1
|
Liu M, Liu JP, Wang P, Fu YJ, Zhao M, Jiang YJ, Zhang ZN, Shang H. Approaches for Performance Verification Toward Standardization of Peripheral Blood Regulatory T-Cell Detection by Flow Cytometry. Arch Pathol Lab Med 2024; 148:1234-1243. [PMID: 38385871 DOI: 10.5858/arpa.2023-0284-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT.— Regulatory T-cell (Treg) detection in peripheral blood, based on flow cytometry, is invaluable for diagnosis and treatment of immune-mediated diseases. However, there is a lack of reliable methods to verify the performance, which is pivotal toward standardization of the Tregs assay. OBJECTIVE.— To conduct standardization studies and verify the performance of 3 commercially available reagent sets for the Tregs assay based on flow cytometry and agreement analysis for Treg detection across the different reagent sets. DESIGN.— The analytical performance of Tregs assay using reagent sets supplied by 3 manufacturers was evaluated after establishing the gating strategy and determining the optimal antibody concentration. Postcollection sample stability was evaluated, as well as the repeatability, reproducibility, reportable range, linearity, and assay carryover. Agreement between the different assays was assessed via Bland-Altman plots and linear regression analysis. The relationship between the frequency of CD4+CD25+CD127low/- Tregs and CD4+CD25+Foxp3+ Tregs was evaluated. RESULTS.— The postcollection sample stability was set at 72 hours after collection at room temperature. The accuracy, repeatability, reproducibility, and accuracy all met the requirements for clinical analysis. Excellent linearity, with R2 ≥0.9 and no assay carryover, was observed. For reportable range, a minimum of 1000 events in the CD3+CD4+ gate was required for Tregs assay. Moreover, the results for Tregs labeled by antibodies from the 3 manufacturers were in good agreement. The percentage of CD4+CD25+CD127low/- Tregs was closely correlated with CD4+CD25+Foxp3+ Tregs. CONCLUSIONS.— This is the first study to evaluate systematically the measurement performance of Tregs in peripheral blood by flow cytometry, which provides a practical solution to verifying the performance of flow cytometry-based immune monitoring projects in clinical practice.
Collapse
Affiliation(s)
- Mei Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Jin-Peng Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Pan Wang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Min Zhao
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| | - Yong-Jun Jiang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Rimac V, Bojanić I, Blažević N, Gojčeta K. Evaluation of a flow cytometry-based method for determination of T-lymphocyte subtypes for quality assessment of cell therapy products. Scand J Clin Lab Invest 2024; 84:273-277. [PMID: 39003578 DOI: 10.1080/00365513.2024.2377961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is currently the best-known type of immune effector cells therapy. For CAR T-cell therapy, the determination of CD3+ T cells is necessary for the quality control of fresh leukapheresis product as starting material. The aim was to validate analytical method for quantification of percentage and absolute count of T lymphocyte subtypes (CD3+, CD4+ and CD8+ cells) in fresh apheresis products using single-platform method on flow cytometer BD FACS Canto II. Validation study included determination of precision, trueness (bias), assessment of linearity, carryover, comparison of results obtained with two different protocols on flow cytometer for CD3+ cells determination and stability study. For between-run precision coefficients of variation (CVs) were <20%, as well as bias for all T-lymphocyte subtypes. For within-run precision, CVs were <10%, except for low CD8+ cell (percentage 10.51% and viable absolute count 12.37%). Comparison of results obtained with two different protocols for CD3+ cells determination shows no statistically significant difference. Statistically significant differences between results of the analysis of CD4+ cells in fresh samples and results obtained after storage at 4 °C (p = .004) and at room temperature (p = .018) were found. In conclusion, method for enumeration of T-lymphocyte subtypes can be used in routine work on BD FACS Canto II instrument for quality assessment of fresh cell products collected by leukapheresis procedure.
Collapse
Affiliation(s)
- Vladimira Rimac
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ines Bojanić
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikolina Blažević
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Koraljka Gojčeta
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
4
|
Kamperschroer C, Frank B, Genell C, Lebrec H, Mitchell-Ryan S, Molinier B, Newsome C, Piche MS, Weinstock D, Collinge M, Freebern W, Rubio D. Current approaches to evaluate the function of cytotoxic T-cells in non-human primates. J Immunotoxicol 2023; 20:2176952. [PMID: 36788724 DOI: 10.1080/1547691x.2023.2176952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTL) are a subset of T-cells that play a critical role in protecting against intracellular infections and cancer, and have the ability to identify and kill infected or transformed cells expressing non-self peptides associated with major histocompatibility (MHC) Class I molecules. Conversely, aberrant CTL activity can contribute to immune-related pathology under conditions of overwhelming infection or autoimmunity. Disease-modifying therapeutics can have unintended effects on CTL, and a growing number of therapeutics are intended to either suppress or enhance CTL or their functions. The susceptibility of CTL to unintended effects from common therapeutic modalities underscores the need for a better understanding of the impact that such therapies have on CTL function and the associated safety implications. While there are reliable ways of quantifying CTL, notably via flow cytometric analysis of specific CTL markers, it has been a greater challenge to implement fit-for-purpose methods measuring CTL function in the context of safety studies of therapeutics. This review focuses on methods for measuring CTL responses in the context of drug safety and pharmacology testing, with the goals of informing the reader about current approaches, evaluating their pros and cons, and providing perspectives on the utility of these approaches for safety evaluation.
Collapse
Affiliation(s)
| | | | | | - Hervé Lebrec
- Sonoma Biotherapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Paramithiotis E, Varaklis C, Pillet S, Shafiani S, Lancelotta MP, Steinhubl S, Sugden S, Clutter M, Montamat-Sicotte D, Chermak T, Crawford SY, Lambert BL, Mattison J, Murphy RL. Integrated antibody and cellular immunity monitoring are required for assessment of the long term protection that will be essential for effective next generation vaccine development. Front Immunol 2023; 14:1166059. [PMID: 38077383 PMCID: PMC10701527 DOI: 10.3389/fimmu.2023.1166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID pandemic exposed the critical role T cells play in initial immunity, the establishment and maintenance of long term protection, and of durable responsiveness against novel viral variants. A growing body of evidence indicates that adding measures of cellular immunity will fill an important knowledge gap in vaccine clinical trials, likely leading to improvements in the effectiveness of the next generation vaccines against current and emerging variants. In depth cellular immune monitoring in Phase II trials, particularly for high risk populations such as the elderly or immune compromised, should result in better understanding of the dynamics and requirements for establishing effective long term protection. Such analyses can result in cellular immunity correlates that can then be deployed in Phase III studies using appropriate, scalable technologies. Measures of cellular immunity are less established than antibodies as correlates of clinical immunity, and some misconceptions persist about cellular immune monitoring usefulness, cost, complexity, feasibility, and scalability. We outline the currently available cellular immunity assays, review their readiness for use in clinical trials, their logistical requirements, and the type of information each assay generates. The objective is to provide a reliable source of information that could be leveraged to develop a rational approach for comprehensive immune monitoring during vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Steve Steinhubl
- Purdue University, West Lafayette, IN, United States
- PhysIQ, Chicago, IL, United States
| | - Scott Sugden
- Medical and Scientific Affairs, Infectious Diseases, Cepheid, Sunnyvale, CA, United States
| | - Matt Clutter
- Research and Development, CellCarta, Montreal, QC, Canada
| | | | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | - Bruce L. Lambert
- Department of Communication Studies, Institute for Global Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Robert L. Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Tettero JM, Dakappagari N, Heidinga ME, Oussoren-Brockhoff Y, Hanekamp D, Pahuja A, Burns K, Kaur P, Alfonso Z, van der Velden VHJ, Te Marvelde JG, Hobo W, Slomp J, Bachas C, Kelder A, Nguyen K, Cloos J. Analytical assay validation for acute myeloid leukemia measurable residual disease assessment by multiparametric flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:426-439. [PMID: 37766649 DOI: 10.1002/cyto.b.22144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Measurable residual disease (MRD) assessed by multiparametric flow cytometry (MFC) has gained importance in clinical decision-making for acute myeloid leukemia (AML) patients. However, complying with the recent In Vitro Diagnostic Regulations (IVDR) in Europe and Food and Drug Administration (FDA) guidance in the United States requires rigorous validation prior to their use in investigational clinical trials and diagnostics. Validating AML MRD-MFC assays poses challenges due to the unique underlying disease biology and paucity of patient specimens. In this study, we describe an experimental framework for validation that meets regulatory expectations. METHODS Our validation efforts focused on evaluating assay accuracy, analytical specificity, analytical and functional sensitivity (limit of blank (LoB), detection (LLoD) and quantitation (LLoQ)), precision, linearity, sample/reagent stability and establishing the assay background frequencies. RESULTS Correlation between different MFC methods was highly significant (r = 0.99 for %blasts and r = 0.93 for %LAIPs). The analysis of LAIP specificity accurately discriminated from negative control cells. The assay demonstrated a LoB of 0.03, LLoD of 0.04, and LLoQ of 0.1%. Precision experiments yielded highly reproducible results (Coefficient of Variation <20%). Stability experiments demonstrated reliable measurement of samples up to 96 h from collection. Furthermore, the reference range of LAIP frequencies in non-AML patients was below 0.1%, ranging from 0.0% to 0.04%. CONCLUSION In this manuscript, we present the validation of an AML MFC-MRD assay using BM/PB patient specimens, adhering to best practices. Our approach is expected to assist other laboratories in expediting their validation activities to fulfill recent health authority guidelines.
Collapse
Affiliation(s)
- Jesse M Tettero
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Maaike E Heidinga
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yvonne Oussoren-Brockhoff
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anil Pahuja
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Kerri Burns
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Pavinder Kaur
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Zeni Alfonso
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | | | - Jeroen G Te Marvelde
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennichjen Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angele Kelder
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kevin Nguyen
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hickford ES, Dejager L, Yuill D, Kotian A, Shankar S, Staelens L, Ulrichts H, Lewis S, Louber J, Williams A, Le Provost GS, Cutler P. A biomarker assay validation approach tailored to the context of use and bioanalytical platform. Bioanalysis 2023; 15:757-771. [PMID: 37526064 DOI: 10.4155/bio-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
It is widely acknowledged by the bioanalytical and biomarker community that biomarker assay validations should be fit-for-purpose depending on the context of use. The challenge is how to consistently apply these principles in teams responsible for measuring a disparate array of biomarkers, often on multiple analytical platforms, at various stages of the drug discovery and development pipeline and across diverse biology focus areas. To drive consistency, while maintaining the necessary flexibility to allow validations to be driven by scientific rationale and taking into consideration the context of use and associated biological and (pre)analytical factors, a framework applicable across biomarker assays was developed. Herein the authors share their perspective to engage in the ongoing conversation around fit-for-purpose biomarker assay validation.
Collapse
Affiliation(s)
- Elizabeth S Hickford
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Lien Dejager
- Precision Medicine & Biomarkers, Translational Medicine, UCB Pharma, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | - Daisy Yuill
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Apoorva Kotian
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Sucharita Shankar
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Ludovicus Staelens
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Pharma, Chemin du Foriest, B-1420 Braine l'Alleud, Belgium
| | - Hans Ulrichts
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Pharma, Chemin du Foriest, B-1420 Braine l'Alleud, Belgium
- Employed by UCB Pharma, Belgium or UCB Biopharma UK at the time the work was undertaken
| | - Sion Lewis
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Jade Louber
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
- Employed by UCB Pharma, Belgium or UCB Biopharma UK at the time the work was undertaken
| | - Amanda Williams
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Gabrielle S Le Provost
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| | - Paul Cutler
- Translational Biomarkers & Bioanalysis, Development Sciences, UCB Biopharma UK, Bath Road, Slough, SL1 3WE, UK
| |
Collapse
|
8
|
Validation of an ICH Q2 Compliant Flow Cytometry-Based Assay for the Assessment of the Inhibitory Potential of Mesenchymal Stromal Cells on T Cell Proliferation. Cells 2023; 12:cells12060850. [PMID: 36980191 PMCID: PMC10047294 DOI: 10.3390/cells12060850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to suppress pathological activation of immune cells and have therefore been considered for the treatment of Graft-versus-Host-Disease. The clinical application of MSCs requires a process validation to ensure consistent quality. A flow cytometry-based mixed lymphocyte reaction (MLR) was developed to analyse the inhibitory effect of MSCs on T cell proliferation. Monoclonal antibodies were used to stimulate T cell expansion and determine the effect of MSCs after four days of co-culture based on proliferation tracking with the violet proliferation dye VPD450. Following the guidelines of the International Council for Harmonisation (ICH) Q2 (R1), the performance of n = 30 peripheral blood mononuclear cell (PBMC) donor pairs was assessed. The specific inhibition of T cells by viable MSCs was determined and precision values of <10% variation for repeatability and <15% for intermediate precision were found. Compared to a non-compendial reference method, a linear correlation of r = 0.9021 was shown. Serial dilution experiments demonstrated a linear range for PBMC:MSC ratios from 1:1 to 1:0.01. The assay was unaffected by PBMC inter-donor variability. In conclusion, the presented MLR can be used as part of quality control tests for the validation of MSCs as a clinical product.
Collapse
|
9
|
Hays A, Durham J, Gullick B, Rudemiller N, Schneider T. Bioanalytical Assay Strategies and Considerations for Measuring Cellular Kinetics. Int J Mol Sci 2022; 24:ijms24010695. [PMID: 36614138 PMCID: PMC9820866 DOI: 10.3390/ijms24010695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
A vast evolution of drug modalities has occurred over the last several decades. Novel modalities such as cell and gene therapies have proven to be efficacious for numerous clinical indications-primarily in rare disease and immune oncology. Because of this success, drug developers are heavily investing in these novel modalities. Given the complexity of these therapeutics, a variety of bioanalytical techniques are employed to fully characterize the pharmacokinetics of these therapies in clinical studies. Industry trends indicate that quantitative PCR (qPCR) and multiparameter flow cytometry are both valuable in determining the pharmacokinetics, i.e. cellular kinetics, of cell therapies. This manuscript will evaluate the pros and cons of both techniques and highlight regulatory guidance on assays for measuring cellular kinetics. Moreover, common considerations when developing these assays will be addressed.
Collapse
|
10
|
Li M, Morse B, Kassim S. Development and clinical translation considerations for the next wave of gene modified hematopoietic stem and progenitor cells therapies. Expert Opin Biol Ther 2022; 22:1177-1191. [PMID: 35833356 DOI: 10.1080/14712598.2022.2101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Consistent and reliable manufacture of gene modified hematopoietic stem and progenitor cell (HPSC) therapies will be of the utmost importance as they become more mainstream and address larger populations. Robust development campaigns will be needed to ensure that these products will be delivered to patients with the highest quality standards. AREAS COVERED Through publicly available manuscripts, press releases, and news articles - this review touches on aspects related to HSPC therapy, development, and manufacturing. EXPERT OPINION Recent advances in genome modification technology coupled with the longstanding clinical success of HSPCs warrants great optimism for the next generation of engineered HSPC-based therapies. Treatments for some diseases that have thus far been intractable now appear within reach. Reproducible manufacturing will be of critical importance in delivering these therapies but will be challenging due to the need for bespoke materials and methods in combination with the lack of off-the-shelf solutions. Continued progress in the field will manifest in the form of industrialization which currently requires attention and resources directed toward the custom reagents, a focus on closed and automated processes, and safer and more precise genome modification technologies that will enable broader, faster, and safer access to these life-changing therapies.
Collapse
Affiliation(s)
| | - Brent Morse
- Dark Horse Consulting Group, Walnut Creek, CA, USA
| | | |
Collapse
|
11
|
Paramithiotis E, Sugden S, Papp E, Bonhomme M, Chermak T, Crawford SY, Demetriades SZ, Galdos G, Lambert BL, Mattison J, McDade T, Pillet S, Murphy R. Cellular Immunity Is Critical for Assessing COVID-19 Vaccine Effectiveness in Immunocompromised Individuals. Front Immunol 2022; 13:880784. [PMID: 35693815 PMCID: PMC9179228 DOI: 10.3389/fimmu.2022.880784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 vaccine clinical development was conducted with unprecedented speed. Immunity measurements were concentrated on the antibody response which left significant gaps in our understanding how robust and long-lasting immune protection develops. Better understanding the cellular immune response will fill those gaps, especially in the elderly and immunocompromised populations which not only have the highest risk for severe infection, but also frequently have inadequate antibody responses. Although cellular immunity measurements are more logistically complex to conduct for clinical trials compared to antibody measurements, the feasibility and benefit of doing them in clinical trials has been demonstrated and so should be more widely adopted. Adding significant cellular response metrics will provide a deeper understanding of the overall immune response to COVID-19 vaccination, which will significantly inform vaccination strategies for the most vulnerable populations. Better monitoring of overall immunity will also substantially benefit other vaccine development efforts, and indeed any therapies that involve the immune system as part of the therapeutic strategy.
Collapse
Affiliation(s)
| | - Scott Sugden
- Scientific Team, CellCarta, Montreal, QC, Canada
| | - Eszter Papp
- Global Research and Development, CellCarta, Montreal, QC, Canada
| | - Marie Bonhomme
- Vaccine Sciences Division, Pharmaceutical Product Development (PPD) Inc., Wilmington, NC, United States
| | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | | | - Gerson Galdos
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Bruce L. Lambert
- Center for Communication and Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Information, Kaiser Permanente, Pasadena, CA, United States
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Thomas McDade
- Department of Anthropology, Northwestern University, Evanston, IL, United States
| | | | - Robert Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Yang JHM, Ward-Hartstonge KA, Perry DJ, Blanchfield JL, Posgai AL, Wiedeman AE, Diggins K, Rahman A, Tree TIM, Brusko TM, Levings MK, James EA, Kent SC, Speake C, Homann D, Long SA. Guidelines for standardizing T-cell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. Eur J Immunol 2022; 52:372-388. [PMID: 35025103 PMCID: PMC9006584 DOI: 10.1002/eji.202049067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Cytometric immunophenotyping is a powerful tool to discover and implement T-cell biomarkers of type 1 diabetes (T1D) progression and response to clinical therapy. Although many discovery-based T-cell biomarkers have been described, to date, no such markers have been widely adopted in standard practice. The heterogeneous nature of T1D and lack of standardized assays and experimental design across studies is a major barrier to the broader adoption of T-cell immunophenotyping assays. There is an unmet need to harmonize the design of immunophenotyping assays, including those that measure antigen-agnostic cell populations, such that data collected from different clinical trial sites and T1D cohorts are comparable, yet account for cohort-specific features and different drug mechanisms of action. In these Guidelines, we aim to provide expert advice on how to unify aspects of study design and practice. We provide recommendations for defining cohorts, method implementation, as well as tools for data analysis and reporting by highlighting and building on selected successes. Harmonization of cytometry-based T-cell assays will allow researchers to better integrate findings across trials, ultimately enabling the identification and validation of biomarkers of disease progression and treatment response in T1D.
Collapse
Affiliation(s)
- Jennie H. M. Yang
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, University of British Columbia, Vancouver, California, USA
- BC Children’s Hospital Research Institute, Vancouver, California, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - J. Lori Blanchfield
- Center for Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Alice E. Wiedeman
- Center for Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Kirsten Diggins
- Center for Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Hess Center for Science and Medicine, Icahn School of Medicine, New York, New York, USA
| | - Timothy I. M. Tree
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Megan K. Levings
- Department of Surgery, University of British Columbia, Vancouver, California, USA
- BC Children’s Hospital Research Institute, Vancouver, California, USA
- School of Biomedical Engineering, University of British Columbia, California, USA
| | - Eddie A. James
- Center for Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Sally C. Kent
- Diabetes Center of Excellence, University of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine, New York, New York, USA
- Diabetes, Obesity, & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - S. Alice Long
- Center for Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | | |
Collapse
|
13
|
Patel S, Ramnoruth N, Wehr P, Rossjohn J, Reid HH, Campbell K, Nel HJ, Thomas R. Evaluation of a fit-for-purpose assay to monitor antigen-specific functional CD4+ T-cell subpopulations in rheumatoid arthritis using flow cytometry-based peptide-MHC class-II tetramer staining. Clin Exp Immunol 2022; 207:72-83. [PMID: 35020859 PMCID: PMC8802177 DOI: 10.1093/cei/uxab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterize antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunized HLA-DR1/DR4 humanized mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognizing this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1∗04:01 or ∗01:01-collagen type II (CII)259-273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.
Collapse
Affiliation(s)
- Swati Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nishta Ramnoruth
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pascale Wehr
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hugh H Reid
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Kim Campbell
- Janssen Research & Development, LLC, Spring House, PA, USA
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Flow Cytometry for Beginners: Hints and Tips for Approaching the Very First Single-Cell Technique. Methods Mol Biol 2022; 2386:27-41. [PMID: 34766263 DOI: 10.1007/978-1-0716-1771-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While many single-cell proteomics techniques have been rapidly developed over the past decade, flow cytometry still remains the pillar of single-cell protein analysis, as it allows to rapidly analyze and characterize protein expression in millions of cells.In this chapter, we will describe the main steps to prepare and acquire samples for flow cytometry, with particular focus on the setup of the right controls that are instrumental in analyzing and interpreting the results.
Collapse
|
15
|
Approaches to overcome the challenge of sample stability for flow cytometry analysis in clinical trials. Bioanalysis 2021; 13:1587-1589. [PMID: 34645289 DOI: 10.4155/bio-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Effectively utilizing the Sponsor Contract Research Organization interaction for successful implementation of critical flow cytometry in the clinic. Bioanalysis 2021; 13:1617-1625. [PMID: 34601974 DOI: 10.4155/bio-2021-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As the number of therapeutic modalities expand, and the field of scientific research evolves toward finding treatment solutions for complex and rare disease, an ability to demonstrate efficacy through biomarker end points in clinical development studies is becoming increasingly important. Implementing flow cytometry in a clinical setting is challenging and many sponsor organizations take a hybrid approach, developing complex analytical methods internally before identifying and forming partnerships with contract research organizations to conduct the formal analytical method validation and sample bioanalysis. Ensuring that these interactions are effective is critical to the delivery of high-quality, impactful clinical data. This paper provides a review of the recommendations, challenges and solutions for the implementation of decision-making flow cytometry end points effectively utilizing the Sponsor Contract Research Organization interaction.
Collapse
|
17
|
A user's guide to multicolor flow cytometry panels for comprehensive immune profiling. Anal Biochem 2021; 627:114210. [PMID: 34033799 DOI: 10.1016/j.ab.2021.114210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Multicolor flow cytometry is an essential tool for studying the immune system in health and disease, allowing users to extract longitudinal multiparametric data from patient samples. The process is complicated by substantial variation in performance between each flow cytometry instrument, and analytical errors are therefore common. Here, we present an approach to overcome such limitations by applying a systematic workflow for pairing colors to markers optimized for the equipment intended to run the experiments. The workflow is exemplified by the design of four comprehensive flow cytometry panels for patients with hematological cancer. Methods for quality control, titration of antibodies, compensation, and staining of cells for obtaining optimal results are also addressed. Finally, to handle the large amounts of data generated by multicolor flow cytometry, unsupervised clustering techniques are used to identify significant subpopulations not detected by conventional sequential gating.
Collapse
|
18
|
Lot-to-lot reproducibility, stability and life cycle management of antibody reagents for flow cytometry. Bioanalysis 2021; 13:745-759. [PMID: 34009005 DOI: 10.4155/bio-2020-0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The increasing number of biopharmaceuticals, gene and cell therapies in development has seen a growing use of flow cytometry to measure biomarkers, generate pharmacokinetic data, assess immunogenicity and investigate target engagement. The importance of these data types and their inclusion in regulatory submissions mean that flow cytometry analyses are now expected to demonstrate robust performance and comply with both regulatory and scientific recommendations during their validation and subsequent use in sample analysis. The control of the 'critical reagents' commonly used in flow cytometry presents some specific challenges, particularly when an assay is required for use over a long period of time across different phases of a drug development program, or where it is deployed in complex, multisite clinical studies. This paper highlights some key challenges in flow cytometry reagent management with some of the strategies employed to control and monitor flow cytometry critical reagents.
Collapse
|
19
|
Critical reagents in flow cytometry, instrumentation and application in drug discovery development. Bioanalysis 2021; 13:841-846. [PMID: 33890498 DOI: 10.4155/bio-2020-0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Flow cytometer is a powerful cellular analysis tool consists of three main components; fluidics, optics and electronics. Flow cytometry methods have been used in all stages of drug development as like ligand binding assays (LBA). Both LBA and flow cytometry methods require specific interaction between the critical reagents and the analytes. Antibodies and their conjugates, viable dyes and permeabilizing buffer are the main critical reagents in flow cytometry methods. Similarly, antibodies, engineered proteins and their conjugates are the main critical reagents in LBA. The main difference between the two methods is the lack of true reference standards for flow cytometry cellular analysis.
Collapse
|
20
|
Carstensen S, Holz O, Hohlfeld JM, Müller M. Quantitative analysis of endotoxin-induced inflammation in human lung cells by Chipcytometry. Cytometry A 2021; 99:967-976. [PMID: 33860615 DOI: 10.1002/cyto.a.24352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/07/2022]
Abstract
Chipcytometry is a tool that uses iterative staining cycles with multiple antibodies for a detailed characterization of cells. Cell recognition is based on morphological features. Cells fixed on microfluidic chips can be stored and shipped enabling a centralized analysis, which is important for assessments in multi-center clinical trials. The method was initially implemented for the analysis of cells from peripheral blood. We adapted it to more heterogeneous human lung cells from bronchoalveolar lavage (BAL) fluid and induced sputum (IS). We aimed to assess the performance of Chipcytometry to detect and quantify the endotoxin induced inflammatory response in healthy subjects. BAL and IS samples of 10 healthy subjects were collected prior to and following segmental and inhaled endotoxin challenge. Samples were analyzed by Chipcytometry and were compared with flow cytometry, and differential cell count (DCC). Chipcytometry clearly detected the endotoxin induced inflammatory response which was characterized by a massive increase of neutrophils (BAL: 2.5% to 54.7%; IS: 40.5% to 71.1%) and monocytes (BAL: 7.7% to 24.7%; IS: 8.0% to 14.5%). While some differences between detection methods exist, the overall results were comparable. The ability of Chipcytometry to verify fluorescent signals with morphological features improved the precision of rare cell analysis such as of induced sputum lymphocytes. In conclusion, Chipcytometry enables the quantitative analysis of cells from BAL fluid and IS. Advantages over DCC and flow cytometry include the storage of cells on chips, the ability for re-analysis and the mapping of surface marker binding to morphological information. It therefore appears to be a promising method for use in clinical respiratory drug development.
Collapse
Affiliation(s)
- Saskia Carstensen
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Meike Müller
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
21
|
Sugimoto H, Chen S, Minembe JP, Chouitar J, He X, Wang H, Fang X, Qian MG. Insights on Droplet Digital PCR-Based Cellular Kinetics and Biodistribution Assay Support for CAR-T Cell Therapy. AAPS J 2021; 23:36. [PMID: 33655393 PMCID: PMC7925486 DOI: 10.1208/s12248-021-00560-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023] Open
Abstract
Characterizing in vivo cellular kinetics and biodistribution of chimeric antigen receptor T (CAR-T) cells is critical for toxicity assessment, nonclinical and clinical efficacy studies. To date, the standardized assay to characterize CAR-T cell distribution, expansion, contraction, and persistence profiles is not readily available. To overcome this limitation and increase comparability among studies, we have established a universal protocol for analysis. We established a duplexing ddPCR protocol for the CAR-T transgene and reference gene to normalize the genomic DNA input prepared from mouse blood and tissues. The high-throughput gDNA extraction method enabled highly reproducible gDNA extraction while eliminating labor-intensive steps. The investigational CAR-T cells were intravenously injected into immunodeficient mice bearing human colorectal cancer xenografts. The blood and tissue samples were collected to measure the cellular kinetics by ddPCR and flow cytometry. The standard curves were linear throughout the calibration range with acceptable intra- and inter-day precision and accuracy. The gDNA recovery study performed by spiking in the exo-gene plasmid DNA or CAR-T cells revealed that the recovery ranged from 60 to 100% in blood and tissue homogenates. The use of both units of copy/μg gDNA and copy/μL blood met the current regulatory requirement and allowed for a systematic understanding of CAR-T cell expansion and a direct comparison with the flow cytometry data. A standardized ddPCR assay, including automated gDNA extraction procedures, has been established for evaluating cellular kinetics and biodistribution in CAR-T cell therapies.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 125 Binney Street, Cambridge, Massachusetts, 02142, USA.
| | - Susan Chen
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Jean-Pierre Minembe
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Johara Chouitar
- Department of Immuno Oncology DDU, Takeda Pharmaceuticals International Co, 40 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Xingyue He
- Department of Immuno Oncology DDU, Takeda Pharmaceuticals International Co, 40 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Haiqing Wang
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Xiaodong Fang
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA.
| | - Mark G Qian
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
22
|
Krieger AG, Zhang J, Lin XN. Temperature regulation as a tool to program synthetic microbial community composition. Biotechnol Bioeng 2021; 118:1381-1392. [PMID: 33399224 DOI: 10.1002/bit.27662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/07/2022]
Abstract
Engineering of synthetic microbial communities is emerging as a powerful new paradigm for performing various industrially, medically, and environmentally important processes. To reach the fullest potential, however, this approach requires further development in many aspects, a key one being regulating the community composition. Here we leverage well-established mechanisms in ecology which govern the relative abundance of multispecies ecosystems and develop a new tool for programming the composition of synthetic microbial communities. Using a simple model system consisting of two microorganisms Escherichia coli and Pseudomonas putida, which occupy different but partially overlapping thermal niches, we demonstrated that temperature regulation could be used to enable coexistence and program the community composition. We first investigated a constant temperature regime and showed that different temperatures led to different community compositions. Next, we invented a new cycling temperature regime and showed that it can dynamically tune the microbial community, achieving a wide range of compositions depending on parameters that are readily manipulatable. Our work provides conclusive proof of concept that temperature regulation is a versatile and powerful tool capable of programming compositions of synthetic microbial communities.
Collapse
Affiliation(s)
- Adam G Krieger
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahao Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoxia N Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Sanjabi S, Lear S. New cytometry tools for immune monitoring during cancer immunotherapy. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:10-18. [PMID: 33432667 DOI: 10.1002/cyto.b.21984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
The success of cancer immunotherapy (CIT) in the past decade has brought renewed excitement and the need to better understand how the human immune system functions during health and disease. Advances in single cell technologies have also inspired the creation of a Human Cell Atlas to identify and describe every cell in the human body with the intention of elucidating how to "fix" the ones that fail normal function. For example, treatment of cancer patients with immune checkpoint blockade (ICB) antibodies can reinvigorate their T cells and produce durable clinical benefit in a subset of patients, but a number of resistance mechanisms exist that prohibit full benefit to all treated patients. Early detection of biomarkers of response and mechanisms of resistance are needed to identify the patients who can benefit most from ICB. A noninvasive approach to predict treatment outcomes early after immunotherapies is a longitudinal analysis of peripheral blood immune cells using flow cytometry. Here we review some of the advances in our understanding of how ICB antibodies can re-invigorate tumor-specific T cells and also highlight the recent advances in high complexity flow cytometry, including spectral cytometers, that allow longitudinal sampling and deep immune phenotyping in clinical settings. We encourage the scientific community to utilize advanced cytometry platforms and analyses for immune monitoring in order to optimize CIT treatments for maximum clinical benefit.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Department of Oncology Biomarker Development, Genentech Developmental Sciences, South San Francisco, California, USA
| | - Sean Lear
- Department of OMNI Biomarker Development, Genentech Developmental Sciences, South San Francisco, California, USA
| |
Collapse
|
24
|
Cabanski M, Oldaker T, Stewart JJ, Selliah N, Eck S, Green C, Litwin V, Vitaliti A. Flow cytometric method transfer: Recommendations for best practice. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:52-62. [PMID: 33207038 DOI: 10.1002/cyto.b.21971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 11/06/2020] [Indexed: 01/12/2023]
Abstract
As with many aspects of the validation and monitoring of flow cytometric methods, the method transfer processes and acceptance criteria described for other technologies are not fully applicable. This is due to the complexity of the highly configurable instrumentation, the complexity of cellular measurands, the lack of qualified reference materials for most assays, and limited specimen stability. There are multiple reasons for initiating a method transfer, multiple regulatory settings, and multiple context of use. All of these factors influence the specific requirements for the method transfer. This recommendation paper describes the considerations and best practices for the transfer of flow cytometric methods and provides individual case studies as examples. In addition, the manuscript emphasizes the importance of appropriately conducting a method transfer on data reliability.
Collapse
Affiliation(s)
- Maciej Cabanski
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Teri Oldaker
- Oldaker Consulting (LLC), San Clemente, California, USA
| | | | | | - Steve Eck
- AstraZeneca, Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Cherie Green
- Department of Development Sciences, Genentech, Inc., A Member of Roche Group, South San Francisco, California, USA
| | | | - Alessandra Vitaliti
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
25
|
Czechowska K, Lannigan J, Wang L, Arcidiacono J, Ashhurst TM, Barnard RM, Bauer S, Bispo C, Bonilla DL, Brinkman RR, Cabanski M, Chang HD, Chakrabarti L, Chojnowski G, Cotleur B, Degheidy H, Dela Cruz GV, Eck S, Elliott J, Errington R, Filby A, Gagnon D, Gardner R, Green C, Gregory M, Groves CJ, Hall C, Hammes F, Hedrick M, Hoffman R, Icha J, Ivaska J, Jenner DC, Jones D, Kerckhof FM, Kukat C, Lanham D, Leavesley S, Lee M, Lin-Gibson S, Litwin V, Liu Y, Molloy J, Moore JS, Müller S, Nedbal J, Niesner R, Nitta N, Ohlsson-Wilhelm B, Paul NE, Perfetto S, Portat Z, Props R, Radtke S, Rayanki R, Rieger A, Rogers S, Rubbens P, Salomon R, Schiemann M, Sharpe J, Sonder SU, Stewart JJ, Sun Y, Ulrich H, Van Isterdael G, Vitaliti A, van Vreden C, Weber M, Zimmermann J, Vacca G, Wallace P, Tárnok A. Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2018 Conference Workshops. Cytometry A 2020; 95:598-644. [PMID: 31207046 DOI: 10.1002/cyto.a.23777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Joanne Lannigan
- Flow Cytometry Core, University of Virginia, School of Medicine, 1300 Jefferson Park Ave., Charlottesville, Virginia
| | - Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | - Judith Arcidiacono
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Thomas M Ashhurst
- Sydney Cytometry Facility, Discipline of Pathology, and Ramaciotti Facility for Human Systems Biology; Charles Perkins Centre, The University of Sydney and Centenary Institute, New South Wales, Australia
| | - Ruth M Barnard
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Steven Bauer
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Cláudia Bispo
- UCSF Parnassus Flow Cytometry Core Facility, 513 Parnassus Ave, San Francisco, California
| | - Diana L Bonilla
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan R Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, Canada
| | - Maciej Cabanski
- Novartis Pharma AG, Fabrikstrasse 10-4.27.02, CH-4056, Basel, Switzerland
| | - Hyun-Dong Chang
- Schwiete-Laboratory Microbiota and Inflammation, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Lina Chakrabarti
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - Grace Chojnowski
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | | | - Heba Degheidy
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Gelo V Dela Cruz
- Flow Cytometry Platform, Novo Nordisk Center for Stem Cell Biology - Danstem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen, Denmark
| | - Steven Eck
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - John Elliott
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | | | - Andy Filby
- Newcastle University, Flow Cytometry Core Facility, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | | | - Rui Gardner
- Memorial Sloan Kettering Cancer Center, Flow Cytometry Core, New York, New York
| | | | - Michael Gregory
- Division of Advanced Research Technologies, New York University Langone Health, New York, New York
| | - Christopher J Groves
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | | | - Frederik Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | | | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland
| | - Dominic C Jenner
- Defence Science and Technology Laboratory, Chemical Biological and Radiological Division, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Köln, Germany
| | | | | | - Michael Lee
- The University California San Francisco, 505 Parnassus Ave, San Francisco, California
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | - Virginia Litwin
- Memorial Sloan Kettering Cancer Center, Flow Cytometry Core, New York, New York
| | | | - Jenny Molloy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Susann Müller
- Working Group Flow Cytometry, Department of Environmental Microbiology, Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany
| | - Jakub Nedbal
- Marylou Ingram ISAC Scholar, King's College London, UK
| | - Raluca Niesner
- Marylou Ingram ISAC Scholar, German Rheumatism Research Centre, Berlin, Germany
| | - Nao Nitta
- Department of Chemistry, The University of Tokyo
| | - Betsy Ohlsson-Wilhelm
- SciGro, North Central Office, Foster Plaza 5, Suite 300/PMB 20, 651 Holiday Drive, Pittsburgh, Pennsylvania
| | - Nicole E Paul
- LMA CyTOF Core, Dana-Faber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts
| | - Stephen Perfetto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health (NIH), 40 Convent Drive, Bethesda, Maryland
| | - Ziv Portat
- Weizmann Institute of Science, Life Sciences Core Facilities, Flow Cytometry Unit, Rehovot, 7610001, Israel
| | - Ruben Props
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefan Radtke
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, Washington
| | - Radhika Rayanki
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - Aja Rieger
- Faculty of Medicine and Dentistry Flow Cytometry Facility, Department of Medical Microbiology & Immunology, University of Alberta, 6-020C Katz Group Centre for Pharmacy and Health Research, Canada
| | - Samson Rogers
- TTP plc, Melbourn Science Park, Melbourn, Hertfordshire SG8 6EE, UK
| | - Peter Rubbens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Robert Salomon
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, New South Wales, Australia
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - John Sharpe
- Cytonome/ST LLC, 9 Oak Park Drive, Bedford, Massachusetts
| | | | - Jennifer J Stewart
- Flow Contract Site Laboratory, LLC 18323, Bothell, Everett Highway, Suite 110, Bothell, Washington
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Caryn van Vreden
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Michael Weber
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Jacob Zimmermann
- Mucosal Immunology and Host-Microbial Mutualism laboratories, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Paul Wallace
- Roswell Park Comprehensive Cancer Center, New York
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
26
|
Mfarrej B, Gaude J, Couquiaud J, Calmels B, Chabannon C, Lemarie C. Validation of a flow cytometry-based method to quantify viable lymphocyte subtypes in fresh and cryopreserved hematopoietic cellular products. Cytotherapy 2020; 23:77-87. [PMID: 32718876 DOI: 10.1016/j.jcyt.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AIMS Adoptive cellular therapy with immune effector cells (IECs) has shown promising efficacy against some neoplastic diseases as well as potential in immune regulation. Both inherent variability in starting material and variations in cell composition produced by the manufacturing process must be thoroughly evaluated with a validated method established to quantify viable lymphocyte subtypes. Currently, commercialized immunophenotyping methods determine cell viability with significant errors in thawed products since they do not include any viability staining. We hereby report on the validation of a flow cytometry-based method for quantifying viable lymphocyte immunophenotypes in fresh and cryopreserved hematopoietic cellular products. METHODS Using fresh or frozen cellular products and stabilized blood, we report on the validation parameters accuracy, uncertainty, precision, sensitivity, robustness and contamination between samples for quantification of viable CD3+, CD4+ T cells, CD8+ T cells, CD3-CD56+CD16+/- NK cells, CD19+ B cells and CD14+ monocytes of relevance to fresh and cryopreserved hematopoietic cellular products using the Cytomics FC500 cytometer (Beckman Coulter). RESULTS The acceptance criteria set in the validation plan were all met. The method is able to accommodate the variability in absolute numbers of cells in starting materials collected or cryopreserved from patients or healthy donors (uncertainty of ≤20% at three different concentrations), stability over time (compliance over 3 years during regular inter-laboratory comparisons) and confidence in meaningful changes during cell processing and manufacturing (intra-assay and intermediate precision of 10% coefficient of variation). Furthermore, the method can accurately report on the efficacy of cell depletion since the lower limit of quantification was established (CD3+, CD4+ and CD8+ cells at 9, 8 and 8 cells/µL, respectively). The method complies with Foundation for the Accreditation of Cellular Therapy (FACT) standards for IEC, FACT-Joint Accreditation Committee of ISCT-EBMT (JACIE) hematopoietic cell therapy standards, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Q2(R1) and International Organization for Standardization 15189 standards. Furthermore, it complies with Ligand Binding Assay Bioanalytical Focus Group/American Association of Pharmaceutical Scientists, International Council for Standardization of Hematology/International Clinical Cytometry Society and European Bioanalysis Forum recommendations for validating such methods. CONCLUSIONS The implications of this effort include standardization of viable cell immunophenotyping of starting material for cell manufacturing, cell selection and in-process quality controls or dosing of IECs. This method also complies with all relevant standards, particularly FACT-JACIE standards, in terms of enumerating and reporting on the viability of the "clinically relevant cell populations."
Collapse
Affiliation(s)
- Bechara Mfarrej
- Centre de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France.
| | - Julie Gaude
- Centre de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France
| | - Jerome Couquiaud
- Centre de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France
| | - Boris Calmels
- Centre de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France
| | | | - Claude Lemarie
- Centre de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
27
|
Extending flow cytometry sample stability by freezing lysed whole blood for clinical monitoring of Treg. Bioanalysis 2020; 12:655-663. [PMID: 32489119 DOI: 10.4155/bio-2020-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A major challenge for flow cytometry assays supporting clinical trials is postcollection sample stability. Here we present an approach that could mitigate the stability issue while preserving sample integrity and cellular markers, especially when enumerating rare populations such as Tregs. Materials & methods: Stability was evaluated using whole blood stored at room temperature and lysed whole blood stored at -80°C. Results: Freezing of lysed whole blood preserved sample integrity and prolonged sample stability for Treg percentage, absolute cell count and median fluorescent intensity values to 11 versus 3 days at room temperature storage. Conclusion: Frozen storage of lysed whole blood can extend sample stability, improve data quality and facilitate sample batch processing during clinical study sample analysis.
Collapse
|
28
|
Multicentre Harmonisation of a Six-Colour Flow Cytometry Panel for Naïve/Memory T Cell Immunomonitoring. J Immunol Res 2020; 2020:1938704. [PMID: 32322591 PMCID: PMC7153001 DOI: 10.1155/2020/1938704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023] Open
Abstract
Background Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naïve/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naïve/memory subset frequencies particularly in the whole blood setting. Conclusion Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options.
Collapse
|
29
|
Yamamoto S, Matsumoto SI, Shimizu H, Hirabayashi H. Quantitative application of flow cytometry for the analysis of circulating human T cells: A preclinical pharmacokinetic study. Drug Metab Pharmacokinet 2020; 35:207-213. [DOI: 10.1016/j.dmpk.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
|
30
|
Kalina T, Abraham RS, Rizzi M, van der Burg M. Editorial: Application of Cytometry in Primary Immunodeficiencies. Front Immunol 2020; 11:463. [PMID: 32265921 PMCID: PMC7096470 DOI: 10.3389/fimmu.2020.00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Tomas Kalina
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Hospital Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Bauer M, Strom M, Hammond DS, Shigdar S. Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications? Molecules 2019; 24:molecules24234377. [PMID: 31801185 PMCID: PMC6930532 DOI: 10.3390/molecules24234377] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
The mainstay of clinical diagnostics is the use of specialised ligands that can recognise specific biomarkers relating to pathological changes. While protein antibodies have been utilised in these assays for the last 40 years, they have proven to be unreliable due to a number of reasons. The search for the 'perfect' targeting ligand or molecular probe has been slow, though the description of chemical antibodies, also known as aptamers, nearly 30 years ago suggested a replacement reagent. However, uptake has been slow to progress into the clinical environment. In this review, we discuss the issues associated with antibodies and describe some of the applications of aptamers that have relevancy to the clinical diagnostic environment.
Collapse
Affiliation(s)
- Michelle Bauer
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
| | - Mia Strom
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
| | - David S Hammond
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
- Correspondence:
| |
Collapse
|
32
|
Approaching stability challenges for flow cytometry in a regulated bioanalytical environment. Bioanalysis 2019; 11:1845-1858. [DOI: 10.4155/bio-2019-0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stability of samples for flow cytometry is a critical parameter since storage period of samples is restricted to only a limited period after collection. For most studies, clinical samples have to be shipped to a testing laboratory, in contrast to preclinical samples, which can be analyzed on-site or off-site. Therefore, evaluating stability is critical to provide flexibility on testing of samples to obtain reliable data. A wide variety of factors contributes to establishing stability from sample collection through acquisition. We provided suggestions for experimental and stability parameters to be taken into consideration when designing a flow cytometry method. The case studies presented represent how certain stability issues were overcome to perform flow cytometry assays in a regulated bioanalytical environment.
Collapse
|
33
|
Receptor occupancy measurement of anti-PD-1 antibody drugs in support of clinical trials. Bioanalysis 2019; 11:1347-1358. [DOI: 10.4155/bio-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: The reliable measurement of receptor occupancy (RO) provides informative data for efficacy and safety evaluation. This study aimed to assess factors affecting RO measurement of anti-PD-1 antibodies in clinical studies. Materials & methods: RO performance was assessed using different T-cell activation markers measured by flow cytometry. The validated methodology was then used in support of a clinical study. Results: The optimized active cell population was comprised of CD45RO+ or CD45RA− T cells. The bioanalytical method was validated for inter- and intra-assay precision (coefficient of variation ≤30%) and sample storage stability for 3 days. Consistent RO saturation was observed in Phase Ia clinical trial, although receptor regulation appeared to be different. The formation of anti-drug antibodies had markedly influenced pharmacokinetics and RO. Conclusion: RO measurement in combination with pharmacokinetics and anti-drug antibodies data could allow the integrated evaluation and better understanding of efficacy and safety.
Collapse
|
34
|
|
35
|
Ayers L, Pink R, Carter DRF, Nieuwland R. Clinical requirements for extracellular vesicle assays. J Extracell Vesicles 2019; 8:1593755. [PMID: 30949310 PMCID: PMC6442087 DOI: 10.1080/20013078.2019.1593755] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 01/04/2023] Open
Abstract
The scientific and clinical interest in extracellular vesicles (EV) has grown exponentially during the past 15 years. As most research indicates that EVs can be utilised in diagnostics, prognostics and therapeutics, we may be on the brink of establishing the clinical utility of EV measurement, but how can we make this a reality? If we are to introduce EVs as biomarkers into clinical laboratories, it will be necessary to offer fully validated, International Organization for Standardization (ISO) standard 15189 assays. ISO 15189 defines the quality management system requirements particular to medical laboratories and is used internationally to determine accreditation. In order for a clinical laboratory to offer an accredited test for EVs, this assay must have been subjected to a thorough assay validation process. This process requires the generation of data related to defined performance characteristics, to ensure that an assay is performing in accordance with the needs of its clinical users. Each of the defined performance characteristics will be discussed in this review, along with the issues that specifically affect EV analysis. Accreditation is increasingly important for all clinical laboratories and the standards required to achieve this are becoming more and more stringent. Therefore, as companies seek to develop the best assays to detect EVs and their molecular contents for clinical utility, and as we move rapidly towards our goal of offering EV analysis in the diagnosis and monitoring of disease, it is timely to highlight the requirements for the clinical accreditation of such assays. It is essential to consider these parameters to ensure that we develop the highest quality assays possible and ultimately the best outcomes for patients.
Collapse
Affiliation(s)
- Lisa Ayers
- Department of Clinical and Laboratory Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ryan Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Ehrentraut H, Weisheit C, Scheck M, Frede S, Hilbert T. Experimental murine acute lung injury induces increase of pulmonary TIE2-expressing macrophages. JOURNAL OF INFLAMMATION-LONDON 2018; 15:12. [PMID: 29946226 PMCID: PMC6001122 DOI: 10.1186/s12950-018-0188-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Background Breakdown of the alveolo-capillary wall is pathognomonic for Acute Lung Injury (ALI). Angiopoietins, vascular-specific growth factors, are linked to endothelial barrier dysfunction, and elevated Angiopoietin-2 (ANG2) levels are associated with poor outcome of ALI patients. Specialized immune cells, referred to as ‘TIE2-expressing monocytes and macrophages’ (TEM), were shown to specifically respond to ANG2 binding. However, their involvement in acute inflammatory processes is so far completely undescribed. Thus, our aim was to assess the dynamics of TEMs in a murine model of ALI. Results Intratracheal instillation of LPS induced a robust pulmonary pro-inflammatory response with endothelial barrier dysfunction and significantly enhanced ANG2 expression. The percentage number of TEMs, assessed by FACS analysis, was more than trebled compared to controls, with TEM count in lungs reaching more than 40% of all macrophages. Such distinct dynamic was absent in all other analyzed compartments (alveolar space, spleen, blood). Incubation of the monocytic cell line THP-1 with LPS or TNF-α resulted in a dose-dependent, significant upregulation of TIE2, suggesting that not recruitment from extra-pulmonary compartments but TIE2 upregulation in resident macrophages accounts for increased lung TEM frequencies. Conclusions For the first time, our data provide evidence that the activity of TEMs changes at sites of acute inflammation. Electronic supplementary material The online version of this article (10.1186/s12950-018-0188-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Ehrentraut
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christina Weisheit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Marcel Scheck
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
37
|
Welcome to volume 10 of Bioanalysis. Bioanalysis 2018. [DOI: 10.4155/bio-2017-4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|