1
|
Samare-Najaf M, Dehghanian A, Asadikaram G, Mohamadi M, Jafarinia M, Savardashtaki A, Afshari A, Vakili S. Designing an Electrochemical Biosensor Based on Voltammetry for Measurement of Human Chorionic Gonadotropin. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:21. [PMID: 39234593 PMCID: PMC11373787 DOI: 10.4103/jmss.jmss_64_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 09/06/2024]
Abstract
Background Human chorionic gonadotropin (hCG) is a polypeptide hormone synthesized during pregnancy and is also upregulated in some pathologic conditions such as certain tumors. Its measurement is essential for diagnosing pregnancy and malignancies. Despite numerous attempts to introduce an accurate method capable of detecting hCG levels, several limitations are found in previous techniques. This study aimed to address the limitations of current hCG assay methods by designing an electrochemical biosensor based on voltammetry for the rapid, selective, inexpensive, and sensitive measurement of hCG levels. Methods A carbon paste electrode was prepared and functionalized by para-aminobenzoic acid. The primary anti-β-hCG monoclonal antibody was immobilized on the electrode surface by activating the carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide solutions. The study also involved optimizing parameters such as the time for primary antibody fixation, the time for hCG attachment, and the pH of the hydrogen peroxide solution to maximize the biosensor response. Different concentrations of hCG hormone were prepared and loaded on the electrode surface, the secondary antibody labeled with HRP enzyme was applied, thionine in phosphate-buffered saline solution was placed on the electrode surface, and the differential pulse electrical signal was recorded. Results The linear range ranged from 5 to 100 mIU/ml, and the limit of detection was calculated as 0.11 mIU. The relative standard deviation was 3% and 2% for five repeated measurements of commercial standard samples with concentrations of 2 and 20 mIU/mL, respectively. The percent recovery was obtained from 98.3% to 101.5%. Conclusion The sensor represents a promising advancement in hCG level measurement, offering a potential solution to overcome the existing limitations in current diagnostic strategies. Simple and inexpensive design, detecting hCG in its important clinical range during early pregnancy, and successful measurement of hCG in real serum samples are the advantages of this sensor.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, Kerman Regional Blood Transfusion Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, Molecular Pathology and Cytogenetics Division, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Asadikaram
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mohamadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afrooz Afshari
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Zhao Q, Chen Z, Shan CW, Zhan T, Han CY, Han GC, Feng XZ, Kraatz HB. Construction and evaluation of AuNPs enhanced electrochemical immunosensors with [Fe(CN) 6] 3-/4- and PPy probe for highly sensitive detection of human chorionic gonadotropin. Int J Biol Macromol 2024; 273:132963. [PMID: 38852725 DOI: 10.1016/j.ijbiomac.2024.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 μA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.
Collapse
Affiliation(s)
- Qi Zhao
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Yang Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
3
|
Mobed A, Abdi B, Masoumi S, Mikaeili M, Shaterian E, Shaterian H, Kazemi ES, Shirafkan M. Advances in human reproductive biomarkers. Clin Chim Acta 2024; 552:117668. [PMID: 37992849 DOI: 10.1016/j.cca.2023.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Reproductive biomarkers are important regulators in women, especially during pregnancy and childbirth. Because of their essential role in women's health, the discovery and quantification of reproductive biomarkers is of great clinical importance. Nowadays, there are many detection strategies to detect these biomarkers, including VEGF, human chorionic gonadotropin (hCG), etc. Consider the limitations and problems of conventional diagnostic methods, new methods are being developed, one of the most important being methods based on nanotechnology. This review includes a review of methods for diagnosing reproductive biomarkers, ranging from mainstream to nanotechnology-based methods. The bulk of this article is an in-depth introduction to the latest advances in biosensor and nanosensor research for the detection and quantitative identification of reproductive biomarkers.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bita Abdi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Masoumi
- Deparment of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Mikaeili
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Elham Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Hamed Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Esmat Sadat Kazemi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdiye Shirafkan
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Luongo A, von Stockert AR, Scherag FD, Brandstetter T, Biesalski M, Rühe J. Controlling Fluorescent Readout in Paper-based Analytical Devices. ACS Biomater Sci Eng 2023; 9:6379-6389. [PMID: 37875260 PMCID: PMC10649804 DOI: 10.1021/acsbiomaterials.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
Paper is an ideal candidate for the development of new disposable diagnostic devices because it is a low-cost material, allows transport of the liquid on the device by capillary action, and is environmentally friendly. Today, colorimetric analysis is most often used as a detection method for rapid tests (test strips or lateral flow devices) but usually gives only qualitative results and is limited by a relatively high detection threshold. Here, we describe studies using fluorescence as a readout tool for paper-based diagnostics. We study how the optical readout is affected by light transmission, scattering, and fluorescence as a function of paper characteristics such as thickness (grammage), water content, autofluorescence, and paper type/composition. We show that paper-based fluorescence analysis allows better optical readout compared to that of nitrocellulose, which is currently the material of choice in colorimetric assays. To reduce the loss of analyte molecules (e.g., proteins) due to adsorption to the paper surface, we coat the paper fibers with a protein-repellent hydrogel. For this purpose, we use hydrophilic copolymers consisting of N,N-dimethyl acrylamide and a benzophenone-based cross-linker, which are photochemically transformed into a fiber-attached polymer hydrogel on the paper fiber surfaces in situ. We show that the combination of fluorescence detection and the use of a protein-repellent coating enables sensitive paper-based analysis. Finally, the success of the strategy is demonstrated by using a simple LFD application as an example.
Collapse
Affiliation(s)
- Anna Luongo
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | | | - Frank D. Scherag
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Thomas Brandstetter
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Markus Biesalski
- Macromolecular
Chemistry & Paper Chemistry, Technical
University of Darmstadt, Darmstadt 64287, Germany
| | - Jürgen Rühe
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| |
Collapse
|
5
|
Kavrut M, Sagir FG, Atayurt Z. Large-scale retrospective analysis of methodological factors affecting pregnancy rates after embryo transfer for in vitro fertilization. Medicine (Baltimore) 2023; 102:e35146. [PMID: 37682170 PMCID: PMC10489353 DOI: 10.1097/md.0000000000035146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
This study aimed to investigate the impact of methodological factors on pregnancy rates after embryo transfer (ET) for in vitro fertilization. This retrospective cross-sectional study was conducted between September 2020 and April 2022. A total of 2048 patients who underwent ultrasonography-guided first frozen embryo transfer (FET) or a fresh ET cycle due to infertility were included in the study. The effects of age, ET protocol (frozen or fresh), preimplantation genetic testing, number of embryos transferred (NET), and embryo fundus distance on pregnancy rate were investigated. The mean age of pregnant patients (31.51 ± 5.28) was significantly lower than that of non-pregnant patients (35.34 ± 6.39) (P < .001). Multiple regression analysis showed that women with lower age (P < .001), higher NET (P < .001), higher embryo fundus distance (P < .001), FET (P < .001), and preimplantation genetic testing (P = .012) had a significantly higher likelihood of pregnancy. Appropriate transfer depth, younger age, euploid embryo transfer, FET, and a higher NET can increase the likelihood of pregnancy. However, multiple factors must be considered when deciding the best protocol for a particular patient, including patient preference, costs and timing.
Collapse
Affiliation(s)
| | - Fulya Gokdagli Sagir
- Kolan International Hospital Gynecology, Obstetrics and IVF Center, Istanbul, Turkey
| | - Zafer Atayurt
- Sisli Kolan International Hospital, IVF Center, Istanbul, Turkey
| |
Collapse
|
6
|
McMahon LM, Joyce CM, Cuthill L, Mitchell H, Jabbar I, Sweep F. Measurement of Human Chorionic Gonadotrophin in Women with Gestational Trophoblastic Disease. Gynecol Obstet Invest 2023; 89:178-197. [PMID: 37307803 PMCID: PMC11151977 DOI: 10.1159/000531499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The objective of this study was to collect information on human chorionic gonadotrophin (hCG) laboratory testing and reporting in women with gestational trophoblastic disease (GTD), to assess the associated challenges, and to offer perspectives on hCG testing harmonisation. DESIGN Information was collected from laboratories by electronic survey (SurveyMonkey) using a questionnaire designed by members of the European Organisation for the Treatment of Trophoblastic Disease (EOTTD) hCG working party. PARTICIPANTS The questionnaire was distributed by the EOTTD board to member laboratories and their associated scientists who work within the GTD field. SETTING The questionnaire was distributed and accessed via an online platform. METHODS The questionnaire consisted of 5 main sections. These included methods used for hCG testing, quality procedures, reporting of results, laboratory operational aspects, and non-GTD testing capability. In addition to reporting these survey results, examples of case scenarios which illustrate the difficulties faced by laboratories providing hCG measurement for GTD patient management were described. The benefits and challenges of using centralised versus non-centralised hCG testing were discussed alongside the utilisation of regression curves for management of GTD patients. RESULTS Information from the survey was collated and presented for each section and showed huge variability in responses across laboratories even for those using the same hCG testing platforms. An educational example was presented, highlighting the consequence of using inappropriate hCG assays on clinical patient management (Educational Example A), along with an example of biotin interference (Educational Example B) and an example of high-dose hook effect (Educational Example C), demonstrating the importance of knowing the limitations of hCG tests. The merits of centralised versus non-centralised hCG testing and use of hCG regression curves to aid patient management were discussed. LIMITATIONS To ensure the survey was completed by laboratories providing hCG testing for GTD management, the questionnaire was distributed by the EOTTD board. It was assumed the EOTTD board held the correct laboratory contact, and that the questionnaire was completed by a scientist with in-depth knowledge of laboratory procedures. CONCLUSIONS The hCG survey highlighted a lack of harmonisation of hCG testing across laboratories. Healthcare professionals involved in the management of women with GTD should be aware of this limitation. Further work is needed to ensure an appropriate, quality-assured laboratory service is available for hCG monitoring in women with GTD.
Collapse
Affiliation(s)
- Lesley M. McMahon
- Hydatidiform Mole Follow-up Service Scotland, Ninewells Hospital, and Medical School, Dundee, UK
| | - Caroline M. Joyce
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork and Department of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
- Department of Clinical Biochemistry, Cork University Hospital, Wilton, Cork, Ireland
| | - Lyndsey Cuthill
- Hydatidiform Mole Follow-up Service Scotland, Ninewells Hospital, and Medical School, Dundee, UK
| | | | - Imran Jabbar
- Department of Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital, Sheffield, UK
| | - Fred Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the hCG working party of the EOTTD
- Hydatidiform Mole Follow-up Service Scotland, Ninewells Hospital, and Medical School, Dundee, UK
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork and Department of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
- Department of Clinical Biochemistry, Cork University Hospital, Wilton, Cork, Ireland
- Wellington Parade, Deal, UK
- Department of Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital, Sheffield, UK
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
García-Cebollada H, López A, Sancho J. Protposer: the web server that readily proposes protein stabilizing mutations with high PPV. Comput Struct Biotechnol J 2022; 20:2415-2433. [PMID: 35664235 PMCID: PMC9133766 DOI: 10.1016/j.csbj.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 01/23/2023] Open
Abstract
Protein stability is a requisite for most biotechnological and medical applications of proteins. As natural proteins tend to suffer from a low conformational stability ex vivo, great efforts have been devoted toward increasing their stability through rational design and engineering of appropriate mutations. Unfortunately, even the best currently used predictors fail to compute the stability of protein variants with sufficient accuracy and their usefulness as tools to guide the rational stabilisation of proteins is limited. We present here Protposer, a protein stabilising tool based on a different approach. Instead of quantifying changes in stability, Protposer uses structure- and sequence-based screening modules to nominate candidate mutations for subsequent evaluation by a logistic regression model, carefully trained to avoid overfitting. Thus, Protposer analyses PDB files in search for stabilization opportunities and provides a ranked list of promising mutations with their estimated success rates (eSR), their probabilities of being stabilising by at least 0.5 kcal/mol. The agreement between eSRs and actual positive predictive values (PPV) on external datasets of mutations is excellent. When Protposer is used with its Optimal kappa selection threshold, its PPV is above 0.7. Even with less stringent thresholds, Protposer largely outperforms FoldX, Rosetta and PoPMusiC. Indicating the PDB file of the protein suffices to obtain a ranked list of mutations, their eSRs and hints on the likely source of the stabilization expected. Protposer is a distinct, straightforward and highly successful tool to design protein stabilising mutations, and it is freely available for academic use at http://webapps.bifi.es/the-protposer.
Collapse
|
8
|
Zhang B, Guo M, Zhang T, Liu D, Tan X, Li X, Yu Y, Li H. A new method for broadening the detection range of immunoassay and its application in β-hCG quantitative detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1515-1522. [PMID: 35348568 DOI: 10.1039/d2ay00220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Early pregnancy prediction requires very high β-hCG detection sensitivity, while embryonic development monitoring and trophoblastic disease detection require a wider detection range. In this study, based on light-initiated chemiluminescence assay (LICA), one high-affinity mAb and one low-affinity mAb were selected and coated on chemibeads with a larger coating area in different ratios to immobilize the antibodies. The two immobilized mAbs were mixed with different concentrations to detect β-hCG. When the high-affinity mAb-coated chemibeads and low-affinity mAb-coated chemibeads were used at working concentrations of 0.100 mg mL-1 and 0.014 mg mL-1, respectively, the sensitivity and detection range were maximized. The assay was precise for measuring β-hCG with repeatability and intermediate precision of <5% CV. The assay has a high sensitivity with a limit of quantification (LoQ) of 0.49 IU L-1, which is lower than that of most β-hCG detection kits. Over the range of 1 IU L-1 to 16 000 IU L-1, the assay had a proper linearity (r = 0.9995). No false negative results due to the hook effect were observed at β-hCG concentrations up to 225 000 IU L-1. The assay showed a good correlation with the Abbott assay (r = 0.9910). LICA combined with immobilized mAbs with different affinities ensures the sensitivity of β-hCG detection and broadens the detection range.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Miao Guo
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Tianjie Zhang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Dandan Liu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Xin Tan
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Xue Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Yang Yu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| | - Huiqiang Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
9
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
10
|
Rahbar M, Zou S, Baharfar M, Liu G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test. BIOSENSORS 2021; 11:bios11120474. [PMID: 34940231 PMCID: PMC8699738 DOI: 10.3390/bios11120474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 05/14/2023]
Abstract
Over the past decades, paper-based lateral flow immunoassays (LFIAs) have been extensively developed for rapid, facile, and low-cost detection of a wide array of target analytes in a point-of-care manner. Conventional home pregnancy tests are the most significant example of LFAs, which detect elevated concentrations of human chorionic gonadotrophin (hCG) in body fluids to identify early pregnancy. In this work, we have upgraded these platforms to a higher version by developing a customized microfluidic paper-based analytical device (μPAD), as the new generation of paper-based point-of-care platforms, for colorimetric immunosensing. This will offer a cost-efficient and environmentally friendly alternative platform for paper-based immunosensing, eliminating the need for nitrocellulose (NC) membrane as the substrate material. The performance of the developed platform is demonstrated by detection of hCG (as a model case) in urine samples and subsequently indicating positive or negative pregnancy. A dual-functional silane-based composite was used to treat filter paper in order to enhance the colorimetric signal intensity in the detection zones of μPADs. In addition, microfluidic pathways were designed in a manner to provide the desired regulated fluid flow, generating sufficient incubation time (delays) at the designated detection zones, and consequently enhancing the obtained signal intensity. The presented approaches allow to overcome the existing limitations of μPADs in immunosensing and will broaden their applicability to a wider range of assays. Although, the application of the developed hCG μPAD assay is mainly in qualitative (i.e., positive or negative) detection of pregnancy, the semi-quantitative measurement of hCG was also investigated, indicating the viability of this assay for sensitive detection of the target hCG analyte within the related physiological range (i.e., 10-500 ng/mL) with a LOD value down to 10 ng/mL.
Collapse
Affiliation(s)
- Mohammad Rahbar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
| | - Siyi Zou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Correspondence:
| |
Collapse
|
11
|
Schmidt C, Borcherding H, Thiele T, Schedler U, Werner F, Rödiger S, Roggenbuck D, Schierack P. Fluorescence-encoded poly(methyl metharcylate) nanoparticles for a lateral flow assay detecting IgM autoantibodies in rheumatoid arthritis. Anal Biochem 2021; 633:114389. [PMID: 34555369 DOI: 10.1016/j.ab.2021.114389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) belongs to the most often occurring autoimmune diseases in the world. For serological diagnosis, IgM auto-antibodies directed against the Fc portion of IgG referred to as rheumatoid factor are used as biomarkers. The autoantibody detection is usually done by ELISA. Such assays are reliable but are not suitable for point-of-care testing in contrast to lateral flow assays. Here, we report the development of a lateral flow assay based on carboxylated fluorescence-encoded poly(methyl methacrylate) nanoparticles. Poly(methyl methacrylate) is a non-toxic plastic with an excellent biocompatibility and high optical transparency which promises especially high sensitive fluorescence detection thereby leading to very sensitive assays. We could detect a positive signal in samples with a nephelometric reading down to 0.4 U/mL. By analyzing 30 sera of patients with a RA diagnosis and 34 sera of healthy test subjects we could confirm positive ELISA results in 72% of all cases and negative ELISA results in 97% of all cases.
Collapse
Affiliation(s)
- Carsten Schmidt
- Brandenburg Technical University Cottbus - Senftenberg, Faculty of Natural Sciences, Universitätsplatz 1, D-01968, Senftenberg, Germany
| | | | - Thomas Thiele
- PolyAn GmbH, Schkopauer Ring 6, D-12681 Berlin, Germany
| | - Uwe Schedler
- PolyAn GmbH, Schkopauer Ring 6, D-12681 Berlin, Germany
| | - Franziska Werner
- in.vent Diagnostica GmbH, Neuendorfstraße 17, D-16761, Henningsdorf, Germany
| | - Stefan Rödiger
- Brandenburg Technical University Cottbus - Senftenberg, Faculty of Natural Sciences, Universitätsplatz 1, D-01968, Senftenberg, Germany
| | - Dirk Roggenbuck
- Brandenburg Technical University Cottbus - Senftenberg, Faculty of Natural Sciences, Universitätsplatz 1, D-01968, Senftenberg, Germany; Generic Assays GmbH, Ludwig-Erhard-Ring 3, D-15827, Dahlewitz/Berlin, Germany
| | - Peter Schierack
- Brandenburg Technical University Cottbus - Senftenberg, Faculty of Natural Sciences, Universitätsplatz 1, D-01968, Senftenberg, Germany.
| |
Collapse
|
12
|
Del Valle García R, Cazanave Mora JM, Carrazana San Martín NL, Zulueta Rodríguez O, Melchor Rodríguez A, Hernández Pérez L, López Cisneros R, Lorenzo Rojas A, Gato Orozco ED, Benítez Gordillo D, González Quintero A, García de la Rosa I, Coto Rodeiro R. An enzyme immunoassay to determine human chorionic gonadotropin (HCG) in serum and urine samples using an ultra-microanalytical system. J Pharm Biomed Anal 2021; 204:114239. [PMID: 34252818 DOI: 10.1016/j.jpba.2021.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
The determination of Human Chorionic Gonadotropin (HCG) in biological fluids is of great interest in the early pregnancy diagnostics, the evaluation of pregnancy disorders, as a tumor marker, as a screening procedure for anti-doping control, and many other purposes. A simple sandwich-type UltraMicro Enzyme-Linked ImmunoSorbent Assay (UMELISA) has been developed for the measurement of HCG in serum and urine samples. Strips coated with a high affinity MAb directed against HCG are used as solid phase, to ensure the specificity of the assay. The HCG assay was completed in 1.5 h, with a measuring range of 0.76-400 mIU/mL. The intra- and inter-assay coefficients of variation were lower than 10 %, depending on the HCG concentrations evaluated. Recovery percentages were 96.43-97.16 % (serum) and 98.10-99.04 % (urine). The assay detected intact HCG, nicked HCG, HCG β, and nicked HCG β, and did not recognize any of the interfering molecules tested. Regression analysis showed a good correlation with Elecsys in serum (n = 1459, r = 0.952, ρc = 0.948) and urine (n = 869, r = 0.988, ρc = 0.978). A good correlation was also found with 84 RIQAS samples analyzed with the kits Elecsys (r = 0.969, ρc = 0.957), Architect (r = 0.982, ρc = 0.970), Dimension (r = 0.989, ρc = 0.977), and Bioscience (r = 0.992, ρc = 0.980), all with a p < 0.01. Comparison with transvaginal ultrasonography in early pregnancy detection showed a specificity and a sensitivity of 100 % (n = 2385, κ = 1). The analytical performance characteristics of UMELISA HCG endorse its use for the quantification of HCG in serum and urine samples. This assay will make a cost-effective diagnostic kit accessible to low-income countries and is now available in the Cuban Public Health System.
Collapse
|
13
|
CHORIONIC GONADOTROPINE: STRUCTURAL HETEROGENEITY, METABOLIC PATHWAY, FUNCTIONS, OBTAINING AND POSSIBILITIES OF CLINICAL APPLICATION. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is one of the key hormones needed for pregnancy sustaining. At the same time, it performs many other biological functions, which is due to the effect on the immune cells’ activity, the ability to bind to at least three types of receptors and activate various signaling cascades. Several structural forms of hCG and their combinations have been identified. This structural heterogeneity is the cause of variations not only in the degree and direction of the hormone functional activity, but in the mechanisms of its action, the degree of binding to other molecules and the conditions of dissociation as well. Aim. To review the current understanding of the role and mechanisms of the biological activity of hCG and its isoforms, as well as the identification of physicochemical factors that affect the completeness of hCG release from biological raw materials and the stability of the isolated drug during further storage. Methods. A computerized literature search was performed using three electronic databases from 1980 to 2020. Descriptive and comparative analyzes were performed for discovered studies in molecular biology, biochemistry and clinical practice. Results. A detailed biochemical and physiological analysis of hCG and its related molecules are provided in this review. The features of measuring its content in tissues, isolation and purification methods, difficulties associated with low-temperature storage, as well as the spectrum of hCG preparations clinical use of and their proposed new therapeutic possibilities are considered. Conclusions. HCG is characterized by a wide range of versatile functions, and its field of application in laboratory diagnostics and clinical practice is still expanding. At the same time, to elucidate the mechanisms of its multiple therapeutic effects, including antitumor action, as well as the mechanisms of dissociation under conditions of low-temperature storage, which can solve the problem of maintaining the stability of this hormone, it remains relevant.
Collapse
|
14
|
Zheng Y, Pei Y, Yang L, Zeng Z, Wang J, Xie G, Wang L, Yuan J. Upregulated GRB7 promotes proliferation and tumorigenesis of Bladder Cancer via Phospho-AKT Pathway. Int J Biol Sci 2020; 16:3221-3230. [PMID: 33162827 PMCID: PMC7645994 DOI: 10.7150/ijbs.49410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Growth factor receptor-bound protein 7 (GRB7) has been found closely related to the occurrence and development of various tumors, but its function in bladder cancer has not yet been elucidated. The study is aiming at investigating the expression and function of GRB7 in bladder cancer. The Cancer Genome Atlas (TCGA) database was selected to analyze mRNA levels of GRB7 in bladder cancer. RT-qPCR and Western blot were conducted to detect the expression of GRB7 in normal bladder epithelial cells, seven bladder cancer cell lines and eight pairs of malignant/nonmalignant bladder tissues. The role of GRB7 in tumor proliferation and tumorigenesis was explored by establishing stable cells, in vitro cell experiments and in vivo xenograft models. The molecular regulation mechanism of GRB7 in bladder cancer was investigated by treatment with AKT inhibitor. GRB7 mRNA was upregulated in bladder cancer samples compared with that in normal tissue samples. Overexpressing GRB7 significantly promoted the proliferation and tumorigenesis of bladder cancer. However, silencing GRB7 played the retarding part. GRB7 promoted G1/S transition by activating the AKT pathway. Our results indicate that GRB7 plays an important role in promoting proliferation and tumorigenesis of bladder cancer.
Collapse
Affiliation(s)
- Yingchun Zheng
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanyuan Pei
- Shenzhen Long-gang Maternal and Child Health Hospital Centralab, Shenzhen 518172, China
| | - Le Yang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, Henan 473061, China
| | - Zhi Zeng
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guie Xie
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Lan Wang
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jie Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Li Z, Kurosawa O, Iwata H. A comparative study of key physiological stem cell parameters between three human trophoblast cell lines. Biochem Biophys Res Commun 2020; 525:1038-1045. [DOI: 10.1016/j.bbrc.2020.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
|
16
|
Cai L, Huang Y, Sun P, Zheng W, Zhou S, Huang P, Wei J, Tu D, Chen X, Liang Z. Accurate detection of β-hCG in women's serum and cervical secretions for predicting early pregnancy viability based on time-resolved luminescent lanthanide nanoprobes. NANOSCALE 2020; 12:6729-6735. [PMID: 32163062 DOI: 10.1039/c9nr10973k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensitive and specific detection of β-hCG in women's serum and cervical secretions is of great significance for early pregnancy evaluation. However, the accurate detection of trace amounts of β-hCG in cervical secretions remains challenging because of its low level. Herein, we report a unique strategy for β-hCG detection in a heterogeneous sandwich-type bioassay by using LiLuF4:Ce,Tb nanoparticles as time-resolved photoluminescence (PL) nanoprobes. By taking advantage of the intense and long-lived PL of the nanoprobes, the short-lived background autofluorescence can be completely eliminated, which enables the sensitive detection of β-hCG with a linear range of 0-10 ng mL-1 and a detection limit down to 6.1 pg mL-1, approximately two orders of magnitude improvement relative to that of a commercial β-hCG assay kit. Furthermore, we demonstrate the application of the nanoprobes for accurate detection of β-hCG in clinical serum and cervical secretion samples and unveil that the ratio of β-hCG levels in cervical secretions and serum can be a good indicator of early pregnancy viability in unknown locations. These findings bring new opportunities in perinatal medicine by employing luminescent lanthanide nanoprobes, thus laying a foundation for future development of luminescent nanoprobes for versatile biomedical applications.
Collapse
Affiliation(s)
- Liangzhi Cai
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumar R, Leng Y, Liu B, Zhou J, Shao L, Yuan J, Fan X, Wan S, Wu T, Liu J, Binns R, Fu YQ, Ng WP, Farrell G, Semenova Y, Xu H, Xiong Y, He X, Wu Q. Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer. Biosens Bioelectron 2019; 145:111563. [DOI: 10.1016/j.bios.2019.111563] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022]
|
18
|
Ozgur E, Roberts KE, Ozgur EO, Gin AN, Bankhead JR, Wang Z, Su J. Ultrasensitive Detection of Human Chorionic Gonadotropin Using Frequency Locked Microtoroid Optical Resonators. Anal Chem 2019; 91:11872-11878. [PMID: 31415150 PMCID: PMC6991119 DOI: 10.1021/acs.analchem.9b02630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clean sport competition is of significant concern to many governments and sporting organizations. Highly sensitive and rapid sensors are needed to improve the detection of performance enhancing drugs in sports as athletes take diuretics to dilute the concentration of drugs in their urine and microdose under the detectable limits of current sensors. Here we demonstrate, using frequency locked microtoroid optical resonators, a 3 orders of magnitude improvement in detection limit over the current gold standard, mass spectrometry, for the common performance enhancing drug, human chorionic gonadotropin (hCG). hCG, also known as the pregnancy hormone, was detected both in simulated urine and in the urine of pregnant donors at a concentration of 1 and 3 femtomolar, respectively. We anticipate that the sensitivity provided by frequency locked optical microcavities can enable a new standard in antidoping research.
Collapse
Affiliation(s)
- Erol Ozgur
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | - Kara Ellen Roberts
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | - Ekin Ozge Ozgur
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | | | | | - Zhikun Wang
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
| | - Judith Su
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
| |
Collapse
|
19
|
Development and utilization of human decidualization reporter cell line uncovers new modulators of female fertility. Proc Natl Acad Sci U S A 2019; 116:19541-19551. [PMID: 31501330 DOI: 10.1073/pnas.1907652116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Failure of embryo implantation accounts for a significant percentage of female infertility. Exquisitely coordinated molecular programs govern the interaction between the competent blastocyst and the receptive uterus. Decidualization, the rapid proliferation and differentiation of endometrial stromal cells into decidual cells, is required for implantation. Decidualization defects can cause poor placentation, intrauterine growth restriction, and early parturition leading to preterm birth. Decidualization has not yet been systematically studied at the genetic level due to the lack of a suitable high-throughput screening tool. Herein we describe the generation of an immortalized human endometrial stromal cell line that uses yellow fluorescent protein under the control of the prolactin promoter as a quantifiable visual readout of the decidualization response (hESC-PRLY cells). Using this cell line, we performed a genome-wide siRNA library screen, as well as a screen of 910 small molecules, to identify more than 4,000 previously unrecognized genetic and chemical modulators of decidualization. Ontology analysis revealed several groups of decidualization modulators, including many previously unappreciated transcription factors, sensory receptors, growth factors, and kinases. Expression studies of hits revealed that the majority of decidualization modulators are acutely sensitive to ovarian hormone exposure. Gradient treatment of exogenous factors was used to identify EC50 values of small-molecule hits, as well as verify several growth factor hits identified by the siRNA screen. The high-throughput decidualization reporter cell line and the findings described herein will aid in the development of patient-specific treatments for decidualization-based recurrent pregnancy loss, subfertility, and infertility.
Collapse
|
20
|
Hong G, Zhang D, He Y, Yang Y, Chen P, Yang H, Zhou Z, Liu Y, Wang Y. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Anal Bioanal Chem 2019; 411:6837-6845. [PMID: 31471682 DOI: 10.1007/s00216-019-02049-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
A new near-infrared-based photothermal immunosensing strategy was developed for the sensitive and feasible detection of human chorionic gonadotropin (HCG) by use of a Prussian blue nanoparticle-based photothermal conversion system. Prussian blue nanospheres synthesized by the one-pot method were used for the labeling of anti-HCG detection antibody. A sandwich-type immunoreaction was initially conducted on a monoclonal anti-HCG antibody-coated microplate with a nanoparticle-labeled signal antibody. Accompanying formation of the sandwiched immunocomplex, Prussian blue nanospheres caused photothermal conversion under 980-nm laser irradiation, thereby resulting in an increase of the temperature of the detection system measured by a portable digital thermometer. The properties and factors influencing the analytical performance of the photothermal immunoassay were studied in detail. Under the optimal conditions, the Prussian blue nanoparticle-based photothermal immunoassay exhibited good temperature responses relative to target HCG concentrations within the dynamic range of 0.01-100 ng mL-1 at a low detection limit of 5.8 pg mL-1. This system also displayed good anti-interference behavior with regard to other cancer biomarkers, good reproducibility, and relatively long storage stability. The method accuracy was evaluated for analysis of human serum specimens, giving results that matched well with those obtained with a commercial HCG enzyme-linked immunosorbent assay kit. Importantly, this protocol is promising for advanced development of photothermal immunoassays. Graphical abstract.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, Fujian, China.,Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Dongdong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, Fujian, China
| | - Yinghao He
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, Fujian, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, Fujian, China
| | - Ping Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, Fujian, China
| | - Huijing Yang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Zhiyang Zhou
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Yinhuan Liu
- Department of Laboratory Medicine, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, Fujian, China.
| | - Yan Wang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, 361004, Fujian, China.
| |
Collapse
|
21
|
Li Z, Kurosawa O, Iwata H. Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther 2019; 10:245. [PMID: 31391109 PMCID: PMC6686486 DOI: 10.1186/s13287-019-1339-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/14/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Trophoblasts as a specific cell lineage are crucial for the correct function of the placenta. Human trophoblast stem cells (hTSCs) are a proliferative population that can differentiate into syncytiotrophoblasts and extravillous cytotrophoblasts. Many studies have reported that chemical supplements induce the differentiation of trophoblasts from human induced pluripotent stem cells (hiPSCs). However, there have been no reports of the establishment of proliferative hTSCs from hiPSCs. Our previous report showed that culturing hiPSCs on micromesh as a bioscaffold induced cystic cells with trophoblast properties. Here, we aimed to establish hTSCs from hiPSCs. METHODS We used the micromesh culture technique to induce hiPSC differentiation into trophoblast cysts. We then reseeded and purified cystic cells. RESULTS The cells derived from the reseeded cysts were highly proliferative. Low expression levels of pluripotency genes and high expression levels of TSC-specific genes were detected in proliferative cells. The cells could be passaged, and further directional differentiation into syncytiotrophoblast- and extravillous cytotrophoblast-like cells was confirmed by marker expression and hormone secretion. CONCLUSIONS We established hiPSC-derived hTSCs, which may be applicable for studying the functions of trophoblasts and the placenta. Our experimental system may provide useful tools for understanding the pathogenesis of infertility owing to trophoblast defects in the future.
Collapse
Affiliation(s)
- Zhuosi Li
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.
| | - Osamu Kurosawa
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan
| | - Hiroo Iwata
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.,Research Promotion Institution for COI Site, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Colorimetric immunoassay for human chorionic gonadotropin by using peroxidase-mimicking MnO2 nanorods immobilized in microplate wells. Mikrochim Acta 2019; 186:581. [DOI: 10.1007/s00604-019-3654-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022]
|
23
|
Development of trophoblast cystic structures from human induced pluripotent stem cells in limited-area cell culture. Biochem Biophys Res Commun 2018; 505:671-676. [PMID: 30292409 DOI: 10.1016/j.bbrc.2018.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Abstract
We developed a novel engineering technique to induce differentiation of human induced pluripotent stem cells (hiPSCs) into organoids mimicking the trophectoderm (TE). Here, hiPSCs were cultured on a limited area of 2-4 mm in diameter. After 15-20 days, spherical cysts appeared on the surface of the limited area. Secretion of human chorionic gonadotrophin (hCG) began to increase after ∼ 20 days and remained dramatically elevated over the next 20 days. Limited-area-cultured cysts exhibited expression of hCG, which was a result of epithelial differentiation. Low expression levels of pluripotent genes and high expression levels of trophoblast lineage-specific genes were detected in the cells of spherical cysts. Multinucleated syncytia trophoblast was observed in the reseeded cystic cells. We observed hiPSC-derived cysts that morphologically resembled trophectoderm in vivo. The limited-area cell culture induced a three-dimensional (3D) trophectoderm organoid, which has potential for use in the study of human trophoblast differentiation and placental morphogenesis.
Collapse
|