1
|
Dassanayake PSB, Prajapati R, Gelman N, Thompson RT, Prato FS, Goldhawk DE. Monocyte MRI Relaxation Rates Are Regulated by Extracellular Iron and Hepcidin. Int J Mol Sci 2023; 24:ijms24044036. [PMID: 36835448 PMCID: PMC9962677 DOI: 10.3390/ijms24044036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many chronic inflammatory conditions are mediated by an increase in the number of monocytes in peripheral circulation, differentiation of monocytes to macrophages, and different macrophage subpopulations during pro- and anti-inflammatory stages of tissue injury. When hepcidin secretion is stimulated during inflammation, the iron export protein ferroportin is targeted for degradation on a limited number of cell types, including monocytes and macrophages. Such changes in monocyte iron metabolism raise the possibility of non-invasively tracking the activity of these immune cells using magnetic resonance imaging (MRI). We hypothesized that hepcidin-mediated changes in monocyte iron regulation influence both cellular iron content and MRI relaxation rates. In response to varying conditions of extracellular iron supplementation, ferroportin protein levels in human THP-1 monocytes decreased two- to eightfold, consistent with paracrine/autocrine regulation of iron export. Following hepcidin treatment, ferroportin protein levels further decreased two- to fourfold. This was accompanied by an approximately twofold increase in total transverse relaxation rate, R2*, compared to non-supplemented cells. A positive correlation between total cellular iron content and R2* improved from moderate to strong in the presence of hepcidin. These findings suggest that hepcidin-mediated changes detected in monocytes using MRI could be valuable for in vivo cell tracking of inflammatory responses.
Collapse
Affiliation(s)
- Praveen S. B. Dassanayake
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON N6A 5C1, Canada
| | - Rahil Prajapati
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Neil Gelman
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Medical Biophysics, Western University, London, ON N6A 5C1, Canada
| | - R. Terry Thompson
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Medical Biophysics, Western University, London, ON N6A 5C1, Canada
| | - Frank S. Prato
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON N6A 5C1, Canada
| | - Donna E. Goldhawk
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
2
|
Wilk B, Wisenberg G, Dharmakumar R, Thiessen JD, Goldhawk DE, Prato FS. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J Nucl Cardiol 2020; 27:2083-2099. [PMID: 31797321 PMCID: PMC7391987 DOI: 10.1007/s12350-019-01973-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023]
Abstract
Hybrid PET/MR imaging is an emerging imaging modality combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in the same system. Since the introduction of clinical PET/MRI in 2011, it has had some impact (e.g., imaging the components of inflammation in myocardial infarction), but its role could be much greater. Many opportunities remain unexplored and will be highlighted in this review. The inflammatory process post-myocardial infarction has many facets at a cellular level which may affect the outcome of the patient, specifically the effects on adverse left ventricular remodeling, and ultimately prognosis. The goal of inflammation imaging is to track the process non-invasively and quantitatively to determine the best therapeutic options for intervention and to monitor those therapies. While PET and MRI, acquired separately, can image aspects of inflammation, hybrid PET/MRI has the potential to advance imaging of myocardial inflammation. This review contains a description of hybrid PET/MRI, its application to inflammation imaging in myocardial infarction and the challenges, constraints, and opportunities in designing data collection protocols. Finally, this review explores opportunities in PET/MRI: improved registration, partial volume correction, machine learning, new approaches in the development of PET and MRI pulse sequences, and the use of novel injection strategies.
Collapse
Affiliation(s)
- B Wilk
- Department of Medical Imaging, Western University, London, Canada.
- Lawson Health Research Institute, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
| | - G Wisenberg
- Department of Medical Imaging, Western University, London, Canada
- MyHealth Centre, Arva, Canada
| | - R Dharmakumar
- Biomedical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - J D Thiessen
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - D E Goldhawk
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - F S Prato
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| |
Collapse
|
3
|
Alizadeh K, Sun Q, McGuire T, Thompson T, Prato FS, Koropatnick J, Gelman N, Goldhawk DE. Hepcidin-mediated Iron Regulation in P19 Cells is Detectable by Magnetic Resonance Imaging. Sci Rep 2020; 10:3163. [PMID: 32081948 PMCID: PMC7035373 DOI: 10.1038/s41598-020-59991-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
Magnetic resonance imaging can be used to track cellular activities in the body using iron-based contrast agents. However, multiple intrinsic cellular iron handling mechanisms may also influence the detection of magnetic resonance (MR) contrast: a need to differentiate among those mechanisms exists. In hepcidin-mediated inflammation, for example, downregulation of iron export in monocytes and macrophages involves post-translational degradation of ferroportin. We examined the influence of hepcidin endocrine activity on iron regulation and MR transverse relaxation rates in multi-potent P19 cells, which display high iron import and export activities, similar to alternatively-activated macrophages. Iron import and export were examined in cultured P19 cells in the presence and absence of iron-supplemented medium, respectively. Western blots indicated the levels of transferrin receptor, ferroportin and ubiquitin in the presence and absence of extracellular hepcidin. Total cellular iron was measured by inductively-coupled plasma mass spectrometry and correlated to transverse relaxation rates at 3 Tesla using a gelatin phantom. Under varying conditions of iron supplementation, the level of ferroportin in P19 cells responds to hepcidin regulation, consistent with degradation through a ubiquitin-mediated pathway. This response of P19 cells to hepcidin is similar to that of classically-activated macrophages. The correlation between total cellular iron content and MR transverse relaxation rates was different in hepcidin-treated and untreated P19 cells: slope, Pearson correlation coefficient and relaxation rate were all affected. These findings may provide a tool to non-invasively distinguish changes in endogenous iron contrast arising from hepcidin-ferroportin interactions, with potential utility in monitoring of different macrophage phenotypes involved in pro- and anti-inflammatory signaling. In addition, this work demonstrates that transverse relaxivity is not only influenced by the amount of cellular iron but also by its metabolism.
Collapse
Affiliation(s)
- Kobra Alizadeh
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Qin Sun
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Tabitha McGuire
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Terry Thompson
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Frank S Prato
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Jim Koropatnick
- London Regional Cancer Program, London, Ontario, Canada
- Oncology, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Health Research Institute, London, Ontario, Canada.
- Medical Biophysics, Western University, London, Ontario, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Liu L, Alizadeh K, Donnelly SC, Dassanayake P, Hou TT, McGirr R, Thompson RT, Prato FS, Gelman N, Hoffman L, Goldhawk DE. MagA expression attenuates iron export activity in undifferentiated multipotent P19 cells. PLoS One 2019; 14:e0217842. [PMID: 31170273 PMCID: PMC6553743 DOI: 10.1371/journal.pone.0217842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a non-invasive imaging modality used in longitudinal cell tracking. Previous studies suggest that MagA, a putative iron transport protein from magnetotactic bacteria, is a useful gene-based magnetic resonance contrast agent. Hemagglutinin-tagged MagA was stably expressed in undifferentiated embryonic mouse teratocarcinoma, multipotent P19 cells to provide a suitable model for tracking these cells during differentiation. Western blot and immunocytochemistry confirmed the expression and membrane localization of MagA in P19 cells. Surprisingly, elemental iron analysis using inductively-coupled plasma mass spectrometry revealed significant iron uptake in both parental and MagA-expressing P19 cells, cultured in the presence of iron-supplemented medium. Withdrawal of this extracellular iron supplement revealed unexpected iron export activity in P19 cells, which MagA expression attenuated. The influence of iron supplementation on parental and MagA-expressing cells was not reflected by longitudinal relaxation rates. Measurement of transverse relaxation rates (R2* and R2) reflected changes in total cellular iron content but did not clearly distinguish MagA-expressing cells from the parental cell type, despite significant differences in the uptake and retention of total cellular iron. Unlike other cell types, the reversible component R2′ (R2* ‒ R2) provided only a moderately strong correlation to amount of cellular iron, normalized to amount of protein. This is the first report to characterize MagA expression in a previously unrecognized iron exporting cell type. The interplay between contrast gene expression and systemic iron metabolism substantiates the potential for diverting cellular iron toward the formation of a novel iron compartment, however rudimentary when using a single magnetotactic bacterial gene expression system like magA. Since relatively few mammalian cells export iron, the P19 cell line provides a tractable model of ferroportin activity, suitable for magnetic resonance analysis of key iron-handling activities and their influence on gene-based MRI contrast.
Collapse
Affiliation(s)
- Linshan Liu
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Kobra Alizadeh
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Sarah C. Donnelly
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Praveen Dassanayake
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Tian Tian Hou
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Rebecca McGirr
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - R. Terry Thompson
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Frank S. Prato
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
| | - Lisa Hoffman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Donna E. Goldhawk
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Brewer KD, Spitler R, Lee KR, Chan AC, Barrozo JC, Wakeel A, Foote CS, Machtaler S, Rioux J, Willmann JK, Chakraborty P, Rice BW, Contag CH, Bell CB, Rutt BK. Characterization of Magneto-Endosymbionts as MRI Cell Labeling and Tracking Agents. Mol Imaging Biol 2018; 20:65-73. [PMID: 28616842 DOI: 10.1007/s11307-017-1093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Magneto-endosymbionts (MEs) show promise as living magnetic resonance imaging (MRI) contrast agents for in vivo cell tracking. Here we characterize the biomedical imaging properties of ME contrast agents, in vitro and in vivo. PROCEDURES By adapting and engineering magnetotactic bacteria to the intracellular niche, we are creating magneto-endosymbionts (MEs) that offer advantages relative to passive iron-based contrast agents (superparamagnetic iron oxides, SPIOs) for cell tracking. This work presents a biomedical imaging characterization of MEs including: MRI transverse relaxivity (r 2) for MEs and ME-labeled cells (compared to a commercially available iron oxide nanoparticle); microscopic validation of labeling efficiency and subcellular locations; and in vivo imaging of a MDA-MB-231BR (231BR) human breast cancer cells in a mouse brain. RESULTS At 7T, r 2 relaxivity of bare MEs was higher (250 s-1 mM-1) than that of conventional SPIO (178 s-1 mM-1). Optimized in vitro loading of MEs into 231BR cells yielded 1-4 pg iron/cell (compared to 5-10 pg iron/cell for conventional SPIO). r 2 relaxivity dropped by a factor of ~3 upon loading into cells, and was on the same order of magnitude for ME-loaded cells compared to SPIO-loaded cells. In vivo, ME-labeled cells exhibited strong MR contrast, allowing as few as 100 cells to be detected in mice using an optimized 3D SPGR gradient-echo sequence. CONCLUSIONS Our results demonstrate the potential of magneto-endosymbionts as living MR contrast agents. They have r 2 relaxivity values comparable to traditional iron oxide nanoparticle contrast agents, and provide strong MR contrast when loaded into cells and implanted in tissue.
Collapse
Affiliation(s)
- Kimberly D Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Ryan Spitler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Steven Machtaler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - James Rioux
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Juergen K Willmann
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | - Christopher H Contag
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | - Brian K Rutt
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA. .,Richard M. Lucas Center for Imaging, Stanford University School of Medicine, The Lucas Expansion, Room PS-064, 1201 Welch Road, Stanford, CA, 94305-5488, USA.
| |
Collapse
|