1
|
Anywar G, Muhumuza E. Bioactivity and toxicity of coumarins from African medicinal plants. Front Pharmacol 2024; 14:1231006. [PMID: 38273831 PMCID: PMC10809390 DOI: 10.3389/fphar.2023.1231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Coumarins are naturally occuring metabolites from plants and a few micro-organisms. They have been widely used in the food and drug industry in their natural or synthetic forms. Numerous coumarins possess several biological activities such as anti-inflammatory, anti-ulcers, anti-tumour, anti-microbial, anti-coagulant. The aim of this study was to assess the bioactivity, and toxicity of coumarins from African medicinal plants. Methods: We searched online databases and search engines such as PubMed, Google Scholar and Web of Science for key terms such as coumarins, toxicity, bioavailability, bioactivity with appropriate Boolean operators. Only full-length research articles published in English between 1956 to 2023 were reviewed. Results: We recorded 22 coumarins from 15 plant species from Africa. Most of the plant species (33%) were from North Africa. These were followed by East Africa at 21%, then West, and Central Africa at 18.2% each. Most of the coumarins (21.3%) were isolated from the entire plant and the leaves (19.1%) and most of them (46.7%) had some antimicrobial activity. Five coumarins viz osthole, pseudocordatolide C & calanolide, chartreusin and esculetin had either antitumor or anticancer activity. Six coumarins had varying levels and types of toxicity ranging from inhibiting blood clotting as anticoagulants, to cytotoxic effects, causing hyperventilation, tremor, & photophobia, pulmonary haemorrhage, carcinogenic activity, severe neurotoxicity, hepato- and phototoxicity. Conclusion: Several African medicinal plants are sources of various coumarins that possess several biological activities as well as toxicities. This calls for more research into their safety and efficacy because of their wide spread applications as therapeutic agents.
Collapse
Affiliation(s)
- Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
Hui Z, Wen H, Zhu J, Deng H, Jiang X, Ye XY, Wang L, Xie T, Bai R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg Chem 2024; 142:106957. [PMID: 37939507 DOI: 10.1016/j.bioorg.2023.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
3
|
Avdović EH, Milanović Ž, Simijonović D, Antonijević M, Milutinović M, Nikodijević D, Filipović N, Marković Z, Vojinović R. An Effective, Green Synthesis Procedure for Obtaining Coumarin-Hydroxybenzohydrazide Derivatives and Assessment of Their Antioxidant Activity and Redox Status. Antioxidants (Basel) 2023; 12:2070. [PMID: 38136190 PMCID: PMC10740980 DOI: 10.3390/antiox12122070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, green synthesis of two derivatives of coumarin-hydroxybenzohydrazide, (E)-2,4-dioxo-3-(1-(2-(2,3,4-trihydroxybenzoyl)hydrazyl)ethylidene)-chroman-7-yl acetate (C-HB1), and (E)-2,4-dioxo-3-(1-(2-(3,4,5-trihydroxybenzoyl)hydrazyl)ethylidene)chroman-7-yl acetate (C-HB2) is reported. Using vinegar and ethanol as a catalyst and solvent, the reactions were carried out between 3-acetyl-4-hydroxy-coumarin acetate and corresponding trihydroxybenzoyl hydrazide. The antioxidant potential of these compounds was investigated using the DPPH and ABTS assays, as well as the FRAP test. The obtained results reveal that even at very low concentrations, these compounds show excellent radical scavenging potential. The IC50 values for C-HB1 and C-HB2 in relation to the DPPH radical are 6.4 and 2.5 μM, respectively, while they are 4.5 and 2.0 μM in relation to the ABTS radical. These compounds have antioxidant activity that is comparable to well-known antioxidants such as gallic acid, NDGA, and trolox. These results are in good correlation with theoretical parameters describing these reactions. Moreover, it was found that inhibition of DPPH● follows HAT, while inactivation of ABTS+● follows SET-PT and HAT mechanisms. Additionally, coumarin-hydroxybenzohydrazide derivatives induced moderate cytotoxic activity and show significant potential to modulate redox status in HCT-116 colorectal cancer cells. The cytotoxicity was achieved via their prooxidative activity and ability to induce oxidative stress in cancer cells by increasing O2˙- concentrations, indicated by increased MDA and GSH levels. Thus, ROS manipulation can be a potential target for cancer therapies by coumarins, as cancer cells possess an altered redox balance in comparison to normal cells. According to the ADMET analysis, the compounds investigated show good pharmacokinetic and toxicological profiles similar to vitamin C and gallic acid, which makes them good candidates for application in various fields of industry and medicine.
Collapse
Affiliation(s)
- Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Ž.M.); (D.S.); (M.A.); (Z.M.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Ž.M.); (D.S.); (M.A.); (Z.M.)
| | - Dušica Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Ž.M.); (D.S.); (M.A.); (Z.M.)
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Ž.M.); (D.S.); (M.A.); (Z.M.)
| | - Milena Milutinović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (M.M.); (D.N.)
| | - Danijela Nikodijević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (M.M.); (D.N.)
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Ž.M.); (D.S.); (M.A.); (Z.M.)
- Department of Natural Science and Mathematics, State University of Novi Pazar, 36300 Novi Pazar, Serbia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
4
|
Sequeira L, Distinto S, Meleddu R, Gaspari M, Angeli A, Cottiglia F, Secci D, Onali A, Sanna E, Borges F, Uriarte E, Alcaro S, Supuran CT, Maccioni E. 2H-chromene and 7H-furo-chromene derivatives selectively inhibit tumour associated human carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2023; 38:2270183. [PMID: 37870190 PMCID: PMC11003494 DOI: 10.1080/14756366.2023.2270183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Tumour associated carbonic anhydrases (CAs) IX and XII have been recognised as potential targets for the treatment of hypoxic tumours. Therefore, considering the high pharmacological potential of the chromene scaffold as selective ligand of the IX and XII isoforms, two libraries of compounds, namely 2H-chromene and 7H-furo-chromene derivatives, with diverse substitution patterns were designed and synthesised. The structure of the newly synthesised compounds was characterised and their inhibitory potency and selectivity towards human CA off target isoforms I, II and cancer-associated CA isoforms IX and XII were evaluated. Most of the compounds inhibit CA isoforms IX and XII with no activity against the I and II isozymes. Thus, while the potency was influenced by the substitution pattern along the chromene scaffold, the selectivity was conserved along the series, confirming the high potential of both 2H-chromene and 7H-furo-chromene scaffolds for the design of isozyme selective inhibitors.
Collapse
Affiliation(s)
- Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, Research Centre for Advanced Biochemistry and Molecular Biology, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefano Alcaro
- Department of Health Sciences, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| |
Collapse
|
5
|
Salem MG, Abu El-Ata SA, Elsayed EH, Mali SN, Alshwyeh HA, Almaimani G, Almaimani RA, Almasmoum HA, Altwaijry N, Al-Olayan E, Saied EM, Youssef MF. Novel 2-substituted-quinoxaline analogs with potential antiproliferative activity against breast cancer: insights into cell cycle arrest, topoisomerase II, and EGFR activity. RSC Adv 2023; 13:33080-33095. [PMID: 37954422 PMCID: PMC10633821 DOI: 10.1039/d3ra06189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Breast cancer is a global health concern, with increasing disease burden and disparities in access to healthcare. Late diagnosis and limited treatment options in underserved areas contribute to poor outcomes. In response to this challenge, we developed a novel family of 2-substituted-quinoxaline analogues, combining coumarin and quinoxaline scaffolds known for their anticancer properties. Through a versatile synthetic approach, we designed, synthesized, and characterized a set of 2-substituted quinoxaline derivatives. The antiproliferative activity of the synthesized compounds was assessed toward the MCF-7 breast cancer cells. Our investigations showed that the synthesized compounds exhibit considerable antiproliferative activity toward MCF-7 cells. Notably, compound 3b, among examined compounds, displayed a superior inhibitory effect (IC50 = 1.85 ± 0.11 μM) toward the growth of MCF-7 cells compared to the conventional anticancer drug staurosporine (IC50 = 6.77 ± 0.41 μM) and showed minimal impact on normal cells (MCF-10A cell lines, IC50 = 33.7 ± 2.04 μM). Mechanistic studies revealed that compound 3b induced cell cycle arrest at the G1 transition and triggered apoptosis in MCF-7 cells, as evidenced by increasing the percentage of cells arrested in the G2/M and pre-G1 phases utilizing flow cytometric analysis and Annexin V-FITC/PI analysis. Moreover, compound 3b was found to substantially suppress topoisomerase enzyme activity in MCF-7 cells. Molecular modeling studies further supported the potential of compound 3b as a therapeutic candidate by demonstrating significant binding affinity to the active sites of both topoisomerase II and EGFR proteins. Taken together, the presented 2-substituted-quinoxaline analogues, especially compound 3b, show promise as potential candidates for the development of effective anti-breast cancer drugs.
Collapse
Affiliation(s)
- Manar G Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Sara A Abu El-Ata
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Elsherbiny H Elsayed
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Ranchi 835215 India
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University PO Box 1982 Dammam 31441 Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Hussain A Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, Princess Nourah Bint Abdulrahman University PO Box 84428 Riyadh 11671 Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University Riyadh Saudi Arabia
| | - Essa M Saied
- Department of Chemistry (Biochemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Mohamed F Youssef
- Department of Chemistry (Organic Chemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
6
|
Gouda MAS, Salem MAI, Marzouk MI, Mahmoud NFH, Ismail MF. Synthesis, Antioxidant and Antiproliferative Evaluation, Molecular Docking and DFT Studies of Some Novel Coumarin and Fused Coumarin Derivatives. Chem Biodivers 2023; 20:e202300706. [PMID: 37321977 DOI: 10.1002/cbdv.202300706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
N'-[(4-Chloro-2-oxo-2H-chromen-3-yl)methylene]-2-cyanoacetohydrazide (3) was synthesized in excellent yield from the condensation of 4-Chloro-2-oxo-2H-chromene-3-carbaldehyde with cyanoacetohydrazide. Compound 3 was utilized as a building block to synthesize novel coumarin and heterocycle-fused coumarin derivatives. The chemical structures of all the new coumarin compounds were identified by spectral analyses. Some of the new coumarins compounds were screened in human cancer cell lines (HEPG-2, MCF-7, HCT-116 and PC-3) to learn about their cytotoxic effects in addition to the study of their DNA damage and antioxidant activity. Three of these compounds exhibited remarkable antioxidant and anti-proliferative activities. Moreover, they have the capability to protect DNA from damage induced by bleomycin. Molecular docking, DFT and molecular electrostatic potential studies were performed on the compounds in vitro.
Collapse
Affiliation(s)
- Mustafa A S Gouda
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mounir A I Salem
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Magda I Marzouk
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Naglaa F H Mahmoud
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
7
|
Sayed MT, Elsharabasy SA, Abdel-Aziem A. Synthesis and antimicrobial activity of new series of thiazoles, pyridines and pyrazoles based on coumarin moiety. Sci Rep 2023; 13:9912. [PMID: 37336955 DOI: 10.1038/s41598-023-36705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Microbial infections are currently a widespread disease in hospitals and community health centres and are a major cause of death worldwide. In pursuit of searching new antimicrobial agents, coumarin linked to thiazoles, pyridines and pyrazoles have been developed and evaluated for their antimicrobial properties against two Gram + bacteria, two Gram - bacteria as well as two fungi. Some of the prepared coumarins displayed high to moderate activity against the tested microorganisms with respect to the reference drugs. However, compound 3 exhibited antimicrobial effect equal to the reference drug Ciprofloxacin for Gram - baceria Enterobacter cloacae. Compound 12 was found to be the most potent compound against Bacillus pumilis with MIC of 7.69 (µmol/ml). Compounds 3, 4 and 12 showed remarkable activity against Streptococcus faecalis with MIC of 14.34, 3.67 and 15.36 (µmol/ml), respectively. Regarding Escherichia coli, most compounds recorded high to moderate MIC values (4.73-45.46 µmol/ml). Moreover, in case of E. cloacae compound 9 was the most potent compound with MIC value of 22.76 (µmol/ml).
Collapse
Affiliation(s)
- Mariam T Sayed
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Salwa A Elsharabasy
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Anhar Abdel-Aziem
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt.
| |
Collapse
|
8
|
Nainawat KS, Singh S, Agarwal K, Iqbal H, Rani P, Bhatt D, Khan S, Chanda D, Bawankule DU, Tandon S, Khan F, Kumar Gupta A, Gupta A. Synthesis of 6-alkoxy and 6-hydroxy-alkyl amine derivatives of braylin as vasorelaxing agents. Bioorg Med Chem Lett 2023; 89:129311. [PMID: 37149230 DOI: 10.1016/j.bmcl.2023.129311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Braylin (10b) is a 8,8-dimethyl chromenocoumarin present in the plants of the family Rutaceae and Meliaceae and possesses vasorelaxing and anti-inflammatory activities. In this study, six 6-alkoxy (10b, 15-19), and twelve 6-hydroxy-alkyl amine (20a-20l) derivatives of braylin (11 and 12) were synthesized to delineate its structural requirement for vasorelaxing activity. The synthesized compounds were evaluated for vasorelaxation response in preconstricted intact rat Main Mesenteric Artery (MMA). The compounds showed l-type VDCC channel blockade depended and endothelium-independent vasorelaxation within the range of Emax < 50.00-96.70 % at 30 µM. Amongst all, 6-alkoxy derivatives were more active than 6-hydroxy-alkyl amine derivatives. The structural refinements about braylin showed that deletion of its methoxy group or homologation beyond ethoxy group presented deleterious effect on vasorelaxation response of braylin. Interestingly, substituting the ethoxy group in 10b presented the best activity and selectivity towards l-type VDCC channel blockade, a specific target cardiovascular function.
Collapse
Affiliation(s)
- Kripa Shankar Nainawat
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karishma Agarwal
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hina Iqbal
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Poonam Rani
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Divya Bhatt
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Sana Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Debabrata Chanda
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dnyaneshwar Umrao Bawankule
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Feroz Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Gupta
- Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atul Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Tali JA, Shankar R. Ru(II)-Catalyzed Synthesis of Fused Imidazo[1,2- a]pyridine-chromenones and Methylene-Tethered Bis-imidazo[1,2- a]pyridines and Regioselective O-Acetoxylation of Imidazo[1,2- a]pyridines. Org Lett 2023; 25:3200-3205. [PMID: 37140128 DOI: 10.1021/acs.orglett.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Herein, we disclose an unprecedented protocol via ruthenium-catalyzed annulation for the synthesis of 6H-chromeno[4',3':4,5]imidazo[1,2-a]pyridin-6-one, and functionalized 2-(3-formylimidazo[1,2-a]pyridin-2-yl)phenyl acetate has been revealed by intramolecular chelation-assisted C-H activation. Additionally, a one-pot approach for creating bis(2-phenylimidazo[1,2-a]pyridin-3-yl)methane (BIP) has been realized through ruthenium catalysis with the use of formic acid. This method was used in gram-scale synthesis of BIP and step-economical late-stage functionalization of a marketed drug, zolimidine, in good yield.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ravi Shankar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
10
|
Liu F, Cao X, Xing L, He B, Zhang N, Zeng W, Xin H, Xue W. Design, Synthesis, Biological Activity Evaluation and Action Mechanism of Myricetin Derivatives Containing Thiazolebisamide. Chem Biodivers 2023; 20:e202201103. [PMID: 36683342 DOI: 10.1002/cbdv.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The plant diseases caused by a variety of pathogens such as viruses, bacteria and fungi pose a great threat to global food production and food safety. Therefore, the search for green, efficient and pollution-free pesticides has become an important task. In this article, 23 myricetin derivatives containing thiazolebisamides active groups have been designed and synthesized. Their activities were evaluated by performing in vitro antibacterial and in vivo antiviral assays, microscale thermophoresis (MST) and molecular docking assays. The results of in vivo antiviral assays showed that compounds A4 and A23 exhibited good antiviral activity with EC50 values of 79.0 and 54.1 μg/mL for therapeutic activity and 103.3 and 91.2 μg/mL for protective activity, respectively. The dissociation constants (Kd) values of compounds A4 and A23 against TMV-CP were 0.021 and 0.018 μM, respectively, determined by microscale thermophoresis (MST), which were much smaller than those of the commercial drug ningnanmycin (NNM), which were 2.84 μM. The interaction of compounds A4, A23 with TMV-CP was further verified at the molecular level. In addition, in vitro antifungal assays of this series of compounds showed that they exhibited some inhibitory activity against a variety of fungi, especially against the phytophthora capsici. Among them, A13 and A20 showed similar inhibitory activity to the control drug azoxystrobin at 100 μg/mL against the phytophthora capsici.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Li Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Bangcan He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Nian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Laskova J, Serdyukov A, Kosenko I, Ananyev I, Titova E, Druzina A, Sivaev I, Antonets AA, Nazarov AA, Bregadze VI. New Azido Coumarins as Potential Agents for Fluorescent Labeling and Their "Click" Chemistry Reactions for the Conjugation with closo-Dodecaborate Anion. Molecules 2022; 27:molecules27238575. [PMID: 36500667 PMCID: PMC9738631 DOI: 10.3390/molecules27238575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Novel fluorescent 7-methoxy- and 7-(diethylamino)-coumarins modified with azido-group on the side chain have been synthesized. Their photophysical properties and single crystals structure characteristics have been studied. In order to demonstrate the possibilities of fluorescent labeling, obtained coumarins have been tested with closo-dodecaborate derivative bearing terminal alkynyl group. CuI catalyzed Huisgen 1,3-dipolar cycloaddition reaction has led to fluorescent conjugates formation. The absorption-emission spectra of the formed conjugates have been presented. The antiproliferative activity and uptake of compounds against several human cell lines were evaluated.
Collapse
Affiliation(s)
- Julia Laskova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Correspondence: ; Tel.: +41-78-243-1408
| | - Alexander Serdyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Irina Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Ivan Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia
| | - Ekaterina Titova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Anna Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Igor Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Anastasia A. Antonets
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexey A. Nazarov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| |
Collapse
|
12
|
Reaction of 3-Acetylcoumarin: From Methods to Mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Photophysical and photochemical properties and comparison of tolyl and tosyl coumarin-bearing phthalocyanines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lakra N, Matore BW, Banjare P, Singh R, Singh J, Roy PP. Pharmacophore based virtual screening of cholinesterase inhibitors: search of new potential drug candidates as antialzheimer agents. In Silico Pharmacol 2022; 10:18. [PMID: 36187087 PMCID: PMC9521886 DOI: 10.1007/s40203-022-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a distinctive medical condition characterized by loss of memory, orientation, and cognitive impairments, which is an exceptionally universal form of neurodegenerative disease. The statistical data suggested that it is the 3rd major cause of death in older persons. Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors play a vital role in the treatment of AD. Coumarins, natural derivatives, are reported as cholinesterase inhibitors and emerges as a promising scaffold for design of ligands targeting enzymes and pathological alterations related to AD. In this regard, the 3D QSAR pharmacophore models were developed for coumarin scaffold containing BChE and AChE inhibitors. Several 3D QSAR pharmacophore models were developed with FAST, BEST, and CEASER methods, and finally, statistically robust models (based on correlation coefficient, cost value, and RMSE value) were selected for further analysis for both targets. The important features ((HBA 1, HBA 2, HY, RA (BChE) HBA 1, HBA 2, HY, PI, (AChE)) were identified for good inhibitory activity of coumarin derivatives. Finally, the selected models were applied to various database compounds to find potential BChE and AChE inhibitors, and we found 13 for BChE and 1 potent compound for AChE with an estimated activity of IC50 < 10 µM. Further, the Lipinski filters, and ADMET analysis supports the selected compounds to become a drug candidate. These selected BChE and AChE inhibitors can be used in the treatment of AD. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00133-1.
Collapse
Affiliation(s)
- Nisha Lakra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Rekha Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
15
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
16
|
Hang S, Wu W, Wang Y, Sheng R, Fang Y, Guo R. Daphnetin, a Coumarin in Genus Stellera Chamaejasme Linn: Chemistry, Bioactivity and Therapeutic Potential. Chem Biodivers 2022; 19:e202200261. [PMID: 35880614 DOI: 10.1002/cbdv.202200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Coumarins is a huge family of phenolic compounds containing a common structure of 2 H -1-benzopyran-2-one. Nowadays, more than 1,300 natural-based coumarins have been identified in a variety of plants, bacteria and fungi, many of them exhibited promising biomedical performance. Daphnetin (7,8-dihydroxycoumarin) is a typical coumarin associated with a couple of bioactivities such as anti-cancer, antibacterial, anti-inflammatory and anti-arthritis. In the treatment of diseases, it has been verified that daphnetin has outstanding therapeutic effects on diabetes, arthritis, transplant rejection, cancer and even on central nervous system diseases. Herein, we summarized the chemical synthetic methodologies, bioactivities, therapeutic potentials and structure-activity relationships of daphnetin and its derivatives. Hopefully, this review would be beneficial for the discovery of new coumarin-based biomedicine in the near future.
Collapse
Affiliation(s)
- Sijin Hang
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Wenhui Wu
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Yinan Wang
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Ruilong Sheng
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Yiwen Fang
- Shantou University, Chemistry, College of Science, Department of Chemistry, College of Science, Shantou University, Shantou 515063,, Shanghai, CHINA
| | - Ruihua Guo
- Shanghai Ocean University, College of fisheries and life science, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, 201306, Shanghai, CHINA
| |
Collapse
|
17
|
Hamid SJ, Salih T. Design, Synthesis, and Anti-Inflammatory Activity of Some Coumarin Schiff Base Derivatives: In silico and in vitro Study. Drug Des Devel Ther 2022; 16:2275-2288. [PMID: 35860526 PMCID: PMC9293384 DOI: 10.2147/dddt.s364746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Inflammation is a fundamental response of the immune system during tissue damage or pathogen infection to protect and maintain tissue homeostasis. However, inflammation may lead to life-threatening conditions. The most common treatment of inflammation is non-steroidal anti-inflammatory drugs (NSAIDs). Nowadays, the development of safer new NSAIDs is critical as most of the existing NSAIDs have serious adverse effects, such as gastrointestinal (GI) toxicity and cardiotoxicity. In the present study, four compounds as Schiff base derivatives of 7-hydroxy-4-formyl coumarin and 7-methoxy-4-formyl coumarin were designed and synthesized aiming to develop a lead compound that exhibits anti-inflammatory activity and circumvents the side effects of NSAIDs, especially GI toxicity. Materials and Methods Lipinski’s rule of five was applied for each designed molecule to evaluate the drug-likeness properties. Molecular docking studies were performed using the ligands and the cyclooxygenase-2 (COX-2) protein to select the best-scored molecule using AutoDock 4.2.6. The molecules were then synthesized and characterized. An in vitro anti-inflammatory assay of the compounds against the COX-2 receptor was realized through a protein denaturation assay. Results and Discussion All four synthesized ligands passed Lipinski’s rule of five and exhibited higher binding free energy compared to the positive standard control (ibuprofen), and the Ki values of compounds 5, 7, and 8 were in the nanomolar range. However, only compounds 6 and 7 obtained a higher percentage of inhibition of protein denaturation relative to ibuprofen. Conclusion The present study suggested that compound 7 may be a lead molecule because this ligand not only exhibited the best computational and experimental results but also exhibited the strongest correlation between the concentration and percentage of protein denaturation (R = 0.986 and R2 = 0.972) with the lowest P-value (0.014).
Collapse
Affiliation(s)
- Shokhan J Hamid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Iraq
| | - Twana Salih
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Iraq
- Correspondence: Twana Salih, Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Town Campus, Sulaymaniyah, 46001, Iraq, Tel +964 0 770 146 2171, Email
| |
Collapse
|
18
|
Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 2022; 43:1544-1555. [PMID: 34426644 PMCID: PMC9160248 DOI: 10.1038/s41401-021-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of death in breast cancer patients. Osthole, as an active compound detected in the traditional Chinese medicine Wenshen Zhuanggu Formula, has shown a promising anti-metastatic activity in human breast cancer cells, but the underlying mechanisms remain ambiguous. In this study we elucidated the anti-metastatic mechanisms of osthole in highly metastatic breast cancer cells and a zebrafish xenograft model. We showed that the expression of integrin α3 (ITGα3) and integrin β5 (ITGβ5) was upregulated in highly metastatic MDA-MB-231, MDA-MB-231BO breast cancer cell lines but was downregulated in poorly metastatic MCF-7 breast cancer cell line, which might be the key targets of osthole's anti-metastatic action. Furthermore, we showed that knockdown of ITGα3 and ITGβ5 attenuated breast cancer cell migration and invasion possibly via suppression of FAK/Src/Rac1 pathway, whereas overexpression of ITGα3 and ITGβ5 caused the opposite effects. Consistently, osthole significantly inhibited breast cancer metastasis by downregulating ITGα3/ITGβ5 signaling in vitro and in vivo. These results provide new evidence that osthole may be developed as a candidate therapeutic drug for metastatic breast cancer.
Collapse
Affiliation(s)
- Yue-qiang Chen
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Hai-yan Song
- grid.411480.80000 0004 1799 1816Institute of Digestive Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhong-yan Zhou
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Jiao Ma
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhan-yang Luo
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Ying Zhou
- grid.412540.60000 0001 2372 7462Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200082 China
| | - Jian-yi Wang
- grid.412585.f0000 0004 0604 8558Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Sheng Liu
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xiang-hui Han
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| |
Collapse
|
19
|
Dimić DS, Kaluđerović GN, Avdović EH, Milenković DA, Živanović MN, Potočňák I, Samoľová E, Dimitrijević MS, Saso L, Marković ZS, Dimitrić Marković JM. Synthesis, Crystallographic, Quantum Chemical, Antitumor, and Molecular Docking/Dynamic Studies of 4-Hydroxycoumarin-Neurotransmitter Derivatives. Int J Mol Sci 2022; 23:1001. [PMID: 35055194 PMCID: PMC8780855 DOI: 10.3390/ijms23021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.
Collapse
Affiliation(s)
- Dušan S. Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Dejan A. Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Marko N. Živanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Ivan Potočňák
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia;
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic;
| | - Milena S. Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | | |
Collapse
|
20
|
Gawad SAA, Sakr MA. Spectroscopic investigation, DFT and TD-DFT calculations of 7-(Diethylamino) Coumarin (C466). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Synthesis, characterization, crystal structure, anti-cancer activities, and computational study of a novel thiophenylchromane. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Vitale DL, Icardi A, Rosales P, Spinelli FM, Sevic I, Alaniz LD. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol 2021; 11:710061. [PMID: 34676159 PMCID: PMC8524446 DOI: 10.3389/fonc.2021.710061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of each patient and reduce the toxicity caused by conventional antitumor strategies. It has been demonstrated that natural products with antitumoral properties are less toxic than chemotherapy and radiotherapy. Also, using already developed drugs allows developing substantially less costly methods for the discovery of new treatments than traditional drug development. Candidate molecules proposed for drug repositioning include 4-methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action. This agent reduces the availability of HA substrates and inhibits the activity of different HA synthases. However, an effect independent of HA synthesis has also been observed. 4-MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts on the proliferation, migration and invasion abilities of tumor cells and inhibits the progression of cancer stem cells and the development of drug resistance. In addition, the effect of 4-MU impacts not only on tumor cells, but also on other components of the tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects are consistent with the altered functions of HA during tumor progression and can be interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in cancer therapy could improve therapeutic efficacy and reduce toxicities of other antitumoral agents, the greatest challenge is the lack of scientific evidence to support its approval. Therefore, crucial human clinical studies have yet to be done to respond to this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in conventional antineoplastic therapies, to achieve greater therapeutic success. We also describe the main proposed mechanisms of action that promote an increase in the efficacy of conventional antineoplastic strategies in different types of cancer and prospects that promote 4-MU repositioning and application in cancer therapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Paolo Rosales
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Inserm, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| |
Collapse
|
23
|
Wang L, Ding S, Shen H, Wang Y, Hao S, Yin G, Qiu J, Lin B, Wu Z, Zhao M. Generation of Coumarin‐3‐Carboxamides From Coumarin‐3‐Carboxylic Acids and Tetraalkylthiuram Disulfides Catalyzed by Copper Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Longfei Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - SongShuang Ding
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Yiying Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Shuai Hao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Guangting Yin
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Jianhua Qiu
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Beisen Lin
- Hainan Provincial Branch of China National Tobacco Corporation No. 120, Hongchenghu Road, Haikou 571103 Hainan P. R. China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| |
Collapse
|
24
|
Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Med Chem 2021; 13:1865-1884. [PMID: 34533068 DOI: 10.4155/fmc-2021-0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The aim of this study was to synthesize new coumarin-based compounds and evaluate their antibacterial and antitumor potential. Results: Using transition metal-catalyzed reactions, a series of 7-hydroxycoumarin derivatives were synthesized with aliphatic and aryl moiety attached directly at C-3 of the coumarin ring and through the ethynyl or 1,2,3-triazole linker. The 3-substituted coumarin derivative bearing bistrifluoromethylphenyl at the C-4 position of 1,2,3-triazole (33) showed strong and selective antiproliferative activity against cervical carcinoma cells. The 7-hydroxy-4-methylcoumarin with a phenyl ring directly attached to coumarin at C-3 (10) showed good potency against the methicillin-resistant Staphylococcus aureus and vancomycin-resistant strains. Conclusion: The most active coumarin derivatives owe their antiproliferative potential to the 3,5-ditrifluoromethylphenyl substituent (in 33) and antibacterial activity to the aromatic moiety (in 10); their structure can be optimized further for improved effect.
Collapse
|
25
|
Mishan MA, Khazeei Tabari MA, Mahrooz A, Bagheri A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. Eur J Cancer Prev 2021; 30:413-421. [PMID: 33720053 DOI: 10.1097/cej.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flavonoids, a broad class of polyphenolic compounds, can potentially have several therapeutic properties in human diseases, including protective effects against oxidative stress, inflammation, cardiovascular disease, diabetes, neurodegenerative disorders, and cancers. Luteolin as a member of flavonoids has been found to exhibit several anticancer properties mainly through cell apoptosis induction, inhibition of invasion, cell proliferation, network formation, and migration. Recent studies have revealed that phytochemicals such as luteolin may exert therapeutic properties through microRNAs (miRNAs or miRs), which have been emerged as important molecules in cancer biology in recent years. miRNAs, as a class of noncoding RNAs, have several important roles in cancer progression or regression. In this review, we aimed to summarize and discuss the role of miRNAs in the luteolin effects on different cancers. This review can be in line with the studies, which have shown that miRNAs may be potential therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
26
|
Yu X, Zhao YF, Huang GJ, Chen YF. Design and synthesis of 7-diethylaminocoumarin-based 1,3,4-oxadiazole derivatives with anti-acetylcholinesterase activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:866-876. [PMID: 32815409 DOI: 10.1080/10286020.2020.1803293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Twelve novel 7-diethylaminocoumarin-based 1,3,4-oxadiazole derivatives were synthesized via iodine-mediated oxidative cyclisation and confirmed by 1H NMR, 13C NMR and HRMS. The result of these derivatives' activities inhibiting acetylcholinesterase in vitro showed that 4 g and 4i had moderate inhibitory activities with 69.19% and 65.06%, respectively. The preliminary structure-activity relationships revealed that introduction of halogen atom on the para-position of phenyl of 7-diethylaminocoumarin-based 1,3,4-oxadiazole derivatives could enhance their activities. Molecular docking study suggested that 4 g possessed an optimal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Research Center for Natural Medicine Chemistry, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - You-Fang Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guo-Juan Huang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ya-Fang Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Research Center for Natural Medicine Chemistry, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
27
|
Coumarins as Tool Compounds to Aid the Discovery of Selective Function Modulators of Steroid Hormone Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175142. [PMID: 34500576 PMCID: PMC8433903 DOI: 10.3390/molecules26175142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.
Collapse
|
28
|
Antonijević MR, Simijonović DM, Avdović EH, Ćirić A, Petrović ZD, Marković JD, Stepanić V, Marković ZS. Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants (Basel) 2021; 10:1106. [PMID: 34356339 PMCID: PMC8301024 DOI: 10.3390/antiox10071106] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds from the plant world that possess antioxidant abilities are of special importance for the food and pharmaceutical industry. Coumarins are a large, widely distributed group of natural compounds, usually found in plants, often with good antioxidant capacity. The coumarin-hydroxybenzohydrazide derivatives were synthesized using a green, one-pot protocol. This procedure includes the use of an environmentally benign mixture (vinegar and ethanol) as a catalyst and solvent, as well as very easy isolation of the desired products. The obtained compounds were structurally characterized by IR and NMR spectroscopy. The purity of all compounds was determined by HPLC and by elemental microanalysis. In addition, these compounds were evaluated for their in vitro antioxidant activity. Mechanisms of antioxidative activity were theoretically investigated by the density functional theory approach and the calculated values of various thermodynamic parameters, such as bond dissociation enthalpy, proton affinity, frontier molecular orbitals, and ionization potential. In silico calculations indicated that hydrogen atom transfer and sequential proton loss-electron transfer reaction mechanisms are probable, in non-polar and polar solvents respectively. Additionally, it was found that the single-electron transfer followed by proton transfer was not an operative mechanism in either solvent. The conducted tests indicate the excellent antioxidant activity, as well as the low potential toxicity, of the investigated compounds, which makes them good candidates for potential use in food chemistry.
Collapse
Affiliation(s)
- Marko R. Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Dušica M. Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| | - Andrija Ćirić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Zorica D. Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Jasmina Dimitrić Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| |
Collapse
|
29
|
Miao Y, Yang J, Yun Y, Sun J, Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem 2021; 36:450-461. [PMID: 33557646 PMCID: PMC7889190 DOI: 10.1080/14756366.2021.1873978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis is a chronic systemic disease characterised by an unknown aetiology of inflammatory synovitis. A large number of studies have shown that synoviocytes show tumour-like dysplasia in the pathological process of RA, and the changes in the expression of related cytokines are closely related to the pathogenesis of RA. In this thesis, a series of novel 3-(4-aminophenyl) coumarins containing different substituents were synthesised to find new coumarin anti-inflammatory drugs for the treatment of rheumatoid arthritis. The results of preliminary activity screening showed that compound 5e had the strongest inhibitory activity on the proliferation of fibroid synovial cells, and it also had inhibitory effect on RA-related cytokines IL-1, IL-6, and TNF-α. The preliminary mechanism study showed that compound 5e could inhibit the activation of NF-κB and MAPKs signal pathway. The anti-inflammatory activity of compound 5ein vivo was further determined in the rat joint inflammation model.
Collapse
Affiliation(s)
- Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
30
|
Konidala SK, Kotra V, Danduga RCSR, Kola PK, Bhandare RR, Shaik AB. Design, multistep synthesis and in-vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Montanari S, Allarà M, Scalvini L, Kostrzewa M, Belluti F, Gobbi S, Naldi M, Rivara S, Bartolini M, Ligresti A, Bisi A, Rampa A. New Coumarin Derivatives as Cholinergic and Cannabinoid System Modulators. Molecules 2021; 26:molecules26113254. [PMID: 34071439 PMCID: PMC8198714 DOI: 10.3390/molecules26113254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Laura Scalvini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Rivara
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| |
Collapse
|
32
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Zaki I, El-Sayed ESH, Radwan EM. Synthesis and Antiproliferative Activity of Some New Coumarin Derivatives Derived from 8-Hydroxycoumarin. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202102028x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Abstract
Coumarins constitute a relatively new class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), possessing a unique inhibition mechanism, acting as "prodrug inhibitors." They undergo the hydrolysis of the lactone ring mediated by the esterase activity of CA. The formed 2-hydroxy-cinnamic acids thereafter bind within a very particular part of the enzyme active site, at its entrance, where a high variability of amino acid residues among the different mammalian CA isoforms is present, and where other inhibitors classes were not seen bound earlier. This explains why coumarins are among the most isoform-selective CA inhibitors known to date among the many chemotypes endowed with such biological activity. As coumarins are widespread secondary metabolites in some bacteria, plants, fungi, and ascidians, many such compounds from various natural sources have been investigated for their CA inhibitory properties and for possible biomedical applications, mainly as anticancer agents targeting hypoxic tumours.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
35
|
A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Res 2021; 297:198387. [PMID: 33716181 DOI: 10.1016/j.virusres.2021.198387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV), a double-stranded DNA virus that infects crustaceans, is the most serious viral pathogen affecting shrimp farming worldwide. To reduce the economic losses caused by WSSV, we screened a novel coumarin derivative from a small molecule drug library, N-(4-((4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)sulfonyl)phenyl)acetamide (N2905), to evaluate its anti-WSSV effects in vivo. We determined that compound N2905, up to a concentration of 20 mg/L, significantly decreased the number of WSSV copies in Litopenaeus vannamei post-larvae, with a maximum inhibitory rate of > 90 %, and increased the survival rate of WSSV-infected post-larvae. Pre-treatment and post-treatment assays indicated that N2905 could treat, but not prevent, WSSV infections. When WSSV was preincubated with N2905 for 1-4 h, the incidence of viral infections was significantly reduced and survival time of post-larvae extended to 120 h. A stability study of N2905 provided a reference for its practical use. Considering the antiviral stability of N2905 in culture water within 2 d, continuous N2905 exchange was performed, showing a significant decrease in viral load at 120 h post-infection (hpi) and a 55 % increase in survival of WSSV-infected post-larvae. Overall, our study demonstrated the potential of N2905 as an antiviral agent.
Collapse
|
36
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
37
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom. Molecules 2021; 26:483. [PMID: 33477568 PMCID: PMC7831143 DOI: 10.3390/molecules26020483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
This review gives an up-to-date overview of the different ways (routes) to the synthesis of coumarin (benzopyrone)-fused, five-membered aromatic heterocycles with one heteroatom, built on the pyrone moiety. Covering 1966 to 2020.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki-Cairo 12622, Egypt;
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57050 Metz, France
| |
Collapse
|
38
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
39
|
Santana AC, Silva Filho RC, Menezes JCJMDS, Allonso D, Campos VR. Nitrogen-Based Heterocyclic Compounds: A Promising Class of Antiviral Agents against Chikungunya Virus. Life (Basel) 2020; 11:16. [PMID: 33396631 PMCID: PMC7824564 DOI: 10.3390/life11010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Arboviruses, in general, are a global threat due to their morbidity and mortality, which results in an important social and economic impact. Chikungunya virus (CHIKV), one of the most relevant arbovirus currently known, is a re-emergent virus that causes a disease named chikungunya fever, characterized by a severe arthralgia (joint pains) that can persist for several months or years in some individuals. Until now, no vaccine or specific antiviral drug is commercially available. Nitrogen heterocyclic scaffolds are found in medications, such as aristeromycin, favipiravir, fluorouracil, 6-azauridine, thioguanine, pyrimethamine, among others. New families of natural and synthetic nitrogen analogous compounds are reported to have significant anti-CHIKV effects. In the present work, we focus on these nitrogen-based heterocyclic compounds as an important class with CHIKV antiviral activity. We summarize the present understanding on this class of compounds against CHIKV and also present their possible mechanism of action.
Collapse
Affiliation(s)
- Andreza C. Santana
- Departamento de Química Orgânica, Campus do Valonguinho, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil; (A.C.S.); (R.C.S.F.)
| | - Ronaldo C. Silva Filho
- Departamento de Química Orgânica, Campus do Valonguinho, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil; (A.C.S.); (R.C.S.F.)
| | - José C. J. M. D. S. Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
- Research & Development, Esteem Industries Pvt. Ltd., Bicholim, Goa 403 529, India
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vinícius R. Campos
- Departamento de Química Orgânica, Campus do Valonguinho, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil; (A.C.S.); (R.C.S.F.)
| |
Collapse
|
40
|
Garg SS, Gupta J, Sharma S, Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur J Pharm Sci 2020; 152:105424. [DOI: 10.1016/j.ejps.2020.105424] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
|
41
|
Panda P, Chakroborty S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pravati Panda
- Department of Chemistry Rama Devi Women's University Bhubaneswar, Odisha 751004 India
| | | |
Collapse
|
42
|
Alizadeh A, Farajpour B, Amir Ashjaee Asalemi K, Taghipour S. Diastereoselective Synthesis of Coumarin‐Based Fused Heterocycles via Intramolecular Diels‐Alder and 1,3‐Dipolar Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdolali Alizadeh
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| | - Behnaz Farajpour
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| | | | - Sajad Taghipour
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| |
Collapse
|
43
|
Mishan MA, Khazeei Tabari MA, Zargari M, Bagheri A. MicroRNAs in the anticancer effects of celecoxib: A systematic review. Eur J Pharmacol 2020; 882:173325. [PMID: 32615181 DOI: 10.1016/j.ejphar.2020.173325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase-2 (COX-2) is known as an important enzyme in the inflammation process that has tumorigenesis function in various cancers through the induction of epithelial-to-mesenchymal transition (EMT), cell proliferation, migration, and invasion that lead to metastasis. Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) that can selectively target COX-2, suppress downstream pathways, and finally lead to anticancer potentiality. microRNAs (miRNAs), as a class of small noncoding RNAs, play pivotal roles in cancers through the tumor-suppressive or oncogenic effects, by post-transcriptional regulation of their target genes. In this regard, shreds of evidence have shown that, COX-2 reveals its action through miRNA regulation. So, in this systematic review, we aimed to highlight the tumorigenic role of COX-2 in cancer development and the therapeutic effects of celecoxib, as a selective COX-2 drug, through the regulation of miRNAs.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
44
|
Oyagbemi AA, Omobowale TO, Adejumobi OA, Owolabi AM, Ogunpolu BS, Falayi OO, Hassan FO, Ogunmiluyi IO, Asenuga ER, Ola-Davies OE, Soetan KO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway. Eur J Pharmacol 2020; 880:173142. [PMID: 32422184 DOI: 10.1016/j.ejphar.2020.173142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
Hypertension is a condition with chronic elevation of blood pressure and a common preventable risk factor for cardiovascular disease with attendant global morbidity and mortality. The present study investigated the novel antihypertensive and neuroprotective effect of Naringenin on L-NG-Nitro arginine methyl ester (L-NAME) induced hypertension together with possible molecular mechanism of action. Rats were divided into four groups. Rats in Group A were normotensive. The hypertensive group (Group B) received 40 mg/kg) of L-NAME alone while Groups C and D were concurrently administered Naringenin (50 mg/kg) or Lisinopril (10 mg/Kg) together with L-NAME orally for 3 weeks. Blood pressure parameters, markers of oxidative stress and renal damage were measured. The immunohistochemistry of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme were also determined. Results indicated significant increases in malondialdehyde, advanced oxidation protein products, protein carbonyl contents and decrease in serum nitric oxide bioavailability in hypertensive rats. Furthermore, there were significant increases in serum myeloperoxidase, urinary creatinine, albumin and blood urea nitrogen in hypertensive rats in comparison to hypertensive rats treated with either Naringenin or Lisinopril. Immunohistochemistry reveal significant expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme in hypertensive rats. However, co-treatment with either Naringenin or Lisinopril mitigated both renal and neuronal oxidative stress, normalized blood pressure and lowered the expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme. Collectively, Naringenin offered a novel antihypertensive and neuroprotective effect through down regulation of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | | | | | - Abiodun Mary Owolabi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kehinde Olugboyega Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
45
|
Song X, Fan J, Liu L, Liu X, Gao F. Coumarin derivatives with anticancer activities: An update. Arch Pharm (Weinheim) 2020; 353:e2000025. [DOI: 10.1002/ardp.202000025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xu‐Feng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of Technology Beijing China
| | - Jing Fan
- Hengshui University Hengshui Hebei China
| | - Lan Liu
- Medicine Vocational and Technical SchoolWuhan University Wuhan Hubei China
| | - Xiao‐Feng Liu
- Sinolite Industrial Co., Ltd. Hangzhou Zhejiang China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP)Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong China
| |
Collapse
|
46
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
47
|
Bayazeed A, Alshehrei F, Muhammad ZA, Al‐Fahemi J, El‐Metwaly N, Farghaly TA. Synthesis of Coumarin‐Analogues: Analytical, Spectral, Conformational, MOE‐Docking and Antimicrobial Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.201904724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Abrar Bayazeed
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
| | - Fatimah Alshehrei
- Department of BiologyJumom collegeUmm Al-Qura University P.O Box 7388 Makkah 21955 Saudi Arabia
| | - Zeinab A. Muhammad
- National Organization for Drug Control and Research (NODCAR) P.O. Box 29 Cairo Egypt
| | - Jabir Al‐Fahemi
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
| | - Nashwa El‐Metwaly
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
- Chemistry DepartmentFaculty of ScienceMansoura University Mansoura Egypt
| | | |
Collapse
|
48
|
Ahmed S, Nur-E-Alam M, Parveen I, Coles SJ, Hafizur RM, Hameed A, Orton JB, Threadgill MD, Yousaf M, Alqahtani AM, Al-Rehaily AJ. Stimulation of insulin secretion by 5-methylcoumarins and its sulfur analogues isolated from Clutia lanceolata Forssk. PHYTOCHEMISTRY 2020; 170:112213. [PMID: 31786408 DOI: 10.1016/j.phytochem.2019.112213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Clutia lanceolata Forssk. (C. lanceolata) is a medicinal plant native to sub-Saharan Africa and the Arabian Peninsula. Phytochemical investigation of the aerial parts of C. lanceolata yielded twenty-one coumarins including methylthio and methylsulfinyl-coumarins. Thirteen of these compounds are reported here for the first time, named as cluteolin A to M. The remaining eight compounds are known but have not been associated previously with C. lanceolata. The structures of the undescribed compounds were elucidated from their 2D NMR and MS spectra. Single crystal X-ray analyses confirmed the structures of eleven compounds. As, in Saudi Arabian tradition, C. lanceolata has been reported to have anti-diabetic and anti-fungal properties, the coumarins were examined for their biological activity. Seven compounds strongly enhanced the glucose-triggered release of insulin by murine pancreatic islets, with two compounds showing more than two-fold enhancement of insulin secretion, compared with the standard drug glimepiride.
Collapse
Affiliation(s)
- Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ifat Parveen
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - James B Orton
- UK National Crystallography Service, School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
| | - Michael D Threadgill
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom; Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Muhammad Yousaf
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz M Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
49
|
Xu R, Li K, Wang J, Lu J, Pan L, Zeng X, Zhong G. Direct enantioselective allylic substitution of 4-hydroxycoumarin derivatives with branched allylic alcohols via iridium catalysis. Chem Commun (Camb) 2020; 56:8404-8407. [DOI: 10.1039/d0cc02832k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium catalysed direct asymmetric allylic substitution reaction of 4-hydroxycoumarin derivatives with allylic alcohols with remarkably high yields and excellent enantioselectivities was realized.
Collapse
Affiliation(s)
- Ruigang Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Kai Li
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jiaqi Wang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jiamin Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Lina Pan
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiaofei Zeng
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
50
|
Menezes JC, Diederich MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem 2019; 182:111637. [DOI: 10.1016/j.ejmech.2019.111637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|