1
|
Shang L, Wei H, Deng J, Stewart MJ, LeSaint JE, Kyomuhangi A, Park S, Maul EC, Zhan CG, Zheng F. In vitro and in vivo stability of a highly efficient long-acting cocaine hydrolase. Sci Rep 2024; 14:10952. [PMID: 38740850 PMCID: PMC11091111 DOI: 10.1038/s41598-024-61646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
It is recognized as a promising therapeutic strategy for cocaine use disorder to develop an efficient enzyme which can rapidly convert cocaine to physiologically inactive metabolites. We have designed and discovered a series of highly efficient cocaine hydrolases, including CocH5-Fc(M6) which is the currently known as the most efficient cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest biological half-life in rats. In the present study, we characterized the time courses of protein appearance, pH, structural integrity, and catalytic activity against cocaine in vitro and in vivo of a CocH5-Fc(M6) bulk drug substance produced in a bioreactor for its in vitro and in vivo stability after long-time storage under various temperatures (- 80, - 20, 4, 25, or 37 °C). Specifically, all the tested properties of the CocH5-Fc(M6) protein did not significantly change after the protein was stored at any of four temperatures including - 80, - 20, 4, and 25 °C for ~ 18 months. In comparison, at 37 °C, the protein was less stable, with a half-life of ~ 82 days for cocaine hydrolysis activity. Additionally, the in vivo studies further confirmed the linear elimination PK profile of CocH5-Fc(M6) with an elimination half-life of ~ 9 days. All the in vitro and in vivo data on the efficacy and stability of CocH5-Fc(M6) have consistently demonstrated that CocH5-Fc(M6) has the desired in vitro and in vivo stability as a promising therapeutic candidate for treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Linyue Shang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Madeline J Stewart
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Johnathan E LeSaint
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Annet Kyomuhangi
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Shawn Park
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Elise C Maul
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Wei H, LeSaint JE, Jin Z, Zhan CG, Zheng F. Long-lasting blocking of interoceptive effects of cocaine by a highly efficient cocaine hydrolase in rats. Sci Rep 2024; 14:927. [PMID: 38195724 PMCID: PMC10776848 DOI: 10.1038/s41598-023-50678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
Cocaine dependence is a serious world-wide public health problem without an FDA-approved pharmacotherapy. We recently designed and discovered a highly efficient long-acting cocaine hydrolase CocH5-Fc(M6). The present study examined the effectiveness and duration of CocH5-Fc(M6) in blocking interoceptive effects of cocaine by performing cocaine discrimination tests in rats, demonstrating that the duration of CocH5-Fc(M6) in blocking cocaine discrimination was dependent on cocaine dose and CocH5-Fc(M6) plasma concentration. Particularly, a dose of 3 mg/kg CocH5-Fc(M6) effectively attenuated discriminative stimulus effects of 10 mg/kg cocaine, cumulative doses of 10 and 32 mg/kg cocaine, and cumulative doses of 10, 32 and 56 mg/kg cocaine by ≥ 20% for 41, 19, and 10 days, and completely blocked the discriminative stimulus effects for 30, 13, and 5 days with corresponding threshold plasma CocH5-Fc(M6) concentrations of 15.9, 72.2, and 221 nM, respectively, under which blood cocaine concentration was negligible. Additionally, based on the data obtained, cocaine discrimination model is more sensitive than the locomotor activity to reveal cocaine effects and that CocH5-Fc(M6) itself has no long-term toxicity regarding behavioral activities such as lever pressing and food consumption in rats, further demonstrating that CocH5-Fc(M6) has the desired properties as a promising therapeutic candidate for prevenance of cocaine dependence.
Collapse
Affiliation(s)
- Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Johnathan E LeSaint
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Zhenyu Jin
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Zheng F, Hou S, Xue L, Yang W, Zhan CG. Human Butyrylcholinesterase Mutants for (-)-Cocaine Hydrolysis: A Correlation Relationship between Catalytic Efficiency and Total Hydrogen Bonding Energy with an Oxyanion Hole. J Phys Chem B 2023; 127:10723-10729. [PMID: 38063500 DOI: 10.1021/acs.jpcb.3c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A combined computational and experimental study has been carried out to explore and test a quantitative correlation relationship between the relative catalytic efficiency (RCE) of human butyrylcholinesrase (BChE) mutant-catalyzed hydrolysis of substrate (-)-cocaine and the total hydrogen bonding energy (tHBE) of the carbonyl oxygen of the substrate with the oxyanion hole of the enzyme in the modeled transition-state structure (TS1), demonstrating a satisfactory linear correlation relationship between ln(RCE) and tHBE. The satisfactory correlation relationship has led us to computationally predict and experimentally confirm new human BChE mutants that have a further improved catalytic activity against (-)-cocaine, including the most active one (the A199S/F227S/S287G/A328W/Y332G mutant) with a 2790-fold improved catalytic efficiency (kcat/KM = 2.5 × 109 min-1 M-1) compared to the wild-type human BChE. Compared to the reference mutant (the A199S/S287G/A328W/Y332G mutant) tested in the reported clinical development of an enzyme therapy for cocaine dependence treatment, this new mutant (with a newly predicted additional F227S mutation) has an improved catalytic efficiency against (-)-cocaine by ∼2.6-fold. The good agreement between the computational and experimental ln(RCE) values suggests that the obtained correlation relationship is robust for computational prediction. A similar correlation relationship could also be explored in studying BChE or other serine hydrolases/esterases with an oxyanion hole stabilizing the carbonyl oxygen in the rate-determining reaction step of the enzymatic hydrolysis of other substrates.
Collapse
Affiliation(s)
- Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Liu Xue
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wenchao Yang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
4
|
Deng J, Zheng X, Shang L, Zhan CG, Zheng F. Gender differences in cocaine-induced hyperactivity and dopamine transporter trafficking to the plasma membrane. Addict Biol 2022; 27:e13236. [PMID: 36301205 PMCID: PMC9625146 DOI: 10.1111/adb.13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
As well known, cocaine induces stimulant effects and dopamine transporter (DAT) trafficking to the plasma membrane of dopaminergic neurons. In the present study, we examined cocaine-induced hyperactivity along with cocaine-induced DAT trafficking and the recovery rate of the dopaminergic system in female rats in comparison with male rats, demonstrating interesting gender differences. Female rats are initially more sensitive to cocaine than male rats in terms of both the DAT trafficking and hyperactivity induced by cocaine. Particularly, intraperitoneal (i.p.) administration of 5 mg/kg cocaine induced significant hyperactivity and DAT trafficking in female rats but not in male rats. After repeated cocaine exposures (i.e., i.p. administration of 20 mg/kg cocaine every other day from Day 0 to Day 32), cocaine-induced hyperactivity in female rats gradually became a clear pattern of two phases, with the first phase of the hyperactivity lasting for only a few minutes and the second phase lasting for over an hour beginning at ~30 min, which is clearly different from that of male rats. It has also been demonstrated that the striatal DAT distribution of female rats may recover faster than that of male rats after multiple cocaine exposures. Nevertheless, despite the remarkable gender differences, our recently developed long-acting cocaine hydrolase, known as CocH5-Fc(M6), can similarly and effectively block cocaine-induced DAT trafficking and hyperactivity in both male and female rats.
Collapse
Affiliation(s)
- Jing Deng
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Linyue Shang
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
5
|
Zheng F, Jin Z, Deng J, Chen X, Zheng X, Wang G, Kim K, Shang L, Zhou Z, Zhan CG. Development of a Highly Efficient Long-Acting Cocaine Hydrolase Entity to Accelerate Cocaine Metabolism. Bioconjug Chem 2022; 33:1340-1349. [PMID: 35767675 DOI: 10.1021/acs.bioconjchem.2c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is particularly challenging to develop a truly effective pharmacotherapy for cocaine use disorder (CUD) treatment. Accelerating cocaine metabolism via hydrolysis at cocaine benzoyl ester using an efficient cocaine hydrolase (CocH) is known as a promising pharmacotherapeutic approach to CUD treatment. Preclinical and clinical studies on our first CocH (CocH1), in its human serum albumin-fused form known as TV-1380, have demonstrated the promise of a general concept of CocH-based pharmacotherapy for CUD treatment. However, the biological half-life of TV-1380 (t1/2 = 8 h in rats, associated with t1/2 = 43-77 h in humans) is not long enough for practical treatment of cocaine dependence, which requires enzyme injection for no more than once weekly. Through protein fusion of a human butyrylcholinesterase mutant (denoted as CocH5) with a mutant (denoted as Fc(M6)) of Fc from human IgG1, we have designed, prepared, and tested a new fusion protein (denoted as CocH5-Fc(M6)) for its pharmacokinetic profile and in vivo catalytic activity against (-)-cocaine. CocH5-Fc(M6) represents the currently most efficient long-acting cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest elimination half-life (t1/2 = 229 ± 5 h) in rats. As a result, even at a single modest dose of 3 mg/kg, CocH5-Fc(M6) can significantly and effectively accelerate the metabolism of cocaine in rats for at least 60 days. In addition, ∼70 nM CocH5-Fc(M6) in plasma was able to completely block the toxicity and physiological effects induced by intraperitoneal injection of a lethal dose of cocaine (60 mg/kg).
Collapse
|
6
|
Deng J, Zhang T, Zheng X, Shang L, Zhan C, Zheng F. Recovery of dopaminergic system after cocaine exposure and impact of a long‐acting cocaine hydrolase. Addict Biol 2022; 27:e13179. [DOI: 10.1111/adb.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Deng
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| | - Linyue Shang
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| | - Chang‐Guo Zhan
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky 789 South Limestone Street Lexington Kentucky 40536 USA
| |
Collapse
|
7
|
Deng J, Kim K, Zheng X, Shang L, Zhan CG, Zheng F. Cocaine hydrolase blocks cocaine-induced dopamine transporter trafficking to the plasma membrane. Addict Biol 2022; 27:e13089. [PMID: 34363291 PMCID: PMC8720053 DOI: 10.1111/adb.13089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Cocaine blocks dopamine uptake via dopamine transporter (DAT) on plasma membrane of neuron cells and, as a result, produces the high and induces DAT trafficking to plasma membrane which contributes to the drug seeking or craving. In this study, we first examined the dose dependence of cocaine-induced DAT trafficking and hyperactivity in rats, demonstrating that cocaine at an intraperitoneal dose of 10 mg/kg or higher led to redistribution of most DAT to the plasma membrane while inducing significant hyperactivity in rats. However, administration of 5-mg/kg cocaine (ip) did not significantly induce DAT trafficking or hyperactivity in rats. So the threshold (intraperitoneal) dose of cocaine that can significantly induce DAT trafficking or hyperactivity should be between 5 and 10 mg/kg. These data suggest that when a cocaine dose is high enough to induce significant hyperactivity, it can also significantly induce DAT trafficking to the plasma membrane. Further, the threshold brain cocaine concentration required to induce significant hyperactivity and DAT trafficking was estimated to be ~2.0 ± 0.8 μg/g. Particularly, for treatment of cocaine abuse, previous studies demonstrated that an exogenous cocaine-metabolizing enzyme, for example, CocH3-Fc(M3), can effectively block cocaine-induced hyperactivity. However, it was unknown whether an enzyme could also effectively block cocaine-induced DAT trafficking to the plasma membrane. This study demonstrates, for the first time, that the enzyme is also capable of effectively blocking cocaine from reaching the brain even with a lethal dose of 60-mg/kg cocaine (ip) and, thus, powerfully preventing cocaine-induced physiological effects such as the hyperactivity and DAT trafficking.
Collapse
Affiliation(s)
- Jing Deng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Linyue Shang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
8
|
Wei H, Zhang T, Zhan CG, Zheng F. Cebranopadol reduces cocaine self-administration in male rats: Dose, treatment and safety consideration. Neuropharmacology 2020; 172:108128. [PMID: 32389751 PMCID: PMC9334146 DOI: 10.1016/j.neuropharm.2020.108128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022]
Abstract
As a novel first-in-class potent analgesic acting as an agonist of multiple opioid receptors, cebranopadol showed high efficacy and good tolerability in a broad range of preclinical models and clinical trials related to pain. In the present study, to evaluate the efficacy and safety of cebranopadol as a potential treatment of cocaine dependence, we tested the effects of cebranopadol with single and repeated doses (25, 50, 75, or 100 μg/kg, oral gavage) using rat models of cocaine fixed-ratio (FR) self-administration (SA), cocaine progressive-ratio (PR) SA, and sucrose pellet SA. In single-dosing treatment paradigm, cebranopadol significantly and dose-dependently reduced cocaine SA under FR and PR schedules and suppressed food intake under FR schedule without causing apparent side effects. In repeated-dosing treatment scheme, i.e. daily administration of 25, 50, 75, or 100 μg/kg cebranopadol for a week, the similar reduction in cocaine intake was detected, while non-negligible complications/side effects were observed at repeated high doses (75 and 100 μg/kg). The observed side effects were similar to the common toxic signs elicited by heroin at high doses, although cebranopadol did not fully substitute heroin's discriminative stimulant effects in our drug discriminative tests. These results demonstrated that the most appropriate oral dose of cebranopadol to balance the efficacy and safety is 50 μg/kg. Collectively, although cebranopadol may serve as a new treatment for cocaine dependence, more consideration, cautiousness, and a clear optimal dose window to dissociate its therapeutic effects from opioid side effects/complications in male and female subjects will be necessary to increase its practical clinical utility.
Collapse
Affiliation(s)
- Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
9
|
Clinical potential of a rationally engineered enzyme for treatment of cocaine dependence: Long-lasting blocking of the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine. Neuropharmacology 2020; 176:108251. [PMID: 32710979 DOI: 10.1016/j.neuropharm.2020.108251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
It is a grand challenge to develop a truly effective treatment of substance use disorder (SUD), particularly for cocaine and other drugs without an FDA-approved treatment available, because a truly effective therapy must effectively block the drug's physiological and reinforcing effects during the entire period of treatment in order to achieve the long-time abstinence required by the FDA. Whether a biologic, such as monoclonal antibody, vaccine, or therapeutic enzyme, can be truly effective for SUD treatment or not has been the subject of extensive debate. The main debate question is whether a biologic, particularly an exogenous enzyme, can effectively block the drug's reinforcing effect. In this report, we demonstrate that a modest dose of a recently redesigned long-acting cocaine hydrolase, CocH3-Fc(M6), can be used to effectively block the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine for a sufficiently long period of time. For example, a dose of 3 mg/kg CocH3-Fc(M6) completely blocked the discriminative stimulus and reinforcing effects for 24/25 days and continued to significantly attenuate/decrease the cocaine effects for at least 29 days in rats. All the animal data consistently suggest that the long-acting cocaine hydrolase is a truly promising candidate of enzyme therapy for treatment of cocaine use disorder.
Collapse
|
10
|
Zheng F, Chen X, Kim K, Zhang T, Huang H, Zhou S, Zhang J, Jin Z, Zhan CG. Structure-Based Design and Discovery of a Long-Acting Cocaine Hydrolase Mutant with Improved Binding Affinity to Neonatal Fc Receptor for Treatment of Cocaine Abuse. AAPS JOURNAL 2020; 22:62. [PMID: 32189158 DOI: 10.1208/s12248-020-00442-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
Despite decades of efforts to develop a pharmacotherapy for cocaine abuse treatment, there is still no FDA-approved treatment of diseases associated with this commonly abused drug. Our previously designed highly efficient cocaine hydrolases (CocHs) and the corresponding Fc-fusion proteins (e.g., CocH3-Fc) are recognized as potentially promising therapeutic enzyme candidates for cocaine abuse treatment, but all with limited biological half-lives. In order to prolong the biological half-life and, thus, decrease the required frequency of the enzyme administration for cocaine abuse treatment, we have modeled the Fc-fusion CocH binding with neonatal Fc receptor (FcRn) in the present study. This approach led to the design and testing of CocH3-Fc(M6), a CocH3-Fc mutant with nearly 100-fold increased binding affinity: from Kd = ~ 4 μM to Kd = 43 nM. As a result, CocH3-Fc(M6) indeed revealed a markedly prolonged biological half-life (t1/2 = 206 ± 7 h or ~ 9 days) in rats, longer than other known Fc-fusion protein drugs such as abatacept and alefacept (for other therapeutic purposes) in the same species (rats). It has been demonstrated that a single dose of 3 mg/kg CocH3-Fc(M6) effectively blocked 20 mg/kg cocaine-induced hyperactivity on day 18 after CocH3-Fc(M6) administration. This is the first attempt to rationally design long-acting Fc-fusion enzyme mutant based on combined computational modeling and experimental measurement of the Fc-fusion CocH binding with FcRn. The similar structure-based design strategy may be used to prolong the biological half-lives of other Fc-fusion protein drugs.
Collapse
Affiliation(s)
- Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Kyungbo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Ting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Haifeng Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Jinling Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Zhenyu Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
11
|
Huang H, Fang L, Xue L, Zhang T, Kim K, Hou S, Zheng F, Zhan CG. PEGylation but Not Fc-Fusion Improves in Vivo Residence Time of a Thermostable Mutant of Bacterial Cocaine Esterase. Bioconjug Chem 2019; 30:3021-3027. [PMID: 31661952 DOI: 10.1021/acs.bioconjchem.9b00622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is very popular to fuse a protein drug or drug candidate to the Fc domain of immunoglobulin G (IgG) in order to prolong the in vivo half-life. In this study, we have designed, prepared, and tested an Fc-fused thermostable cocaine esterase (CocE) mutant (known as E196-301, with the T172R/G173Q/L196C/I301C substitutions on CocE) expressed in E. coli. As expected, Fc-fusion does not affect the in vitro enzyme activity and thermal stability of the enzyme and that Fc-E196-301 can favorably bind FcRn with Kd = 386 ± 35 nM. However, Fc-fusion does not prolong the in vivo half-life of E196-301 at all; Fc-E196-301 and E196-301 have essentially the same PK profile (t1/2 = 0.4 ± 0.1 h) in rats. This is the first time demonstrating that Fc-fusion does not prolong in vivo half-life of a protein. This finding is consistent with the mechanistic understanding that E196-301 and Fc-E196-301 are all degraded primarily through rapid proteolysis in the body. The Fc fusion cannot protect E196-301 from the proteolysis in the body. Nevertheless, it has been demonstrated that PEGylation can effectively protect E196-301, as the PEGylated E196-301, i.e., PEG-E196-301, has a significantly prolonged in vivo half-life. It has also been demonstrated that both E196-301 and PEG-E196-301 have dose-dependent in vivo half-lives (e.g., 19.9 ± 6.4 h for the elimination t1/2 of 30 mg/kg PEG-E196-301), as the endogenous proteolytic enzymes responsible for proteolysis of E196-301 (PEGylated or not) are nearly saturated by the high plasma concentration produced by a high dose of E196-301 or PEG-E196-301.
Collapse
Affiliation(s)
- Haifeng Huang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Lei Fang
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Liu Xue
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| |
Collapse
|
12
|
Grigorenko BL, Novichkova DA, Lushchekina SV, Zueva IV, Schopfer LM, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Computer-designed active human butyrylcholinesterase double mutant with a new catalytic triad. Chem Biol Interact 2019; 306:138-146. [PMID: 31009643 DOI: 10.1016/j.cbi.2019.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
A computer-designed mutant of human butyrylcholinesterase (BChE), N322E/E325G, with a novel catalytic triad was made. The catalytic triad of the wild-type enzyme (S198·H438·E325) was replaced by S198·H438·N322E in silico. Molecular dynamics for 1.5 μs and Markov state model analysis showed that the new catalytic triad should be operative in the mutant enzyme, suggesting functionality. QM/MM modeling performed for the reaction of wild-type BChE and double mutant with echothiophate showed high reactivity of the mutant towards the organophosphate. A truncated monomeric (L530 stop) double mutant was expressed in Expi293 cells. Non-purified transfected cell culture medium was analyzed. Polyacrylamide gel electrophoresis under native conditions followed by activity staining with BTC as the substrate provided evidence that the monomeric BChE mutant was active. Inhibition of the double mutant by echothiophate followed by polyacrylamide gel electrophoresis and activity staining showed that this enzyme slowly self-reactivated. However, because Expi293 cells secrete an endogenous BChE tetramer and several organophosphate-reacting enzymes, catalytic parameters and self-reactivation constants after phosphorylation of the new mutant were not determined in the crude cell culture medium. The study shows that the computer-designed double mutant (N322E/E325G) with a new catalytic triad (S198·H438·N322E) is a suitable template for design of novel active human BChE mutants that display an organophosphate hydrolase activity.
Collapse
Affiliation(s)
- Bella L Grigorenko
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia; Lomonosov State University, Chemistry Department, Moscow 119991, Russia
| | - Dana A Novichkova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia
| | - Sofya V Lushchekina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia.
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russia; Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya Str, 18, Kazan, 420008, Russia
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexander V Nemukhin
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia; Lomonosov State University, Chemistry Department, Moscow 119991, Russia
| | - Sergey D Varfolomeev
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina Str. 4, Moscow 119334, Russia; Lomonosov State University, Chemistry Department, Moscow 119991, Russia
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya Str, 18, Kazan, 420008, Russia.
| |
Collapse
|
13
|
Yao J, Chen X, Zheng F, Zhan CG. Catalytic Reaction Mechanism for Drug Metabolism in Human Carboxylesterase-1: Cocaine Hydrolysis Pathway. Mol Pharm 2018; 15:3871-3880. [PMID: 30095924 DOI: 10.1021/acs.molpharmaceut.8b00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carboxylesterase-1 (CE-1) is a crucial enzyme responsible for metabolism/activation/inactivation of xenobiotics (therapeutic agents, prodrugs, abused drugs, and organophosphorus nerve agents etc.) and also involved in many other biological processes. In this study, we performed extensive computational modeling and simulations to understand the fundamental reaction mechanism of cocaine hydrolysis catalyzed by CE-1, revealing that CE-1-catalyzed cocaine hydrolysis follows a novel reaction pathway with only two reaction steps: a single-step acylation process and a single-step deacylation process. In the transition states of both single-step processes, the cocaine NH group joins the oxyanion hole to form an additional hydrogen bond with the negatively charged carbonyl oxygen atom of the cocaine. Thus, the transition states are stabilized by both intermolecular and intramolecular hydrogen bonds with the methyl ester of cocaine, specifically the carbonyl oxygen atom. The rate-limiting transition state is associated with the acylation process, and the activation free energy barrier was predicted to be 20.1 kcal/mol. Further, in vitro experimental kinetic analysis was performed for human CE-1-catalyzed cocaine hydrolysis. For CE-1-catalyzed cocaine hydrolysis, the computationally predicted free energy barrier (20.1 kcal/mol) is reasonably close to the experimentally derived turnover number ( kcat = 0.058 min-1), indicating the reasonability of the computational results. The obtained novel mechanistic insights are expected to benefit not only CE-1 related rational drug discovery but also future research on the catalytic mechanism of other esterases.
Collapse
Affiliation(s)
- Jianzhuang Yao
- School of Biological Science and Techonology , University of Jinan , Jinan 250022 , China
| | - Xiabin Chen
- School of Medicine , Hangzhou Normal University , Hangzhou 311121 , China
| | | | | |
Collapse
|
14
|
Chen X, Deng J, Cui W, Hou S, Zhang J, Zheng X, Ding X, Wei H, Zhou Z, Kim K, Zhan CG, Zheng F. Development of Fc-Fused Cocaine Hydrolase for Cocaine Addiction Treatment: Catalytic and Pharmacokinetic Properties. AAPS JOURNAL 2018; 20:53. [PMID: 29556863 DOI: 10.1208/s12248-018-0214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
Cocaine abuse is a worldwide public health and social problem without a US Food and Drug Administration (FDA)-approved medication. Accelerating cocaine metabolism that produces biologically inactive metabolites by administration of an efficient cocaine hydrolase (CocH) has been recognized as a promising strategy for cocaine abuse treatment. However, the therapeutic effects of CocH are limited by its short biological half-life (e.g., 8 h or shorter in rats). In this study, we designed and prepared a set of Fc-fusion proteins constructed by fusing Fc(M3) with CocH3 at the N-terminus of CocH3. A linker between the two protein domains was optimized to improve both the biological half-life and catalytic activity against cocaine. It has been concluded that Fc(M3)-G6S-CocH3 not only has fully retained the catalytic efficiency of CocH3 against cocaine but also has the longest biological half-life (e.g., ∼ 136 h in rats) among all of the long-acting CocHs identified so far. A single dose (0.2 mg/kg, IV) of Fc(M3)-G6S-CocH3 was able to significantly attenuate 15 mg/kg cocaine-induced hyperactivity for at least 11 days (268 h) after the Fc(M3)-G6S-CocH3 administration.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Wenpeng Cui
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jinling Zhang
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xin Ding
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
15
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Understanding the non-catalytic behavior of human butyrylcholinesterase silent variants: Comparison of wild-type enzyme, catalytically active Ala328Cys mutant, and silent Ala328Asp variant. Chem Biol Interact 2016; 259:223-232. [PMID: 27062896 DOI: 10.1016/j.cbi.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
Abstract
Conformational dynamics of wild-type human butyrylcholinesterase (BChE), two mutants of residue Ala328, the catalytically active Ala328Cys, and the catalytically inactive (silent) Ala328Asp, and their interactions with butyrylcholine were studied. The aim was to understand the molecular mechanisms by which point mutations may lead to silent BChE variant or alter catalytic activity. Importance of BChE natural variants is due to medical consequences, i.e. prolonged apnea, following administration of the myorelaxant esters, succinylcholine and mivacurium. Comparison of molecular dynamics (MD) simulations for the three model systems showed that: 1) the active mutant Ala328Cys mutant has some changes in configuration of catalytic residues, which do not prevent binding of butyrylcholine to the active site; 2) in the naturally-occurring silent variant Ala328Asp, the Asp328 carboxylate may either form a salt bridge with Lys339 or a H-bond with His438. In the first case, the Ω-loop swings off the gorge, disrupting the π-cation binding site and the catalytic triad. In the second case, binding of cationic substrates in the catalytic center is also impaired. MD simulations carried out in 0.15 M NaCl, close to physiological ionic strength conditions, favored the second situation. It was seen that Asp328 forms a H-bond with the catalytic triad His438, which in turn disrupts the catalytic machinery. Therefore, we concluded that the Ala328Asp variant is not catalytically active because of that dramatic event. Computational results, consistent with in vitro biochemical data and clinical observations, validate our MD approach.
Collapse
|
17
|
Is immunotherapy an opportunity for effective treatment of drug addiction? Vaccine 2015; 33:6545-51. [PMID: 26432911 DOI: 10.1016/j.vaccine.2015.09.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Immunotherapy has a great potential of becoming a new therapeutic strategy in the treatment of addiction to psychoactive drugs. It may be used to treat addiction but also to prevent neurotoxic complications of drug overdose. In preclinical studies two immunological methods have been tested; active immunization, which relies on the administration of vaccines and passive immunization, which relies on the administration of monoclonal antibodies. Until now researchers have succeeded in developing vaccines and/or antibodies against addiction to heroin, cocaine, methamphetamine, nicotine and phencyclidine. Their effectiveness has been confirmed in preclinical studies. At present, clinical studies are being conducted for vaccines against nicotine and cocaine and also anti-methamphetamine monoclonal antibody. These preclinical and clinical studies suggest that immunotherapy may be useful in the treatment of addiction and drug overdose. However, there are a few problems to be solved. One of them is controlling the level of antibodies due to variability between subjects. But even obtaining a suitable antibody titer does not guarantee the effectiveness of the vaccine. Additionally, there is a risk of intentional or unintentional overdose. As vaccines prevent passing of drugs through the blood/brain barrier and thereby prevent their positive reinforcement, some addicted patients may erroneously seek higher doses of psychoactive substances to get "high". Consequently, vaccination should be targeted at persons who have a strong motivation to free themselves from drug dependency. It seems that immunotherapy may be an opportunity for effective treatment of drug addiction if directed to adequate candidates for treatment. For other addicts, immunotherapy may be a very important element supporting psycho- and pharmacotherapy.
Collapse
|
18
|
Askalsky P, Kalapatapu RK, Foltin RW, Comer SD. Butyrylcholinesterase levels and subjective effects of smoked cocaine in healthy cocaine users. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 41:161-5. [PMID: 25321637 DOI: 10.3109/00952990.2014.966197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Butyrylcholinesterase (BChE) is beginning to attract attention as a possible target for cocaine abuse treatment because of its role in metabolizing cocaine. OBJECTIVE The purpose of this analysis was to assess whether endogenous BChE levels are associated with the subjective effects of cocaine. METHODS Data from 28 participants in five inpatient cocaine self-administration studies were included in the present analysis. Four minutes after each smoked cocaine dose, participants rated their drug-related effects from 0-100 using a computerized self-report Visual Analogue Scale (VAS). The main outcome measures were nine change-in-VAS ratings between a baseline placebo dose and a 25-mg smoked cocaine dose. RESULTS After controlling for age, sex, total years of cocaine use, total milligrams of cocaine administered before the 25-mg dose being analyzed, and baseline diastolic blood pressure, endogenous BChE was not significantly associated with any of the nine change-in-VAS ratings. CONCLUSION Though BChE appears to be a possible target for cocaine abuse treatment, these data suggest that endogenous levels of BChE may not play a role in modifying the subjective effects of cocaine. Future larger studies of BChE in respect to the subjective effects produced by cocaine are needed to confirm or refute these findings.
Collapse
|
19
|
Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi-linear regression and artificial neural network approaches. Bioorg Med Chem 2013; 22:538-49. [PMID: 24290065 DOI: 10.1016/j.bmc.2013.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 02/07/2023]
Abstract
Butyrylcholinesterase (BChE) has been an important protein used for development of anti-cocaine medication. Through computational design, BChE mutants with ∼2000-fold improved catalytic efficiency against cocaine have been discovered in our lab. To study drug-enzyme interaction it is important to build mathematical model to predict molecular inhibitory activity against BChE. This report presents a neural network (NN) QSAR study, compared with multi-linear regression (MLR) and molecular docking, on a set of 93 small molecules that act as inhibitors of BChE by use of the inhibitory activities (pIC₅₀ values) of the molecules as target values. The statistical results for the linear model built from docking generated energy descriptors were: r(2)=0.67, rmsd=0.87, q(2)=0.65 and loormsd=0.90; the statistical results for the ligand-based MLR model were: r(2)=0.89, rmsd=0.51, q(2)=0.85 and loormsd=0.58; the statistical results for the ligand-based NN model were the best: r(2)=0.95, rmsd=0.33, q(2)=0.90 and loormsd=0.48, demonstrating that the NN is powerful in analysis of a set of complicated data. As BChE is also an established drug target to develop new treatment for Alzheimer's disease (AD). The developed QSAR models provide tools for rationalizing identification of potential BChE inhibitors or selection of compounds for synthesis in the discovery of novel effective inhibitors of BChE in the future.
Collapse
|
20
|
Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine. Biochem J 2013; 453:447-54. [PMID: 23849058 DOI: 10.1042/bj20130549] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min-1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell line expressing BChE or its mutant. In the present study, we successfully developed a stable cell line efficiently expressing the BChE mutant by using a lentivirus-based repeated-transduction method. The scaled-up protein production enabled us to determine for the first time the in vivo catalytic activity and the biological half-life of this high-activity mutant of human BChE in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant (administered to mice 1 min prior to cocaine) can quickly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment.
Collapse
|
21
|
Xue L, Hou S, Yang W, Fang L, Zheng F, Zhan CG. Catalytic activities of a cocaine hydrolase engineered from human butyrylcholinesterase against (+)- and (-)-cocaine. Chem Biol Interact 2013; 203:57-62. [PMID: 22917637 PMCID: PMC3527670 DOI: 10.1016/j.cbi.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/27/2022]
Abstract
It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)-cocaine. According to available positron emission tomography (PET) imaging analysis using [(11)C](-)-cocaine and [(11)C](+)-cocaine tracers in human subjects, only [(11)C](-)-cocaine was observed in the brain, whereas no significant [(11)C](+)-cocaine signal was observed in the brain. The available PET data imply that an effective therapeutic enzyme for treatment of cocaine abuse could be an exogenous cocaine-metabolizing enzyme with a catalytic activity against (-)-cocaine comparable to that of wild-type BChE against (+)-cocaine. Our recently designed A199S/F227A/S287G/A328 W/Y332G mutant of human BChE has a considerably improved catalytic efficiency against (-)-cocaine and has been proven active in vivo. In the present study, we have characterized the catalytic activities of wild-type BChE and the A199S/F227A/S287G/A328 W/Y332G mutant against both (+)- and (-)-cocaine at the same time under the same experimental conditions. Based on the obtained kinetic data, the A199S/F227A/S287G/A328 W/Y332G mutant has a similarly high catalytic efficiency (kcat/KM) against (+)- and (-)-cocaine, and indeed has a catalytic efficiency (k(cat/)K(M) = 1.84 × 10(9) M(-1) min(-1)) against (-)-cocaine comparable to that (k(cat)/K(M) = 1.37 × 10(9) M(-1) min(-1)) of wild-type BChE against (+)-cocaine. Thus, the mutant may be used to effectively prevent (-)-cocaine from entering brain and producing physiological effects in the enzyme-based treatment of cocaine abuse.
Collapse
Affiliation(s)
| | | | - Wenchao Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Lei Fang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Zheng F, Zhan CG. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse. PLoS Comput Biol 2012; 8:e1002610. [PMID: 22844238 PMCID: PMC3406004 DOI: 10.1371/journal.pcbi.1002610] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/29/2012] [Indexed: 12/05/2022] Open
Abstract
A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC) value in brain (denoted by AUC2∞) required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE) can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2∞. The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse. In this computational study, we have examined, for the first time, the potential effects of a drug-metabolizing enzyme on drug pharmacokinetics in human, showing that a high-activity drug-metabolizing enzyme can completely/effectively prevent the drug of abuse from entering brain to produce physiological effects. Based on this encouraging insight, it is feasible to develop enzyme therapies for drugs of abuse. Through pharmacokinetic modeling, we have demonstrated that, without an exogenous enzyme, the drug half-lives in both brain and plasma are almost linearly dependent on the initial drug concentration in plasma. This finding indicates that one may not simply say the half-life of a drug without clearly indicating the actual dose condition. We have also demonstrated for the first time how a high-activity drug-metabolizing enzyme can considerably decrease the peak concentration of drug in brain and drug half-lives in both brain and plasma. In addition, we have calculated the minimum (threshold) concentration of cocaine in brain required to produce physiological effects. The predicted threshold concentration, along with all of the general insights obtained in this study, will provide a rational base for future design of further experimental studies required for the enzyme therapy development.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | | |
Collapse
|
23
|
Romani R, Galeazzi R, Rosi G, Fiorini R, Pirisinu I, Ambrosini A, Zolese G. Anandamide and its congeners inhibit human plasma butyrylcholinesterase. Possible new roles for these endocannabinoids? Biochimie 2011; 93:1584-91. [PMID: 21664223 DOI: 10.1016/j.biochi.2011.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
Abstract
Butyrylcholinesterase (BChE), a serine hydrolase biochemically related to the cholinergic enzyme Acetylcholinesterase (AChE), is found in many mammalian tissues, such as serum and central nervous system, but its physiological role is still unclear. BChE is an important human plasma esterase, where it has detoxifying roles. Furthermore, recent studies suggest that brain BChE can have a role in Alzheimer's disease (AD). The endocannabinoid arachidonoylethanolamide (anandamide) and other acylethanolamides (NAEs) are almost ubiquitary molecules and are physiologically present in many tissues, including blood and brain, where they show neuroprotective and anti-inflammatory properties. This paper demonstrates that they are uncompetitive (oleoylethanolamide and palmitoylethanolamide) or non competitive (anandamide) inhibitors of BChE (Ki in the range 1.32-7.48 nM). On the contrary, NAEs are ineffective on AChE kinetic features. On the basis of the X-ray crystallographic structure of human BChE, and by using flexible docking procedures, an hypothesis on the NAE-BChE interaction is formulated by molecular modeling studies. Our results suggest that anandamide and the other acylethanolamides studied could have a role in the modulation of the physiological actions of BChE.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
“Recent progress in the study of cocaine-metabolizing enzymes demonstrates that enzyme-therapy approaches using appropriately designed enzymes show promise for the treatment of drug overdose and addiction.”
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
25
|
Zheng F, Yang W, Xue L, Hou S, Liu J, Zhan CG. Design of high-activity mutants of human butyrylcholinesterase against (-)-cocaine: structural and energetic factors affecting the catalytic efficiency. Biochemistry 2010; 49:9113-9. [PMID: 20886866 DOI: 10.1021/bi1011628] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study was aimed to explore the correlation between the protein structure and catalytic efficiency of butyrylcholinesterase (BChE) mutants against (-)-cocaine by modeling the rate-determining transition state (TS1), i.e., the transition state for the first step of chemical reaction process, of (-)-cocaine hydrolysis catalyzed by various mutants of human BChE in comparison with the wild type. Molecular modeling of the TS1 structures revealed that mutations on certain nonactive site residues can indirectly affect the catalytic efficiency of the enzyme against (-)-cocaine through enhancing or weakening the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. Computational insights and predictions were supported by the catalytic activity data obtained from wet experimental tests on the mutants of human BChE, including five new mutants reported for the first time. The BChE mutants with at least ∼1000-fold improved catalytic efficiency against (-)-cocaine compared to the wild-type BChE are all associated with the TS1 structures having stronger overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. The combined computational and experimental data demonstrate a reasonable correlation relationship between the hydrogen-bonding distances in the TS1 structure and the catalytic efficiency of the enzyme against (-)-cocaine.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536, United States
| | | | | | | | | | | |
Collapse
|