous clinical studies have shown that the cognitive improvement of iTBS could last several weeks after treatment. Nonetheless, it is largely uncertain how the long-term effects of iTBS treatment are sustained. To investigate whether iTBS has a long-term effect on AD-type pathologies, 6-month-old APP/PS1 mice are administrated with 30 consecutive days of iTBS treatment. After a 2-month interval, morphological alterations in the brain are examined by immunohistochemistry and immunofluorescence staining, while levels of associated proteins are assessed by Western blot at the age of 9 months. We find that iTBS treatment significantly diminishes Aβ burden in the cerebral cortex and hippocampus of APP/PS1 mice. Moreover, we observe that iTBS treatment inhibits the expression of BACE1 and elevates the level of IDE, suggesting that the reduction of Aβ load could be attributed to the inhibition of Aβ production and facilitation of Aβ degradation. Furthermore, iTBS treatment attenuates neuroinflammation, neuronal apoptosis, and synaptic loss in APP/PS1 mice. Collectively, these data indicate that 1 month of iTBS treatment ameliorates pathologies in the brain of AD mice for at least 2 months. We provide the novel evidence that iTBS may exert after-effects on AD-type pathologies via inhibition of Aβ production and facilitation of Aβ degradation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China; Department of Rehabilitation Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Lian
- Department of Preventive Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
9
|
Wei N, Liu H, Ye W, Xu S, Lu C, Dai A, Hou T, Zeng X, Wu J, Chen J. Repetitive transcranial magnetic stimulation may be superior to drug therapy in the treatment of Alzheimer's disease: A systematic review and Bayesian network meta-analysis. CNS Neurosci Ther 2023; 29:2912-2924. [PMID: 37088953 PMCID: PMC10493651 DOI: 10.1111/cns.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation therapy that is primarily used to treat a variety of neuropsychiatric conditions. Recently, previous research reports stated that rTMS have the characteristics of neurorestorative in Alzheimer's disease (AD). However, the relevant clinical research evidence has not been fully summarized. METHODS This article performed a network meta-analysis of individual participant data from eligible studies searched in PubMed, Embase, and the Cochrane Library from inception to March 31, 2022. The drug treatments involved were acetylcholinesterase inhibitors (AChEIs), N-methyl-d-aspartate (NMDA), anti-amyloid-beta (Aβ), and some new targeted therapeutic drugs. RESULTS A total of 15, 548 individuals with AD disease in 57 randomized clinical trials (RCTs) were included in this meta-analysis. The results indicated that the patients who received rTMS treatment (standard mean difference [SMD]: 0.65; 95% confidence interval [CI]: 0.22-1.07) had a better MMSE score than placebo. Treatment outcome analysis showed that, compared with multiple pharmacological interventions, rTMS acquired the greatest probability rank with the best cognitive improvement in MMSE score [the surface under the cumulative ranking curve (SUCRA) 93.3%] and ADAS-cog score (SUCRA 86.7%). At the same time, rTMS treatment had the lowest rank in the adverse events (SUCRA 24.1%) except for the placebo group (SUCRA 19.1%). CONCLUSION Compared with the current clinical drug treatment, rTMS demonstrated better cognitive function improvement and fewer adverse events in AD patients. Therefore, rTMS shows broad prospects in the treatment of Alzheimer's disease, and it is worth being widely popularized in clinic.
Collapse
Affiliation(s)
- Naili Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Haoxin Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Shengliang Xu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Changhao Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Anxiang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ting Hou
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xin Zeng
- Department of GeriatricsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeShantouChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
10
|
Petrovskaya A, Tverskoi A, Medvedeva A, Nazarova M. Is blood-brain barrier a probable mediator of non-invasive brain stimulation effects on Alzheimer's disease? Commun Biol 2023; 6:416. [PMID: 37059824 PMCID: PMC10104838 DOI: 10.1038/s42003-023-04717-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have shown multiple evidence of being able to alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in terms of their neuronal effects, while their possible non-neuronal effects, including mitigation of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover, such studies are important considering the safety issues of TMS/tDCS use in the advanced AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence of NIBS-induced BBB opening and closing in various models from in vitro to humans, and highlight its importance in AD.
Collapse
Affiliation(s)
- Aleksandra Petrovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Artem Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Angela Medvedeva
- Department of Chemistry, Rice University, Houston, TX, 77005, US
| | - Maria Nazarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| |
Collapse
|
11
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
12
|
Budak M, Bayraktaroglu Z, Hanoglu L. The effects of repetitive transcranial magnetic stimulation and aerobic exercise on cognition, balance and functional brain networks in patients with Alzheimer's disease. Cogn Neurodyn 2023; 17:39-61. [PMID: 36704634 PMCID: PMC9871139 DOI: 10.1007/s11571-022-09818-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to investigate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) and aerobic exercises (AE) in addition to the pharmacological therapy (PT) in Alzheimer's Disease (AD). Twenty-seven patients with AD aged ≥ 60 years were included in the study and divided into 3 groups (rTMS, AE and control). All groups received PT. rTMS group (n = 10) received 20 Hz rTMS over dorsolateral prefrontal cortex (dlPFC) bilaterally and AE group (n = 9) received the structured moderate-intensity AE for 5 consecutive days/week over 2 weeks. Control group (n = 8) only received PT. Cognition, balance, mobility, quality of life (QoL), and resting state functional brain activity were evaluated one week before and one week after the interventions. (ClinicalTrials.gov ID:NCT05102045). Significant improvements were found in executive functions, behavior, and QoL in the rTMS group, in balance and mobility in the AE group, and in the visual memory and behavior in the control group (p < 0.05). Significant differences were found in the behavior in favor of the rTMS group, and balance in favor of the AE group (p < 0.05). There was a significant increase in activation on middle temporal gyrus, intra calcarine, central opercular cortex, superior parietal lobule, and paracingulate cortex in Default Mode Network (DMN) in the rTMS group (p < 0.05). High-frequency rTMS over bilateral dlPFC may improve executive functions and behavior and lead to increased activation in DMN, structured moderate-intensity AE may improve balance and mobility, and PT may improve memory and behaviour compared to pretreatment in AD.
Collapse
Affiliation(s)
- Miray Budak
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physical Therapy and Rehabilitation, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Ergotherapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
13
|
Tseng PT, Chen YW, Zeng BY, Zeng BS, Hung CM, Sun CK, Cheng YS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chu CS, Suen MW, Li CT. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials. Alzheimers Res Ther 2023; 15:20. [PMID: 36698219 PMCID: PMC9875424 DOI: 10.1186/s13195-023-01164-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dementia [i.e., Alzheimer disease (AD)], the most common neurodegenerative disease, causes profound negative impacts on executive function and quality of life. Available pharmacological treatments often fail to achieve satisfactory outcomes. Noninvasive brain stimulation (NIBS) techniques, which focally modify cortical function and enhance synaptic long-term potentiation, are potentially beneficial for the cognition in patients with AD. The aim of the current network meta-analysis (NMA) was to evaluate the efficacy and safety of different NIBS interventions in patients with AD through NMA. METHODS Only randomized controlled trials (RCTs) examining NIBS interventions in patients with AD had been included. All NMA procedures were performed under the frequentist model. The primary and secondary outcomes were changes in cognitive function and quality of life, respectively. RESULTS Nineteen RCTs (639 participants) were included. The mean treatment and follow-up durations were 5.7 and 10.5 weeks, respectively. The combination of cathodal tDCS of the left dorsolateral prefrontal cortex and anodal tDCS over the right supraorbital region (c-tDCS-F3 + a-tDCS-Fp2) was associated with a significant beneficial effect on cognition compared with sham controls (standardized mean difference=2.43, 95% confidence interval=0.61-4.26, n=12 and 11). It was also associated with the greatest beneficial effect on cognition among all the investigated NIBS approaches. All the methods were well tolerated with regard to the safety profile, as reflected in the rates of adverse events or local discomfort, as well as acceptability, as indicated by dropout rate. CONCLUSIONS The present findings provide evidence of the benefits of NIBS, especially tDCS, for beneficial effect on cognition in patients with AD. However, because of few studies included, this effect was not replicated yet in the other studies. Therefore, future larger-scale and longer follow-up duration RCTs should be warranted. TRIAL REGISTRATION PROSPERO CRD42020209516. The current study had been approved by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center (TSGHIRB No. B-109-29).
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan ,grid.412036.20000 0004 0531 9758Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.412036.20000 0004 0531 9758Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan
| | - Bing-Yan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Syuan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- grid.411447.30000 0004 0637 1806Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- grid.411447.30000 0004 0637 1806Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan
| | - Brendon Stubbs
- grid.13097.3c0000 0001 2322 6764Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK ,grid.5115.00000 0001 2299 5510Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F. Carvalho
- grid.414257.10000 0004 0540 0062Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC Australia
| | - Andre R. Brunoni
- grid.11899.380000 0004 1937 0722Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da USP, São Paulo, Brazil ,grid.11899.380000 0004 1937 0722Departamento de Ciências Médicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan ,grid.411508.90000 0004 0572 9415Mind-Body Interface Laboratory (MBI-Lab), China Medical University and Hospital, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- grid.19188.390000 0004 0546 0241Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- grid.452620.7Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Pao-Yen Lin
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Sheng Chu
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.415011.00000 0004 0572 9992Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Gender Equality Education and Research Center, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ta Li
- grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.278247.c0000 0004 0604 5314Functional Neuroimaging and Brain Stimulation Lab, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan
| |
Collapse
|
14
|
Sacco L, Ceroni M, Pacifico D, Zerboni G, Rossi S, Galati S, Caverzasio S, Kaelin-Lang A, Riccitelli GC. Transcranial Magnetic Stimulation Improves Executive Functioning through Modulation of Social Cognitive Networks in Patients with Mild Cognitive Impairment: Preliminary Results. Diagnostics (Basel) 2023; 13:415. [PMID: 36766520 PMCID: PMC9914912 DOI: 10.3390/diagnostics13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Patients with mild cognitive impairment (MCI) often present impairment in executive functions (EFs). This study aimed to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on EFs in patients with MCI. (2) Methods: A prospective trial was conducted on 11 patients with MCI. Participants underwent 25 min of 20 Hz rTMS for ten days on the right temporo-parietal junction (RTPJ) and medial prefrontal cortex (MPFC). Before (T0) and after rTMS treatment (T1), global cognitive profile and EFs were investigated using the Montreal cognitive assessment (MoCA), trial making test (TMT) A and B, and frontal assessment battery (FAB). Depression symptoms were assessed using the geriatric depression scale (GDS). Statistical analysis included Wilcoxon signed-rank test. (3) Results: After treatment, patients showed a significant improvement in the MoCA EFs subtask (T0 vs. T1, p = 0.015) and TMT-B (T0 vs. T1, p = 0.028). Five MCI patients with EF impairment showed full recovery of these deficits. No significant changes in the GDS were observed. (4) Conclusions: rTMS stimulation over the TPJ and MPFC induced significant short-term improvements in EFs in MCI patients. These findings suggest that the TPJ and MPFC may be involved in the attention-executive skills to redirect attention toward behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Leonardo Sacco
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Martino Ceroni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Deborah Pacifico
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Giorgia Zerboni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Stefania Rossi
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Serena Caverzasio
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Gianna C. Riccitelli
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
15
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
16
|
Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin Neurophysiol 2022; 144:23-40. [PMID: 36215904 DOI: 10.1016/j.clinph.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Alzheimer's disease dementia (AD) and its preclinical stage, mild cognitive impairment (MCI), are critical issues confronting the aging society. Non-invasive brain stimulation (NIBS) techniques have the potential to be effective tools for enhancing cognitive functioning. The main objective of our meta-analysis was to quantify and update the status of the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation (tDCS) when applied in AD and MCI. METHODS The systematic literature search was conducted in PubMed and Web of Science according to PRISMA statement. RESULTS Pooled effect sizes (Hedges' g) from 32 studies were analyzed using random effect models. We found both, rTMS and tDCS to have significant immediate cognition-enhancing effect in AD with rTMS inducing also beneficial long-term effects. We found no evidence for synergistic effect of cognitive training with NIBS. CONCLUSIONS In AD a clinical recommendation can be made for NEURO-ADTM system and for high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) as probably effective protocols (B-level of evidence) and for anodal tDCS over the left DLPFC as a possibly effective. SIGNIFICANCE According to scientific literature, NIBS may be an effective method for improving cognition in AD and possibly in MCI.
Collapse
|
17
|
Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Minei M, Pellicciari MC, Motta C, D’Acunto A, Porrazzini F, Maiella M, Ferrari C, Caltagirone C, Santarnecchi E, Bozzali M, Martorana A. Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial. Brain 2022; 145:3776-3786. [PMID: 36281767 PMCID: PMC9679166 DOI: 10.1093/brain/awac285] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 08/01/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is emerging as a non-invasive therapeutic strategy in the battle against Alzheimer's disease. Alzheimer's disease patients primarily show alterations of the default mode network for which the precuneus is a key node. Here, we hypothesized that targeting the precuneus with TMS represents a promising strategy to slow down cognitive and functional decline in Alzheimer's disease patients. We performed a randomized, double-blind, sham-controlled, phase 2, 24-week trial to determine the safety and efficacy of precuneus stimulation in patients with mild-to-moderate Alzheimer's disease. Fifty Alzheimer's disease patients were randomly assigned in a 1:1 ratio to either receive precuneus or sham rTMS (mean age 73.7 years; 52% female). The trial included a 24-week treatment, with a 2-week intensive course in which rTMS (or sham) was applied daily five times per week, followed by a 22-week maintenance phase in which stimulation was applied once weekly. The Clinical Dementia Rating Scale-Sum of Boxes was selected as the primary outcome measure, in which post-treatment scores were compared to baseline. Secondary outcomes included score changes in the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Moreover, single-pulse TMS in combination with EEG was used to assess neurophysiological changes in precuneus cortical excitability and oscillatory activity. Our findings show that patients that received precuneus repetitive magnetic stimulation presented a stable performance of the Clinical Dementia Rating Scale-Sum of Boxes score, whereas patients treated with sham showed a worsening of their score. Compared with the sham stimulation, patients in the precuneus stimulation group also showed also significantly better performances for the secondary outcome measures, including the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Neurophysiological results showed that precuneus cortical excitability remained unchanged after 24 weeks in the precuneus stimulation group, whereas it was significantly reduced in the sham group. Finally, we found an enhancement of local gamma oscillations in the group treated with precuneus stimulation but not in patients treated with sham. We conclude that 24 weeks of precuneus rTMS may slow down cognitive and functional decline in Alzheimer's disease. Repetitive TMS targeting the default mode network could represent a novel therapeutic approach in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Giacomo Koch
- Correspondence to: Prof. Giacomo Koch, MD, PhD Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy E-mail:
| | - Elias Paolo Casula
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Ilaria Borghi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Martina Assogna
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Marilena Minei
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | | | - Caterina Motta
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Alessia D’Acunto
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Francesco Porrazzini
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Michele Maiella
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation program, Gordon Center for Medical Imaging, Massachussets General Hospital; Harvard Medical School, 02114, Boston, MA, USA
| | - Marco Bozzali
- Rita Levi Montalcini Department of Neuroscience, University of Torino, 10124, Turin, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, UK
| | - Alessandro Martorana
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
18
|
Repetitive TMS applied to the precuneus stabilizes cognitive status in Alzheimer’s disease. Brain 2022; 145:3730-3732. [DOI: 10.1093/brain/awac322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
This scientific commentary refers to ‘Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial’ by Koch et al. (https://doi.org/10.1093/brain/awac285).
Collapse
|
19
|
Zhang X, Ren H, Pei Z, Lian C, Su X, Lan X, Chen C, Lei Y, Li B, Guo Y. Dual-targeted repetitive transcranial magnetic stimulation modulates brain functional network connectivity to improve cognition in mild cognitive impairment patients. Front Physiol 2022; 13:1066290. [PMID: 36467674 PMCID: PMC9716076 DOI: 10.3389/fphys.2022.1066290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 10/15/2023] Open
Abstract
Background: Mild cognitive impairment (MCI) is a condition between normal aging and dementia; nearly 10-15% of MCI patients develop dementia annually. There are no effective interventions for MCI progression. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has attempted to improve the overall cognitive function of MCI patients. However, it does not affect episodic memory improvement. Methods: In this study, we engaged 15 clinically diagnosed MCI patients and normal controls to explore the effect of dual-targeted rTMS on progressing cognitive function, particularly episodic memory in MCI patients. Resting-state EEG recordings and neuropsychological assessments were conducted before and after the intervention. EEG features were extracted using an adaptive algorithm to calculate functional connectivity alterations in relevant brain regions and the mechanisms of altered brain functional networks in response to dual-target rTMS. Results: The study revealed that the functional brain connectivity between the right posterior cingulate gyrus (PCC) and the right dorsal caudate nucleus (DC) was significantly reduced in MCI patients compared to normal controls (p < 0.001). Dual-target rTMS increased the strength of the reduced functional connectivity (p < 0.001), which was related to cognitive enhancement (p < 0.05). Conclusion: This study provides a new stimulation protocol for rTMS intervention. Improving the functional connectivity of the right PCC to the right DC is a possible mechanism by which rTMS improves overall cognitive and memory function in MCI patients.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - Chongyuan Lian
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - XiaoLin Su
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - Chanjuan Chen
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - YuHua Lei
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Baima Li
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| |
Collapse
|
20
|
van den Bos MAJ, Menon P, Vucic S. Cortical hyperexcitability and plasticity in Alzheimer's disease: developments in understanding and management. Expert Rev Neurother 2022; 22:981-993. [PMID: 36683586 DOI: 10.1080/14737175.2022.2170784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that provides important insights into Alzheimer's Disease (AD). A significant body of work utilizing TMS techniques has explored the pathophysiological relevance of cortical hyperexcitability and plasticity in AD and their modulation in novel therapies. AREAS COVERED This review examines the technique of TMS, the use of TMS to examine specific features of cortical excitability and the use of TMS techniques to modulate cortical function. A search was performed utilizing the PubMed database to identify key studies utilizing TMS to examine cortical hyperexcitability and plasticity in Alzheimer's dementia. We then translate this understanding to the study of Alzheimer's disease pathophysiology, examining the underlying neurophysiologic links contributing to these twin signatures, cortical hyperexcitability and abnormal plasticity, in the cortical dysfunction characterizing AD. Finally, we examine utilization of TMS excitability to guide targeted therapies and, through the use of repetitive TMS (rTMS), modulate cortical plasticity. EXPERT OPINION The examination of cortical hyperexcitability and plasticity with TMS has potential to optimize and expand the window of therapeutic interventions in AD, though remains at relatively early stage of development.
Collapse
Affiliation(s)
- Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
21
|
Saitoh Y, Hosomi K, Mano T, Takeya Y, Tagami S, Mori N, Matsugi A, Jono Y, Harada H, Yamada T, Miyake A. Randomized, sham-controlled, clinical trial of repetitive transcranial magnetic stimulation for patients with Alzheimer's dementia in Japan. Front Aging Neurosci 2022; 14:993306. [PMID: 36313021 PMCID: PMC9606646 DOI: 10.3389/fnagi.2022.993306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Several medications have been applied to Alzheimer's dementia patients (AD) but their efficacies have been insufficient. The efficacy and safety of 4 weeks of repetitive transcranial magnetic stimulation (rTMS) in Japanese AD were evaluated in this exploratory clinical trial. Methods Forty-two patients, aged 60-93 years (average, 76.4 years), who were taking medication (> 6 months) and had Mini-Mental State Examination (MMSE) scores ≤ 25 and Clinical Dementia Rating Scale scores (CDR-J) of 1 or 2, were enrolled in this single-center, prospective, randomized, three-arm study [i.e., 120% resting motor threshold (120% RMT), 90% RMT for the bilateral dorsolateral prefrontal cortex, and Sham]. Alzheimer's Disease Assessment Scale-Japanese Cognitive (ADAS-J cog), Montreal Cognitive Assessment (MoCA-J), Clinical Global Impression of Change (CGIC), Neuropsychiatric inventory (NPI), and EuroQOL 5 Dimensions 5-Level (EQ-5D-5L) were administered. The primary endpoint was the mean change from baseline in the MMSE score (week 4). An active rTMS session involved applying 15 trains bilaterally (40 pulses/train at 10 Hz; intertrain interval, 26 s). Participants received ≥ 8 interventions within the first 2 weeks and at least one intervention weekly in the 3rd and 4th weeks. Full Analysis set (FAS) included 40 patients [120% RMT (n = 15), 90% RMT (n = 13), and Sham (n = 12)]. Results In the FAS, MMSE, ADAS-J cog, MoCA-J, CDR-J, CGIC, NPI, and EQ-5D-5L scores between the three groups were not significantly different. Two patients were erroneously switched between the 120% RMT and 90% RMT groups, therefore, "as treated" patients were mainly analyzed. Post hoc analysis revealed significant treatment efficacy in participants with MMSE scores ≥ 15, favoring the 120% RMT group over the Sham group. Responder analysis revealed 41.7% of the 120% RMT group had a ≥ 3-point improvement in the ADAS-J cog versus 0% in the Sham group (Fisher's exact test, p = 0.045). The MoCA-J showed the same tendency but was not significant. Efficacy disappeared in week 20, based on the ADAS-cog and MoCA-J. No intervention-related serious adverse events occurred. Conclusion This paper is the first report of using rTMS in Japanese AD patients. The treatment seems safe and moderate-mild stage AD should be target population of pivotal clinical trial with 120% RMT rTMS.
Collapse
Affiliation(s)
- Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoo Mano
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Tagami
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Yasutomo Jono
- Faculty of Health Sciences, Naragakuen University, Nara, Japan
| | - Hideaki Harada
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Akimitsu Miyake
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
22
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Menardi A, Dotti L, Ambrosini E, Vallesi A. Transcranial magnetic stimulation treatment in Alzheimer's disease: a meta-analysis of its efficacy as a function of protocol characteristics and degree of personalization. J Neurol 2022; 269:5283-5301. [PMID: 35781536 PMCID: PMC9468063 DOI: 10.1007/s00415-022-11236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative disorder. Although our knowledge on the causes of AD remains limited and no curative treatments are available, several interventions have been proposed in trying to improve patients' symptomatology. Among those, transcranial magnetic stimulation (TMS) has been shown a promising, safe and noninvasive intervention to improve global cognitive functioning. Nevertheless, we currently lack agreement between research studies on the optimal stimulation protocol yielding the highest efficacy in these patients. To answer this query, we conducted a systematic literature search in PubMed, PsycINFO and Scopus databases and meta-analysis of studies published in the last 10 years (2010-2021) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Differently from prior published meta-analytic work, we investigated whether protocols that considered participants-specific neuroimaging scans for the selection of individualized stimulation targets held more successful outcomes compared to those relying on a generalized targeting selection criteria. We then compared the effect sizes of subsets of studies based on additional protocol characteristics (frequency, duration of intervention, number of stimulation sites, use of concomitant cognitive training and patients' educational level). Our results confirm TMS efficacy in improving global cognitive functioning in mild-to-moderate AD patients, but also highlight the flaws of current protocols characteristics, including a possible lack of sufficient personalization in stimulation protocols.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Lisa Dotti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Ettore Ambrosini
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
24
|
Zhang J, Hu S, Liu Y, Lyu H, Huang X, Li X, Chen J, Hu Q, Xu J, Yu H. Acupuncture Treatment Modulate Regional Homogeneity of Dorsal Lateral Prefrontal Cortex in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 90:173-184. [DOI: 10.3233/jad-220592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Although acupuncture is widely used to improve cognitive and memory in the amnesic mild cognitive impairment (aMCI) patients with impressive effectiveness, its neural mechanism remains largely unclear. Objective: We aimed to explore functional magnetic resonance imaging (fMRI) mechanism of acupuncture for aMCI. Methods: A randomized, controlled, single-blind research was performed. A total of 46 aMCI patients were randomly assigned into verum and sham acupuncture group, who received a total of 24 times treatments (3 times/week, 8 weeks). Clinical evaluation and fMRI scanning were performed at baseline and after treatment for all aMCI patients. The interaction effects and inter-group effects of regional homogeneity (ReHo) were performed using mixed effect models, and the correlations between clinical improvement and neuroimaging changes before and after verum acupuncture treatment were analyzed using Pearson correlations. Results: As a result, interaction effects showed increased ReHo value in left dorsal lateral prefrontal cortex (DLPFC), increased functional connectivity between left DLPFC and left precuneus, and decreased functional connectivity between left DLPFC and left inferior temporal gyrus after verum acupuncture but inversely after sham acupuncture in the aMCI. Condition effects showed increased ReHo in right lingual gyrus, and bilateral post-central gyrus after verum and sham acupuncture in the aMCI. In addition, the changed Montreal Cognitive Assessment scores in verum acupuncture group were significantly correlated with changed ReHo values in left DLPFC. Conclusion: Together, our findings further confirmed that acupuncture could be used as a promising complementary therapy for aMCI by modulating function of left DLPFC to improve cognitive symptoms.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shan Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Hanqing Lyu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xingxian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinbei Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianxiang Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Contemporary Clinical Acupuncture Medicine, Shenzhen, China
| |
Collapse
|
25
|
Wei L, Zhang Y, Wang J, Xu L, Yang K, Lv X, Zhu Z, Gong Q, Hu W, Li X, Qian M, Shen Y, Chen W. Parietal-hippocampal rTMS improves cognitive function in Alzheimer's disease and increases dynamic functional connectivity of default mode network. Psychiatry Res 2022; 315:114721. [PMID: 35839637 DOI: 10.1016/j.psychres.2022.114721] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Parietal-hippocampal repetitive transcranial magnetic stimulation (rTMS) improves cognitive function in Alzheimer's disease (AD), however, the underlying therapeutic mechanism has not been elucidated. A double-blind, randomized, sham-controlled parietal-hippocampal rTMS trial (five sessions/week for a total of 10 sessions) of mild-to-moderate AD patients was conducted in the study. High-frequency rTMS was applied to a subject-specific left lateral parietal region with the highest functional connectivity with the hippocampus based on resting-state fMRI. A multimodal MRI scan and a complete neuropsychological battery of tests were conducted at baseline, immediately after the intervention and 12-week follow-up after the rTMS treatment. Compared to sham treatment (n = 27), patients undergoing active rTMS treatment (n = 29) showed higher Mini Mental State Examination (MMSE) score and dynamic functional connectivity (dFC) magnitude of the default mode network (DMN) after two weeks of rTMS treatment, but not at 12-week follow-up. A significant positive correlation was observed between changes in MMSE and changes in the dFC magnitude of DMN in patients who underwent active-rTMS treatment, but not in those who received sham-rTMS treatment. The findings of the current study indicate that fMRI-guided rTMS treatment improves cognitive function of AD patients in the short term, and DMN functional connectivity contributes to therapeutic effectiveness of rTMS.
Collapse
Affiliation(s)
- Lili Wei
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Yingchun Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Jintao Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Luoyi Xu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Kehua Yang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Xinghui Lv
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Zhenwei Zhu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Qian Gong
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Weiming Hu
- Third People's Hospital of Quzhou, Quzhou, Zhejiang 324003, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Mincai Qian
- Third People's Hospital of Huzhou, Huzhou, Zhejiang 313002, China.
| | - Yuedi Shen
- Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China; Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou 310016, China.
| |
Collapse
|
26
|
Somaa FA, de Graaf TA, Sack AT. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front Neurol 2022; 13:793253. [PMID: 35669870 PMCID: PMC9163300 DOI: 10.3389/fneur.2022.793253] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.
Collapse
Affiliation(s)
- Fahad A. Somaa
- Department of Occupational Therapy, Faculty of Medical Rehabilitation, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
27
|
Esposito S, Trojsi F, Cirillo G, de Stefano M, Di Nardo F, Siciliano M, Caiazzo G, Ippolito D, Ricciardi D, Buonanno D, Atripaldi D, Pepe R, D’Alvano G, Mangione A, Bonavita S, Santangelo G, Iavarone A, Cirillo M, Esposito F, Sorbi S, Tedeschi G. Repetitive Transcranial Magnetic Stimulation (rTMS) of Dorsolateral Prefrontal Cortex May Influence Semantic Fluency and Functional Connectivity in Fronto-Parietal Network in Mild Cognitive Impairment (MCI). Biomedicines 2022; 10:biomedicines10050994. [PMID: 35625731 PMCID: PMC9138229 DOI: 10.3390/biomedicines10050994] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique that is increasingly used as a nonpharmacological intervention against cognitive impairment in Alzheimer’s disease (AD) and other dementias. Although rTMS has been shown to modify cognitive performances and brain functional connectivity (FC) in many neurological and psychiatric diseases, there is still no evidence about the possible relationship between executive performances and resting-state brain FC following rTMS in patients with mild cognitive impairment (MCI). In this preliminary study, we aimed to evaluate the possible effects of rTMS of the bilateral dorsolateral prefrontal cortex (DLPFC) in 27 MCI patients randomly assigned to two groups: one group received high-frequency (10 Hz) rTMS (HF-rTMS) for four weeks (n = 11), and the other received sham stimulation (n = 16). Cognitive and psycho-behavior scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status, Beck Depression Inventory-II, Beck Anxiety Inventory, Apathy Evaluation Scale, and brain FC, evaluated by independent component analysis of resting state functional MRI (RS-fMRI) networks, together with the assessment of regional atrophy measures, evaluated by whole-brain voxel-based morphometry (VBM), were measured at baseline, after five weeks, and six months after rTMS stimulation. Our results showed significantly increased semantic fluency (p = 0.026) and visuo-spatial (p = 0.014) performances and increased FC within the salience network (p ≤ 0.05, cluster-level corrected) at the short-term timepoint, and increased FC within the left fronto-parietal network (p ≤ 0.05, cluster-level corrected) at the long-term timepoint, in the treated group but not in the sham group. Conversely, regional atrophy measures did not show significant longitudinal changes between the two groups across six months. Our preliminary findings suggest that targeting DLPFC by rTMS application may lead to a significant long-term increase in FC in MCI patients in a RS network associated with executive functions, and this process might counteract the progressive cortical dysfunction affecting this domain.
Collapse
Affiliation(s)
- Sabrina Esposito
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Francesca Trojsi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
- Correspondence: ; Tel.: +39-08-1566-5659
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Manuela de Stefano
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Domenico Ippolito
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Dario Ricciardi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Daniela Buonanno
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Danilo Atripaldi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Roberta Pepe
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Giulia D’Alvano
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Antonella Mangione
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Alessandro Iavarone
- Neurological Unit, CTO Hospital, AORN Ospedali Dei Colli, 80131 Naples, Italy;
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy;
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50134 Florence, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| |
Collapse
|
28
|
Sanches C, Amzallag F, Dubois B, Lévy R, Truong DQ, Bikson M, Teichmann M, Valero-Cabré A. Evaluation of the effect of transcranial direct current stimulation on language impairments in the behavioural variant of frontotemporal dementia. Brain Commun 2022; 4:fcac050. [PMID: 35356034 PMCID: PMC8963324 DOI: 10.1093/braincomms/fcac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
The behavioural variant of frontotemporal dementia is a neurodegenerative disease characterized by bilateral atrophy of the prefrontal cortex, gradual deterioration of behavioural and executive capacities, a breakdown of language initiation and impaired search mechanisms in the lexicon. To date, only a few studies have analysed the modulation of language deficits in the behavioural variant of frontotemporal dementia patients with transcranial direct current stimulation, yet with inconsistent results. Our goal was to assess the impact on language performance of a single session of transcranial direct current stimulation on patients with the behavioural variant of frontotemporal dementia. Using a sham-controlled double-blind crossover design in a cohort of behavioural frontotemporal dementia patients (n = 12), we explored the impact on language performance of a single transcranial direct current stimulation session delivering anodal or cathodal transcranial direct current stimulation, over the left and right dorsolateral prefrontal cortex, compared with sham stimulation. A Letter fluency and a Picture naming task were performed prior and following transcranial direct current stimulation, to assess modulatory effects on language. Behavioural frontotemporal dementia patients were impaired in all evaluation tasks at baseline compared with healthy controls. Computational finite element method (FEM) models of cortical field distribution corroborated expected impacts of left-anodal and right-cathodal transcranial direct current stimulation over the dorsolateral prefrontal cortex and showed lower radial field strength in case of atrophy. However, none of the two tasks showed statistically significant evidence of language improvement caused by active transcranial direct current stimulation compared with sham. Our findings do not argue in favour of pre-therapeutic effects and suggest that stimulation strategies evaluating the modulatory role of transcranial direct current stimulation in the behavioural variant of frontotemporal dementia must carefully weigh the influence of symptom severity and cortical atrophy affecting prefrontal regions to ensure clinical success.
Collapse
Affiliation(s)
- Clara Sanches
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
| | - Fanny Amzallag
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
| | - Bruno Dubois
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
- Department of Neurology, National Reference Center for « PPA and rare dementias », Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Richard Lévy
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
- Department of Neurology, National Reference Center for « PPA and rare dementias », Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Dennis Q. Truong
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of City University of New York, New York, NY, USA
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of City University of New York, New York, NY, USA
| | - Marc Teichmann
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
- Department of Neurology, National Reference Center for « PPA and rare dementias », Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - Antoni Valero-Cabré
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM 1127, Sorbonne Université, Paris, France
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, USA
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| |
Collapse
|
29
|
Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Res Rev 2022; 75:101555. [PMID: 34973457 PMCID: PMC8858588 DOI: 10.1016/j.arr.2021.101555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Noninvasive brain stimulation techniques (NiBS) have gathered substantial interest in the study of dementia, considered their possible role in help defining diagnostic biomarkers of altered neural activity for early disease detection and monitoring of its pathophysiological course, as well as for their therapeutic potential of boosting residual cognitive functions. Nevertheless, current approaches suffer from some limitations. In this study, we review and discuss experimental NiBS applications that might help improve the efficacy of future NiBS uses in Alzheimer's Disease (AD), including perturbation-based biomarkers for early diagnosis and disease tracking, solutions to enhance synchronization of oscillatory electroencephalographic activity across brain networks, enhancement of sleep-related memory consolidation, image-guided stimulation for connectome control, protocols targeting interneuron pathology and protein clearance, and finally hybrid-brain models for in-silico modeling of AD pathology and personalized target selection. The present work aims to stress the importance of multidisciplinary, translational, model-driven interventions for precision medicine approaches in AD.
Collapse
|
30
|
Lithgow BJ, Dastgheib Z, Moussavi Z. Baseline Prediction of rTMS efficacy in Alzheimer patients. Psychiatry Res 2022; 308:114348. [PMID: 34952254 DOI: 10.1016/j.psychres.2021.114348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) with extensive 2-6-week protocols are applied to improve cognition and/or slow the cognitive decline seen in Alzheimer's Disease (AD). To date, there are no means to predict the response of a patient to rTMS treatment at baseline. Electrovestibulography (EVestG) biomarkers can be used to predict, at baseline, the efficacy of rTMS when applied to AD individuals. In a population of 27 AD patients (8 with significant cerebrovascular symptomatology, labelled ADcvd) EVestG signals were measured before and after rTMS treatment, and then compared with 16 age-matched healthy controls. MoCA was measured at baseline, whilst ADAS-Cog was the primary outcome measure. AD severity and comorbid cerebrovascular disease were treated as covariates. Using ADAS-Cog total score change, 13/27 AD/ADcvd patients improved with rTMS and 14/27 showed no-improvement. Leave-one-out-cross-validated linear-discriminant-analysis using two EVestG features yielded a blind accuracy of 75% for separating the improved and non-improved populations. Three-way separation of improved/non-improved/control accuracy was 91.9% using MoCA (67% alone) and one EVestG feature (66% alone). AD severity affects the rTMS treatment efficacy. The effect of existing significant cerebrovascular symptomatology on the efficacy of rTMS treatment remains unresolved. Baseline EVestG features can be predictive of the efficacy of rTMS treatment.
Collapse
Affiliation(s)
- Brian J Lithgow
- Diagnostic and Neurosignal Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Manitoba, Canada; Monash Alfred Psychiatry Research Centre, Victoria, Australia.
| | - Zeinab Dastgheib
- Diagnostic and Neurosignal Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Manitoba, Canada
| | - Zahra Moussavi
- Diagnostic and Neurosignal Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Manitoba, Canada
| |
Collapse
|
31
|
Koch G, Spampinato D. Alzheimer disease and neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:473-479. [PMID: 35034755 DOI: 10.1016/b978-0-12-819410-2.00027-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is considered the most harmful form of dementia in the elderly population. At present, there are no effective treatments and this is likely due to the incomplete understanding of the pathophysiology. Recent data indicate that synaptic dysfunction could be a central element of AD pathophysiology. It was found that a synaptic breakdown is an early event that heralds neuronal degeneration. Transcranial magnetic stimulation (TMS) has been recently introduced as a novel approach to identify the early signatures of synaptic dysfunction characterizing AD pathophysiology. In this chapter, we review the new neurophysiologic signatures of AD that have been emphasized by TMS studies. We show how TMS measurement of neuroplasticity identified long-term potentiation (LTP)-like cortical plasticity as a key element of AD synaptic dysfunction. These measurements are useful to increase the accuracy of differential diagnosis, predict disease progression, and anticipate response to therapy. Moreover, enhancing neuroplasticity holds as a promising therapeutic approach to improve cognition in AD. In recent years, studies showed treatments with multiple sessions of rTMS can influence cognition in people with neurodegenerative diseases. In the second part of this chapter, we also consider novel therapeutic approaches based on the clinical use of rTMS.
Collapse
Affiliation(s)
- Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Danny Spampinato
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
32
|
Therapeutic Application of rTMS in Atypical Parkinsonian Disorders. Behav Neurol 2022; 2021:3419907. [PMID: 34976231 PMCID: PMC8718319 DOI: 10.1155/2021/3419907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
The terms atypical parkinsonian disorders (APDs) and Parkinson plus syndromes are mainly used to describe the four major entities of sporadic neuronal multisystem degeneration: progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and dementia with Lewy bodies (LBD). APDs are characterized by a variety of symptoms and a lack of disease modifying therapies; their treatment thus remains mainly symptomatic. Brain stimulation via repetitive transcranial magnetic stimulation (rTMS) is a safe and noninvasive intervention using a magnetic coil, and it is considered an alternative therapy in various neuropsychiatric pathologies. In this paper, we review the available studies that investigate the efficacy of rTMS in the treatment of these APDs and Parkinson plus syndromes. Τhe majority of the studies have shown beneficial effects on motor and nonmotor symptoms, but research is still at a preliminary phase, with large, double-blind studies lacking in the literature.
Collapse
|
33
|
Transcranial magnetic stimulation for sleep disorders in Alzheimer's disease: A double-blind, randomized, and sham-controlled pilot study. Neurosci Lett 2022; 766:136337. [PMID: 34762980 DOI: 10.1016/j.neulet.2021.136337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sleep disorders are commonly comorbid with Alzheimer's disease (AD), And these disorders interfere with each other in many aspects. To date, pharmacological treatments for sleep disorders are still limited, and studies investigating repetitive transcranial magnetic stimulation (rTMS) for sleep disorders in AD are still lacking. METHOD A single-center, randomized, double-blind, parallel-arm, and sham-controlled pilot study was conducted in AD patients with sleep disorders. Seventy subjects were randomly divided into the following two groups: the sham group (SG) and the intervention group (IG). We evaluated sleep changes using the Pittsburgh Sleep Quality Index (PSQI) before and after the intervention. We also assessed the patients' cognitive function by the Alzheimer's Disease Assessment Scale-Cognitive section (ADAS-Cog). The intervention period was four weeks, and the patients were followed up in the 8th week to test the persistence of the effect of the rTMS intervention. RESULT Significant differences in the PSQI scores were found between the SG and IG at the end of the 4-week intervention (P = 0.001) and the 8-week follow-up (P < 0.001). There was also significant improvement in ADAS-Cog scores (4 weeks: P = 0.048, 8 weeks: P = 0.038). Activities of daily living (ADL) did not significantly differ between the SG and IG. CONCLUSION rTMS can effectively ameliorate sleep disorders in AD patients.
Collapse
|
34
|
Cheng J, Fairchild JK, McNerney MW, Noda A, Ashford JW, Suppes T, Chao SZ, Taylor J, Rosen AC, Durazzo TC, Lazzeroni LC, Yesavage J. Repetitive Transcranial Magnetic Stimulation as a Treatment for Veterans with Cognitive Impairment and Multiple Comorbidities. J Alzheimers Dis 2022; 85:1593-1600. [PMID: 34958013 PMCID: PMC10629368 DOI: 10.3233/jad-210349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite decades of research efforts, current treatments for Alzheimer's disease (AD) are of limited effectiveness and do not halt the progression of the disease and associated cognitive decline. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) may improve cognition. OBJECTIVE We conducted a pilot study to investigate the effect of rTMS on cognitive function in Veterans with numerous medical comorbidities. METHODS Participants underwent 20 sessions, over the course of approximately 4 weeks, of 10 Hz rTMS at the left dorsolateral prefrontal cortex with intensity of 120% resting motor threshold. Outcome measures including memory, language, verbal fluency, and executive functions were acquired at baseline, end of treatment, and 4 months after the last rTMS session. Twenty-six Veterans completed the study (13 in the active rTMS group, 13 in the sham rTMS group). RESULTS The study protocol was well-tolerated. Active, compared to sham, rTMS showed improved auditory-verbal memory at the end of treatment and at 4-month follow-up. However, the active rTMS group demonstrated a trend in decreased semantic verbal fluency at the end of treatment and at 4-month follow up. CONCLUSION These preliminary results show rTMS is safe in general in this elderly Veteran population with multiple co-morbidities. Patients in the sham group showed an expected, slight decline in the California Verbal Learning Test scores over the course of the study, whereas the active treatment group showed a slight improvement at the 4-month post-treatment follow up. These effects need to be confirmed by studies of larger sample sizes.
Collapse
Affiliation(s)
- Jauhtai Cheng
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - J Kaci Fairchild
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - M Windy McNerney
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Art Noda
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - J Wesson Ashford
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Trisha Suppes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Steven Z Chao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joy Taylor
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Allyson C Rosen
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Timothy C Durazzo
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Jerome Yesavage
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
35
|
Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder Comorbid with Huntington’s Disease: A Case Report. NEUROSCI 2021. [DOI: 10.3390/neurosci2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare genetic disorder resulting in progressive neurodegeneration leading to motor, cognitive and psychiatric symptoms. A high percentage of HD patients suffer from comorbid major depressive disorder (MDD). We are not aware of any literature on the use of repetitive transcranial magnetic stimulation (rTMS) for treating comorbid MDD in HD. We present the case of a 57-year-old man suffering from HD in which comorbid MDD was successfully treated with rTMS. Further work is required to better characterize the safety, tolerability and effectiveness of rTMS to treat comorbid MDD in HD.
Collapse
|
36
|
Zhang X, Lan X, Chen C, Ren H, Guo Y. Effects of Repetitive Transcranial Magnetic Stimulation in Patients With Mild Cognitive Impairment: A Meta-Analysis of Randomized Controlled Trials. Front Hum Neurosci 2021; 15:723715. [PMID: 34764859 PMCID: PMC8576192 DOI: 10.3389/fnhum.2021.723715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Mild cognitive impairment (MCI) is an intermediary state between normal aging and dementia. It has a high risk of progression in patients with Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to improve cognitive deficits in patients with MCI and AD. Although previous meta-analyses included studies carried on patients with MCI and AD, few studies have analyzed patients with MCI independently. This meta-analysis aimed to evaluate the effects and safety of rTMS on cognition function in patients with MCI and factors that may influence such effects. Methods: Data used in this study were searched and screened from different databases, including PubMed, Web of Science, Embase, the Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Chinese Technical Periodicals (VIP), Wanfang Database, and China BioMedical Literature Database (SinoMed). The retrieved studies were carefully reviewed, data were extracted, and the quality of data was assessed. Results: A total of 12 studies involving 329 patients with MCI were included in the present meta-analysis. The analyses results revealed that rTMS improved cognitive function [standardized mean difference (SMD) = 0.83, 95% confidence interval (CI) = 0.44-1.22, p = 0.0009] and memory function (SMD = 0.73, 95% CI = 0.48-0.97, p < 0.00001) in the MCI + rTMS active group when compared to the sham stimulation group. The showed that: (1) cognitive improvement was more pronounced under high-frequency rTMS stimulation of multiple sites, such as the bilateral dorsolateral prefrontal cortex and (2) more than 10 rTMS stimulation sessions produced higher improvement on cognition function in patients with MCI. Conclusions: This study shows that rTMS can improve cognitive function in patients with MCI, especially when applied at high frequency, multi-site, and for a prolonged period. However, further studies are required to validate these findings and explore more effective stimulation protocols and targets. Systematic Review Registration: [http://www.crd.york.ac.uk/PROSPERO/], identifier: CRD 42021238708.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Chanjuan Chen
- Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Huixia Ren
- Department of Neurology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
37
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
38
|
Phipps CJ, Murman DL, Warren DE. Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities. Brain Sci 2021; 11:1283. [PMID: 34679348 PMCID: PMC8533697 DOI: 10.3390/brainsci11101283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Human memory systems are imperfect recording devices that are affected by age and disease, but recent findings suggest that the functionality of these systems may be modifiable through interventions using non-invasive brain stimulation such as repetitive transcranial magnetic stimulation (rTMS). The translational potential of these rTMS interventions is clear: memory problems are the most common cognitive complaint associated with healthy aging, while pathological conditions such as Alzheimer's disease are often associated with severe deficits in memory. Therapies to improve memory or treat memory loss could enhance independence while reducing costs for public health systems. Despite this promise, several important factors limit the generalizability and translational potential of rTMS interventions for memory. Heterogeneity of protocol design, rTMS parameters, and outcome measures present significant challenges to interpretation and reproducibility. However, recent advances in cognitive neuroscience, including rTMS approaches and recent insights regarding functional brain networks, may offer methodological tools necessary to design new interventional studies with enhanced experimental rigor, improved reproducibility, and greater likelihood of successful translation to clinical settings. In this review, we first discuss the current state of the literature on memory modulation with rTMS, then offer a commentary on developments in cognitive neuroscience that are relevant to rTMS interventions, and finally close by offering several recommendations for the design of future investigations using rTMS to modulate human memory performance.
Collapse
Affiliation(s)
| | | | - David E. Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.J.P.); (D.L.M.)
| |
Collapse
|
39
|
Xie Y, Li Y, Nie L, Zhang W, Ke Z, Ku Y. Cognitive Enhancement of Repetitive Transcranial Magnetic Stimulation in Patients With Mild Cognitive Impairment and Early Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Cell Dev Biol 2021; 9:734046. [PMID: 34568342 PMCID: PMC8461243 DOI: 10.3389/fcell.2021.734046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has been considered as a potentially effective treatment for the cognitive impairment in patients with mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). However, the effectiveness of this therapy is still under debate due to the variety of rTMS parameters and individual differences including distinctive stages of AD in the previous studies. The current meta-analysis is aiming to assess the cognitive enhancement of rTMS treatment on patients of MCI and early AD. Three datasets (PubMed, Web of Science and CKNI) were searched with relative terms and finally twelve studies with 438 participants (231 in the rTMS group and 207 in the control group) in thirteen randomized, double-blind and controlled trials were included. Random effects analysis revealed that rTMS stimulation significantly introduced cognitive benefits in patients of MCI and early AD compared with the control group (mean effect size, 1.17; 95% CI, 0.76 - 1.57). Most settings of rTMS parameters (frequency, session number, stimulation site number) significantly enhanced global cognitive function, and the results revealed that protocols with 10 Hz repetition frequency and DLPFC as the stimulation site for 20 sessions can already be able to produce cognitive improvement. The cognitive enhancement of rTMS could last for one month after the end of treatment and patients with MCI were likely to benefit more from the rTMS stimulation. Our meta-analysis added important evidence to the cognitive enhancement of rTMS in patients with MCI and early AD and discussed potential underlying mechanisms about the effect induced by rTMS.
Collapse
Affiliation(s)
- Ye Xie
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Nie
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Wanting Zhang
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Zijun Ke
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Ku
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
40
|
Weiler M, Moreno-Castilla P, Starnes HM, Melendez ELR, Stieger KC, Long JM, Rapp PR. Effects of repetitive Transcranial Magnetic Stimulation in aged rats depend on pre-treatment cognitive status: Toward individualized intervention for successful cognitive aging. Brain Stimul 2021; 14:1219-1225. [PMID: 34400378 DOI: 10.1016/j.brs.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) has shown initial promise in combating age-related cognitive decline and dementia. The nature and severity of cognitive aging, however, varies markedly between individuals. OBJECTIVE/HYPOTHESIS We hypothesized that the distinct constellation of brain changes responsible for individual differences in cognitive aging might influence the response to rTMS. METHODS Cognitive effects of rTMS were evaluated using a rat model of cognitive aging in which aged rats are classified as Aged-Impaired (AI) or -Unimpaired (AU) relative to young (Y) according to their performance in the Morris water maze. Several weeks later, following presentation of a sample odor in an olfactory recognition task, rats received either sham (Y, n = 9; AU, n = 8; AI, n = 9) or intermittent Theta Burst Stimulation (Y, n = 8; AU, n = 8; AI, n = 9). Memory was tested 24 h later. RESULTS Recognition memory in the sham and stimulated conditions depended on pre-treatment cognitive status in the aged rats. Y and AU sham rats displayed robust odor recognition, whereas sham-treated AI rats exhibited no retention. In contrast, rTMS treated AI rats showed robust retention, comparable in magnitude to Y, whereas the AU stimulated scored at chance. CONCLUSION Our results are consistent with a perspective that the unique neurobiology associated with variability in cognitive aging modulates the response to rTMS. Protocols with documented efficacy in young adults may have unexpected outcomes in aging or neurodegenerative conditions, requiring individualized approaches.
Collapse
Affiliation(s)
- Marina Weiler
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Perla Moreno-Castilla
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Hannah M Starnes
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Edward L R Melendez
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Kevin C Stieger
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Jeffrey M Long
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA.
| |
Collapse
|
41
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:ijms22158208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| |
Collapse
|
42
|
Aloizou AM, Pateraki G, Anargyros K, Siokas V, Bakirtzis C, Sgantzos M, Messinis L, Nasios G, Peristeri E, Bogdanos DP, Doskas TK, Tzeferakos G, Dardiotis E. Repetitive Transcranial Magnetic Stimulation in the Treatment of Alzheimer's Disease and Other Dementias. Healthcare (Basel) 2021; 9:healthcare9080949. [PMID: 34442086 PMCID: PMC8391181 DOI: 10.3390/healthcare9080949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022] Open
Abstract
Dementia is a debilitating impairment of cognitive functions that affects millions of people worldwide. There are several diseases belonging to the dementia spectrum, most prominently Alzheimer’s disease (AD), vascular dementia (VD), Lewy body dementia (LBD) and frontotemporal dementia (FTD). Repetitive transcranial magnetic stimulation (rTMS) is a safe, non-invasive form of brain stimulation that utilizes a magnetic coil to generate an electrical field and induce numerous changes in the brain. It is considered efficacious for the treatment of various neuropsychiatric disorders. In this paper, we review the available studies involving rTMS in the treatment of these dementia types. The majority of studies have involved AD and shown beneficial effects, either as a standalone, or as an add-on to standard-of-care pharmacological treatment and cognitive training. The dorsolateral prefrontal cortex seems to hold a central position in the applied protocols, but several parameters still need to be defined. In addition, rTMS has shown potential in mild cognitive impairment as well. Regarding the remaining dementias, research is still at preliminary phases, and large, randomized studies are currently lacking.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Georgia Pateraki
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Konstantinos Anargyros
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, B’Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Markos Sgantzos
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Lambros Messinis
- Neuropsychology Section, Departments of Neurology and Psychiatry, University Hospital of Patras and University of Patras, Medical School, 26504 Patras, Greece;
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500 Larissa, Greece;
| | | | - Georgios Tzeferakos
- Association for Regional Development and Mental Health (EPAPSY), 15124 Marousi, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly Biopolis, Mezourlo Hill, 41100 Larissa, Greece; (A.-M.A.); (G.P.); (K.A.); (V.S.); (M.S.); (E.P.)
- Correspondence: ; Tel.: +30-241-350-1137 or +30-697-422-4279
| |
Collapse
|
43
|
Guo Y, Dang G, Hordacre B, Su X, Yan N, Chen S, Ren H, Shi X, Cai M, Zhang S, Lan X. Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Modulates Electroencephalographic Functional Connectivity in Alzheimer's Disease. Front Aging Neurosci 2021; 13:679585. [PMID: 34305567 PMCID: PMC8293898 DOI: 10.3389/fnagi.2021.679585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Increasing evidence demonstrates that repetitive transcranial magnetic stimulation (rTMS) treatment of the dorsolateral prefrontal cortex is beneficial for improving cognitive function in patients with Alzheimer’s disease (AD); however, the underlying mechanism of its therapeutic effect remains unclear. Objectives/Hypothesis: The aim of this study was to investigate the impact of rTMS to the dorsolateral prefrontal cortex on functional connectivity along with treatment response in AD patients with different severity of cognitive impairment. Methods: We conducted a 2-week treatment course of 10-Hz rTMS over the left dorsolateral prefrontal cortex in 23 patients with AD who were split into the mild or moderate cognitive impairment subgroup. Resting state electroencephalography and general cognition was assessed before and after rTMS. Power envelope connectivity was used to calculate functional connectivity at the source level. The functional connectivity of AD patients and 11 cognitively normal individuals was compared. Results: Power envelope connectivity was higher in the delta and theta bands but lower in the beta band in the moderate cognitive impairment group, compared to the cognitively normal controls, at baseline (p < 0.05). The mild cognitive impairment group had no significant abnormities. Montreal Cognitive Assessment scores improved after rTMS in the moderate and mild cognitive impairment groups. Power envelope connectivity in the beta band post-rTMS was increased in the moderate group (p < 0.05) but not in the mild group. No significant changes in the delta and theta band were found after rTMS in both the moderate and mild group. Conclusion: High-frequency rTMS to the dorsolateral prefrontal cortex modulates electroencephalographic functional connectivity while improving cognitive function in patients with AD. Increased beta connectivity may have an important mechanistic role in rTMS therapeutic effects.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyan Chen
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huixia Ren
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Shi
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Cai
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Sirui Zhang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
44
|
Wang T, Guo Z, Du Y, Xiong M, Yang Z, Ren L, He L, Jiang Y, McClure MA, Mu Q. Effects of Noninvasive Brain Stimulation (NIBS) on Cognitive Impairment in Mild Cognitive Impairment and Alzheimer Disease: A Meta-analysis. Alzheimer Dis Assoc Disord 2021; 35:278-288. [PMID: 34432674 DOI: 10.1097/wad.0000000000000464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 06/05/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the beneficial effects and optimal stimulation protocol of noninvasive brain stimulation (NIBS) including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on patients with mild cognitive impairment and Alzheimer disease. MATERIALS AND METHODS PubMed, Web of Science, Embase, and the Cochrane Library were searched until March 2020. The cognitive outcomes were extracted and the standardized mean difference with 95% confidence interval was calculated. RESULTS Twenty-eight studies were included. The result of NIBS showed significant effect on global cognition (P<0.05). Low-frequency rTMS over right dorsolateral prefrontal cortex (DLPFC), high-frequency rTMS (HF-rTMS) over left DLPFC, and the tDCS over left DLPFC and temporal lobe can significantly improve the memory function (P<0.05). HF-rTMS over left, right, or bilateral DLPFC can significantly improve the language function (P<0.05). Both HF-rTMS and tDCS over left DLPFC can obviously improve the executive function (P<0.05). Multiple sessions of rTMS with 80% to 100% intensity and anode tDCS with 2 mA current density are more suitable for all these functions. CONCLUSIONS NIBS has a beneficial effect on cognitive performance in both mild cognitive impairment and Alzheimer disease patients. Distinct optimal stimulation parameters were observed for different cognitive functions.
Collapse
Affiliation(s)
- Tao Wang
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Zhiwei Guo
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Yonghui Du
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
- The Clinical Medical College of Southwest Medical University, Luzhou
| | - Ming Xiong
- Department of Radiology, Yingshan Country People's Hospital
| | - Zhengcong Yang
- Department of Radiology, Nanbu Country People's Hospital
| | - Long Ren
- Department of Radiology, Nanchong Fifth People's Hospital, Nanchong
| | - Lin He
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Yi Jiang
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Morgan A McClure
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Qiwen Mu
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
45
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
46
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice. J Psychiatr Res 2021; 136:204-216. [PMID: 33618062 DOI: 10.1016/j.jpsychires.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND As an increasing population of Alzheimer's disease (AD) patients year by year, which is a serious threat to human health, an effective approach to prevent and treat AD is required. Biomarker changes relevant to β-amyloid (Aβ) 20 years or more in advance of cognitive impairment, so early intervention is a feasible idea for AD therapy. Repetitive transcranial magnetic stimulation (rTMS) as a non-invasive technique offers the possibility of early intervention. OBJECTIVE To explore the effect of high-frequency rTMS on the pathological symptoms of AD transgenic mice and its mechanisms, a figure-of-eight coil was placed 2 mm above the head of mouse to apply 20 Hz high-intensity rTMS for 14 consecutive days. METHODS In vivo electrophysiological recording, behavioral test, Western blots assay and immunofluorescence were used to measure the pathological symptoms of AD. RESULTS Our data showed that early intervention effectively reduced Aβ levels and the activation of microglia on the one hand, and decreased levels of pro-inflammatory cytokines including IL-6 and TNF-α as well as regulated PI3K/Akt/NF-κB signaling pathway on the other hand, which created a favorable brain environment. Thus, it increased the expression of synapse-associated proteins and improved neuronal synaptic plasticity in brain of early-stage of 5xFAD transgenic mice. CONCLUSIONS This study is the first to suggest that early intervention of 20 Hz rTMS ameliorates neuroinflammation to improve synaptic plasticity of early-stage of 5xFAD mice through PI3K/Akt/NF-κB signaling pathway.
Collapse
|
48
|
Siddappaji KK, Gopal S. Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neurosci 2021; 8:357-389. [PMID: 34183987 PMCID: PMC8222772 DOI: 10.3934/neuroscience.2021020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common, severe neurodegenerative brain disorder characterized by the accumulation of amyloid-beta plaques, neurofibrillary tangles in the brain causing neural disintegration, synaptic dysfunction, and neuronal death leading to dementia. Although many US-FDA-approved drugs like Donepezil, Rivastigmine, Galantamine are available in the market, their consumption reduces only the symptoms of the disease but fails in potency to cure the disease. This disease affects many individuals with aging. Combating the disease tends to be very expensive. This review focuses on biochemical mechanisms in the neuron both at normal and AD state with relevance to the tau hypothesis, amyloid hypothesis, the risk factors influencing dementia, oxidative stress, and neuroinflammation altogether integrated with neurodegeneration. A brief survey is carried out on available biomarkers in the diagnosis of the disease, drugs used for the treatment, and the challenges in approaching therapeutic targets in inhibiting the disease pathologies. This review conjointly assesses the demerits with the inefficiency of drugs to reach targets, their side effects, and toxicity. Optimistically, this review directs on the advantageous strategies in using nanotechnology-based drug delivery systems to cross the blood-brain barrier for improving the efficacy of drugs combined with a novel neuronal stem cell therapy approach. Determinately, this review aims at the natural, non-therapeutic healing impact of physical exercise on different model organisms and the effect of safe neuromodulation treatments using repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Electrical Stimulation (tES) in humans to control the disease pathologies prominent in enhancing the synaptic function.
Collapse
Affiliation(s)
| | - Shubha Gopal
- Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| |
Collapse
|
49
|
Marson F, Lasaponara S, Cavallo M. A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: A Useful Tool for Clinical Practice? ACTA ACUST UNITED AC 2021; 57:medicina57030215. [PMID: 33673455 PMCID: PMC7997187 DOI: 10.3390/medicina57030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Background and Objectives: Neurodegenerative diseases that typically affect the elderly such as Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia are typically characterised by significant cognitive impairment that worsens significantly over time. To date, viable pharmacological options for the cognitive symptoms in these clinical conditions are lacking. In recent years, various studies have employed neuromodulation techniques to try and contrast patients’ decay. Materials and Methods: We conducted an in-depth literature review of the state-of-the-art of the contribution of these techniques across these neurodegenerative diseases. Results: The present review reports that neuromodulation techniques targeting cognitive impairment do not allow to draw yet any definitive conclusion about their clinical efficacy although preliminary evidence is very encouraging. Conclusions: Further and more robust studies should evaluate the potentialities and limitations of the application of these promising therapeutic tools to neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, 06081 Assisi, Italy;
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefano Lasaponara
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Department of Human Sciences, LUMSA University, 00193 Rome, Italy
| | - Marco Cavallo
- Faculty of Psychology, eCampus University, 22060 Novedrate, Italy
- Clinical Psychology Service, Saint George Foundation, 12030 Cavallermaggiore, Italy
- Correspondence: ; Tel.: +39-3478306430
| |
Collapse
|
50
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|