1
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
2
|
He Y, Miggiels P, Drouin N, Lindenburg PW, Wouters B, Hankemeier T. An automated online three-phase electro-extraction setup with machine-vision process monitoring hyphenated to LC-MS analysis. Anal Chim Acta 2022; 1235:340521. [DOI: 10.1016/j.aca.2022.340521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
|
3
|
Development of a fast, online three-phase electroextraction hyphenated to fast liquid chromatography–mass spectrometry for analysis of trace-level acid pharmaceuticals in plasma. Anal Chim Acta 2022; 1192:339364. [DOI: 10.1016/j.aca.2021.339364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
|
4
|
Abstract
Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.
Collapse
|
5
|
He Y, Miggiels P, Wouters B, Drouin N, Guled F, Hankemeier T, Lindenburg PW. A high-throughput, ultrafast, and online three-phase electro-extraction method for analysis of trace level pharmaceuticals. Anal Chim Acta 2021; 1149:338204. [DOI: 10.1016/j.aca.2021.338204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
|
6
|
Integration of three-phase microelectroextraction sample preparation into capillary electrophoresis. J Chromatogr A 2020; 1610:460570. [PMID: 31607447 DOI: 10.1016/j.chroma.2019.460570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
A major strength of capillary electrophoresis (CE) is its ability to inject small sample volumes. However, there is a great mismatch between injection volume (typically <100 nL) and sample volumes (typically 20-1500 µL). Electromigration-based sample preparation methods are based on similar principles as CE. The combination of these methods with capillary electrophoresis could tackle obstacles in the analysis of dilute samples. This study demonstrates coupling of three-phase microelectroextraction (3PEE) to CE for sample preparation and preconcentration of large volume samples while requiring minimal adaptation of CE equipment. In this set-up, electroextraction takes place from an aqueous phase, through an organic filter phase, into an aqueous droplet that is hanging at the capillary inlet. The first visual proof-of-concept for this set-up showed successful extraction using the cationic dye crystal violet (CV). The potential of 3PEE for bioanalysis was demonstrated by successful extraction of the biogenic amines serotonin (5-HT), tyrosine (Tyr) and tryptophan (Trp). Under optimized conditions limits of detection (LOD) were 15 nM and 33 nM for 5-HT and Tyr respectively (with Trp as an internal standard). These LODs are comparable to other similar preconcentration methods that have been reported in conjunction with CE. Good linearity (R2 > 0.9967) was observed for both model analytes. RSDs for peak areas in technical replicates, interday and intraday variability were all satisfactory, i.e., below 14%. 5-HT, Tyr and Trp spiked to human urine were successfully extracted and separated. These results underline the great potential of 3PEE as an integrated enrichment technique from biological samples and subsequent sensitive metabolomics analysis.
Collapse
|
7
|
Nasrollahi SS, Davarani SSH, Moazami HR. Impedometric investigation of salt effects on electromembrane extraction: Practical hints for pH adjustment. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Tabani H, Nojavan S, Alexovič M, Sabo J. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2018; 160:244-267. [DOI: 10.1016/j.jpba.2018.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/11/2023]
|
9
|
Fuchs D, Hidalgo CR, Ramos Payán M, Petersen NJ, Jensen H, Kutter JP, Pedersen-Bjergaard S. Continuous electromembrane extraction coupled with mass spectrometry – Perspectives and challenges. Anal Chim Acta 2018; 999:27-36. [DOI: 10.1016/j.aca.2017.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|
10
|
Pedersen-Bjergaard S, Huang C, Gjelstad A. Electromembrane extraction-Recent trends and where to go. J Pharm Anal 2017; 7:141-147. [PMID: 29404030 PMCID: PMC5790682 DOI: 10.1016/j.jpha.2017.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
Electromembrane extraction (EME) is an analytical microextraction technique, where charged analytes (such as drug substances) are extracted from an aqueous sample (such as a biological fluid), through a supported liquid membrane (SLM) comprising a water immiscible organic solvent, and into an aqueous acceptor solution. The driving force for the extraction is an electrical potential (dc) applied across the SLM. In this paper, EME is reviewed. First, the principle for EME is explained with focus on extraction of cationic and anionic analytes, and typical performance data are presented. Second, papers published in 2016 are reviewed and discussed with focus on (a) new SLMs, (b) new support materials for the SLM, (c) new sample additives improving extraction, (d) new technical configurations, (e) improved theoretical understanding, and (f) pharmaceutical new applications. Finally, important future research objectives and directions are defined for further development of EME, with the aim of establishing EME in the toolbox of future analytical laboratories.
Collapse
Affiliation(s)
- Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Chuixiu Huang
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Astrid Gjelstad
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
11
|
Oedit A, Ramautar R, Hankemeier T, Lindenburg PW. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques. Electrophoresis 2016; 37:1170-86. [PMID: 26864699 PMCID: PMC5071742 DOI: 10.1002/elps.201500530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/31/2016] [Indexed: 12/16/2022]
Abstract
Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.
Collapse
Affiliation(s)
- Amar Oedit
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Petrus W Lindenburg
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
12
|
Rahmani T, Rahimi A, Nojavan S. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current. Anal Chim Acta 2016; 903:81-90. [DOI: 10.1016/j.aca.2015.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022]
|
13
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
14
|
Huang C, Seip KF, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction for pharmaceutical and biomedical analysis – Quo vadis. J Pharm Biomed Anal 2015; 113:97-107. [DOI: 10.1016/j.jpba.2015.01.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/26/2023]
|
15
|
Wuethrich A, Haddad PR, Quirino JP. Green Sample Preparation for Liquid Chromatography and Capillary Electrophoresis of Anionic and Cationic Analytes. Anal Chem 2015; 87:4117-23. [DOI: 10.1021/ac504765h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alain Wuethrich
- Australian Centre for Research
on Separation Science, School of Physical Sciences−Chemistry, University of Tasmania, Tasmania 7001, Australia
| | - Paul R. Haddad
- Australian Centre for Research
on Separation Science, School of Physical Sciences−Chemistry, University of Tasmania, Tasmania 7001, Australia
| | - Joselito P. Quirino
- Australian Centre for Research
on Separation Science, School of Physical Sciences−Chemistry, University of Tasmania, Tasmania 7001, Australia
| |
Collapse
|
16
|
Wuethrich A, Haddad PR, Quirino JP. Off-line sample preparation by electrophoretic concentration using a micropipette and hydrogel. J Chromatogr A 2014; 1369:186-90. [DOI: 10.1016/j.chroma.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/05/2014] [Accepted: 10/04/2014] [Indexed: 01/31/2023]
|
17
|
Raterink RJ, Lindenburg PW, Vreeken RJ, Ramautar R, Hankemeier T. Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction--three-phase electrophoresis for future preparative applications. Electrophoresis 2014; 35:2421-8. [PMID: 24810105 DOI: 10.1002/elps.201400127] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/07/2022]
Abstract
The purpose of this article is to discuss the principle and the future potential for electromembrane extraction (EME). EME was presented in 2006 as a totally new sample preparation technique for ionized target analytes, based on electrokinetic migration across a supported liquid membrane under the influence of an external electrical field. The principle of EME is presented, and typical performance data for EME are discussed. Most work with EME up to date has been performed with low-molecular weight pharmaceutical substances as model analytes, but the principles of EME should be developed in other directions in the future to fully explore the potential. Recent research in new directions is critically reviewed, with focus on extraction of different types of chemical and biochemical substances, new separation possibilities, new approaches, and challenges related to mass transfer and background current. The intention of this critical review is to give a flavor of EME and to stimulate into more research in the area of EME. Unlike other review articles, the current one is less comprehensive, but put more emphasis on new directions for EME.
Collapse
Affiliation(s)
- Astrid Gjelstad
- School of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | | |
Collapse
|
19
|
Schoonen JW, van Duinen V, Oedit A, Vulto P, Hankemeier T, Lindenburg PW. Continuous-flow microelectroextraction for enrichment of low abundant compounds. Anal Chem 2014; 86:8048-56. [PMID: 24892382 DOI: 10.1021/ac500707v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a continuous-flow microelectroextraction flow cell that allows for electric field enhanced extraction of analytes from a large volume (1 mL) of continuously flowing donor phase into a micro volume of stagnant acceptor phase (13.4 μL). We demonstrate for the first time that the interface between the stagnant acceptor phase and fast-flowing donor phase can be stabilized by a phaseguide. Chip performance was assessed by visual experiments using crystal violet. Then, extraction of a mixture of acylcarnitines was assessed by off-line coupling to reversed phase liquid chromatography coupled to time-of-flight mass spectrometry, resulting in concentration factors of 80.0 ± 9.2 times for hexanoylcarnitine, 73.8 ± 9.1 for octanoylcarnitine, and 34.1 ± 4.7 times for lauroylcarnitine, corresponding to recoveries of 107.8 ± 12.3%, 98.9 ± 12.3%, and 45.7 ± 6.3%, respectively, in a sample of 500 μL delivered at a flow of 50 μL min(-1) under an extraction voltage of 300 V. Finally, the method was applied to the analysis of acylcarnitines spiked to urine, resulting in detection limits as low as 0.3-2 nM. Several putative endogenous acylcarnitines were found. The current flowing-to-stagnant phase microelectroextraction setup allows for the extraction of milliliter range volumes and is, as a consequence, very suited for analysis of low-abundant metabolites.
Collapse
Affiliation(s)
- Jan-Willem Schoonen
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University , Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Salt effects in electromembrane extraction. J Chromatogr A 2014; 1347:1-7. [DOI: 10.1016/j.chroma.2014.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 01/21/2023]
|
21
|
Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis 2014; 6:1011-26. [DOI: 10.4155/bio.14.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolomics is the comprehensive analysis of low molecular weight compounds in biological samples such as cells, body fluids and tissues. Comprehensive profiling of metabolites in complex sample matrices with the current analytical toolbox remains a huge challenge. Over the past few years, liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis–mass spectrometry (CE–MS) have emerged as powerful complementary analytical techniques in the field of metabolomics. This Review provides an update of the most recent developments in LC–MS and CE–MS for metabolomics. Concerning LC–MS, attention is paid to developments in column technology and miniaturized systems, while strategies are discussed to improve the reproducibility and the concentration sensitivity of CE–MS for metabolomics studies. Novel interfacing techniques for coupling CE to MS are also considered. Representative examples illustrate the potential of the recent developments in LC–MS and CE–MS for metabolomics. Finally, some conclusions and perspectives are provided.
Collapse
|