1
|
Zhang Z, Li S, Wang H, Shan Y. The Effects of the Carrier and Ligand Spatial Conformation on RNA Nanodrug Cell Delivery. Anal Chem 2024. [PMID: 39096242 DOI: 10.1021/acs.analchem.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Small interfering RNA (siRNA) highlights the immense therapeutic potential for cancer treatment. The major challenge in siRNA therapy is the effective RNA nanodrug delivery system, which is facilitated by the ligand and the carrier. In this study, we analyzed the binding specificity of linear RGD and circular RGD to αVβ3 integrins by mapping the morphology using super-resolution direct stochastic optical reconstruction microscopy. Meanwhile, the binding dynamics was investigated using single-molecule force spectroscopy. Then, the effects of the ligand and carrier on RNA nanodrug cell entry dynamic parameters were evaluated at the single particle level by the force tracing technique. Furthermore, the delivery efficiency of RNA nanodrugs was assessed using AFM-based nanoindentation at the single cell level. This report will provide valuable insights for rational design strategies aiming to achieve improved efficiency for nanodrug delivery systems.
Collapse
Affiliation(s)
- Zhuang Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
2
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
4
|
Hagar M, Morgan KD, Stumpf SD, Tsingos M, Banuelos CA, Sadar MD, Blodgett JAV, Andersen RJ, Ryan KS. Piperazate-Guided Isolation of Caveamides A and B, Cyclohexenylalanine-Containing Nonribosomal Peptides from a Cave Actinomycete. Org Lett 2024; 26:4127-4131. [PMID: 38718303 DOI: 10.1021/acs.orglett.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Hybrid genome-mining/15N-NMR was used to target compounds containing piperazate (Piz) residues, leading to the discovery of caveamides A (1) and B (2) from Streptomyces sp. strain BE230, isolated from New Rankin Cave (Missouri). Caveamides are highly dynamic molecules containing an unprecedented β-ketoamide polyketide fragment, two Piz residues, and a new N-methyl-cyclohexenylalanine residue. Caveamide B (2) exhibited nanomolar cytotoxicity against several cancer cell lines and nanomolar antimicrobial activity against MRSA and E. coli.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4
| | - Kalindi D Morgan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4
| | - Spencer D Stumpf
- Department of Biology, Washington University in St Louis, St Louis Missouri 63122, United States
| | - Maya Tsingos
- Department of Biology, Washington University in St Louis, St Louis Missouri 63122, United States
| | - Carmen A Banuelos
- Department of Genome Sciences, BC Cancer, Vancouver, British Columbia Canada V5Z 1L3
| | - Marianne D Sadar
- Department of Genome Sciences, BC Cancer, Vancouver, British Columbia Canada V5Z 1L3
| | - Joshua A V Blodgett
- Department of Biology, Washington University in St Louis, St Louis Missouri 63122, United States
| | - Raymond J Andersen
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4
| |
Collapse
|
5
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Villequey C, Zurmühl SS, Cramer CN, Bhusan B, Andersen B, Ren Q, Liu H, Qu X, Yang Y, Pan J, Chen Q, Münzel M. An efficient mRNA display protocol yields potent bicyclic peptide inhibitors for FGFR3c: outperforming linear and monocyclic formats in affinity and stability. Chem Sci 2024; 15:6122-6129. [PMID: 38665530 PMCID: PMC11040643 DOI: 10.1039/d3sc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target. Yet, within those libraries, the performance of linear vs. mono- or bicyclic peptides has rarely been studied. Indeed, a key parameter to perform such a comparison is to use a display protocol and cyclization chemistry that enables the formation of all 3 formats in equal quality and diversity. Here, we developed a simple, efficient and fast mRNA display protocol which meets these criteria and can be used to generate highly diverse libraries of thioether cyclized polycyclic peptides. As a proof of concept, we selected peptides against fibroblast growth factor receptor 3c (FGFR3c) and compared the different formats regarding affinity, specificity, and human plasma stability. The peptides with the best KD's and stability were identified among bicyclic peptide hits, further strengthening the body of evidence pointing at the superiority of this class of molecules and providing functional and selective inhibitors of FGFR3c.
Collapse
Affiliation(s)
- Camille Villequey
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Silvana S Zurmühl
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Christian N Cramer
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Bhaskar Bhusan
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford UK
| | - Birgitte Andersen
- Global Drug Discovery, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Qianshen Ren
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Yang Yang
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Jia Pan
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Qiujia Chen
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Martin Münzel
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| |
Collapse
|
7
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
8
|
Shi YY, Dong DR, Fan G, Dai MY, Liu M. A cyclic peptide-based PROTAC induces intracellular degradation of palmitoyltransferase and potently decreases PD-L1 expression in human cervical cancer cells. Front Immunol 2023; 14:1237964. [PMID: 37849747 PMCID: PMC10577221 DOI: 10.3389/fimmu.2023.1237964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Our previous research has found that degradation of palmitoyltransferase in tumor cells using a linear peptide PROTAC leads to a significant decrease in PD-L1 expression in tumors. However, this degradation is not a sustained and efficient process. Therefore, we designed a cyclic peptide PROTAC to achieve this efficient anti-PD-L1 effect. Methods We designed and synthesized an improvement in linear peptide PROTAC targeting palmitoyltransferase DHHC3, and used disulfide bonds to stabilize the continuous N- and C-termini of the peptides to maintain their structure. Cellular and molecular biology techniques were used to test the effect of this cyclic peptide on PD-L1. Results In human cervical cancer cells, our cyclic peptide PROTAC can significantly downregulate palmitoyl transferase DHHC3 and PD-L1 expressions. This targeted degradation effect is enhanced with increasing doses and treatment duration, with a DC50 value much lower than that of linear peptides. Additionally, flow cytometry analysis of fluorescence intensity shows an increase in the amount of cyclic peptide entering the cell membrane with prolonged treatment time and higher concentrations. The Cellular Thermal Shift Assay (CETSA) method used in this study indicates effective binding between our novel cyclic peptide and DHHC3 protein, leading to a change in the thermal stability of the latter. The degradation of PD-L1 can be effectively blocked by the proteasome inhibitor MG132. Results from clone formation experiments illustrate that our cyclic peptide can enhance the proliferative inhibition effect of cisplatin on the C33A cell line. Furthermore, in the T cell-C33A co-culture system, cyclic peptides target the degradation of PD-L1, thereby blocking the interaction between PD-L1 and PD-1, and promoting the secretion of IFN-γ and TNF-α in the co-culture system supernatant. Conclusion Our results demonstrate that a disulfide-bridged cyclic peptide PROTAC targeting palmitoyltransferase can provide a stable and improved anti-PD-L1 activity in human tumor cells.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di-Rong Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Sohora M, Sović I, Spahić Z, Kontrec D, Jurin M. Photochemistry of phthalimidoadamantane dipeptides: effect of amino acid side chain on photocyclization. Photochem Photobiol Sci 2023; 22:2071-2080. [PMID: 37148465 DOI: 10.1007/s43630-023-00430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
A series of dipeptides 1 was synthesized that at the N-site contained 3-(N-phthalimidoadamantane-1-carboxylic acid and at the C-site different aliphatic or aromatic L- or D-amino acids. The photochemical reaction of dipeptides 1 under acetone-sensitized conditions gave simple decarboxylation products 6, and decarboxylation-induced cyclization products 7, as well as some secondary products 8 and 9 formed by elimination of H2O or ring enlargement, respectively. Molecules 9 undergo secondary photoinduced H-abstractions by the phthalimide chromophore, delivering more complex polycycles 11. The photodecarboxylation-induced cyclization to 7 was observed only with phenylalanine (Phe), proline (Pro), leucine (Leu) and isoleucine (Ile). Contrary to dipeptides with Phe, the cyclization takes place with almost complete racemization at the amino acid chiral center, but diastereoselectively giving only one pair of enantiomers. The conducted investigation is important as it provides the breath and the scope of dipeptide cyclizations activated by phthalimides.
Collapse
Affiliation(s)
- Margareta Sohora
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia.
| | - Irena Sović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Zlatan Spahić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Faculty of Science, University of Zagreb, Horvatovac 102 A, 10000, Zagreb, Croatia
| | - Darko Kontrec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Mladenka Jurin
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
10
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Liu XY, Ji X, Heinis C, Waser J. Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization. Angew Chem Int Ed Engl 2023; 62:e202306036. [PMID: 37311172 DOI: 10.1002/anie.202306036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Xinjian Ji
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Divanach P, Fanouraki E, Mitraki A, Harmandaris V, Rissanou AN. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments. J Phys Chem B 2023; 127:4208-4219. [PMID: 37148280 DOI: 10.1021/acs.jpcb.2c08576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For over two decades, peptide self-assembly has been the focus of attention and a great source of inspiration for biomedical and nanotechnological applications. The resulting peptide nanostructures and their properties are closely related to the information encoded within each peptide building block, their sequence, and their modes of self-organization. In this work. we assess the behavior and differences between the self-association of the aromatic-aliphatic Phe-Leu dipeptide compared to its retro-sequence Leu-Phe and cyclic Cyclo(-Leu-Phe) counterparts, using a combination of simulation and experimental methods. Detailed all-atom molecular dynamics (MD) simulations offer a quantitative prediction at the molecular level of the conformational, dynamical and structural properties of the peptides' self-assembly, while field emission scanning electron microscopy (FESEM) experiments allow microscopic observation of the self-assembled end-structures. The complementarity and qualitative agreement between the two methods not only highlights the differences between the self-assembly propensity of cyclic and linear retro-sequence peptides but also sheds light on underlying mechanisms of self-organization. The self-assembling propensity was found to follow the order: Cyclo(-Leu-Phe) > Leu-Phe > Phe-Leu.
Collapse
Affiliation(s)
- Peter Divanach
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Eirini Fanouraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anastassia N Rissanou
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- National Hellenic Research Foundation, Theoretical & Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, GR-11635 Athens, Greece
| |
Collapse
|
13
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
14
|
Fumo VM, Roberts RC, Zhang J, O'Reilly MC. Diastereoselective synthesis of cyclic tetrapeptide pseudoxylallemycin A illuminates the impact of base during macrolactamization. Org Biomol Chem 2023; 21:1056-1069. [PMID: 36628602 PMCID: PMC11311250 DOI: 10.1039/d2ob02126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.
Collapse
Affiliation(s)
- Vincent M Fumo
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - R Charlie Roberts
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - Jieyu Zhang
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - Matthew C O'Reilly
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| |
Collapse
|
15
|
Sugimoto Y, Suga T, Kato N, Umino M, Yamayoshi A, Mukai H, Kawakami S. Microfluidic Post-Insertion Method for the Efficient Preparation of PEGylated Liposomes Using High Functionality and Quality Lipids. Int J Nanomedicine 2022; 17:6675-6686. [PMID: 36597433 PMCID: PMC9805735 DOI: 10.2147/ijn.s390866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Targeted liposomes using ligand peptides have been applied to deliver therapeutic agents to the target sites. The post-insertion method is commonly used because targeted liposomes can be prepared by simple mixing of ligand peptide-lipid and liposomes. A large-scale preparation method is required for the clinical application of ligand-peptide-modified liposomes. Large-scale preparation involves an increase in volume and a change in the preparation conditions. Therefore, the physicochemical properties of liposomes may change owing to large alterations in the preparation conditions. To address this issue, we focused on a microfluidic device and developed a novel ligand peptide modification method, the microfluidic post-insertion method. Methods We used integrin αvβ3-targeted GRGDS (RGD) and cyclic RGDfK (cRGD)-modified high functionality and quality (HFQ) lipids, which we had previously developed. First, the preparation conditions of the total flow rate in the microfluidic device for modifying HFQ lipids to polyethylene glycol (PEG)-modified (PEGylated) liposomes were optimized by evaluating the physicochemical properties of the liposomes. The targeting ability of integrin αvβ3-expressing colon 26 murine colorectal carcinoma cells was evaluated by comparing the cellular association properties of the liposomes prepared by the conventional post-insertion method. Results When the RGD-HFQ lipid was modified into PEGylated liposomes by varying the total flow rate (1, 6, and 12 mL/min) of the microfluidic device, as the total flow rate increased, the polydispersity index also increased, whereas the particle size did not change. Furthermore, the RGD- and cRGD-modified PEGylated liposomes prepared at a total flow rate of 1 mL/min showed high cellular association properties equivalent to those prepared by the conventional post-insertion method. Conclusion Microfluidic post-insertion method of HFQ lipids might be useful for clinical application and large-scale preparation of targeted liposomes.
Collapse
Affiliation(s)
- Yuri Sugimoto
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Department of Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mizuki Umino
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Asako Yamayoshi
- Department of Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Correspondence: Shigeru Kawakami, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan, Tel/Fax +81 95 819 8563, Email
| |
Collapse
|
16
|
Rational Strategy for Designing Peptidomimetic Small Molecules Based on Cyclic Peptides Targeting Protein-Protein Interaction between CTLA-4 and B7-1. Pharmaceuticals (Basel) 2022; 15:ph15121506. [PMID: 36558957 PMCID: PMC9784018 DOI: 10.3390/ph15121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Currently, various pharmaceutical modalities are being developed rapidly. Targeting protein-protein interactions (PPIs) is an important objective in such development. Cyclic peptides, because they have good specificity and activity, have been attracting much attention as an alternative to antibody drugs. However, cyclic peptides involve some difficulties, such as oral availability and cell permeability. Therefore, while small-molecule drugs still present many benefits, the screening of functional small-molecule compounds targeting PPIs requires a great deal of time and effort, including structural analysis of targets and hits. In this study, we investigated a rational two-step strategy to design small-molecule compounds targeting PPIs. First, we obtained inhibitory cyclic peptides that bind to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) by ribosomal display using PUREfrex® (PUREfrex®RD) to get structure-activity relation (SAR) information. Based on that information, we converted cyclic peptides to small molecules using PepMetics® scaffolds that can mimic the α-helix or β-turn of the peptide. Finally, we succeeded in generating small-molecule compounds with good IC50 (single-digit μM values) against CTLA-4. This strategy is expected to be a useful approach for small-molecule design targeting PPIs, even without having structural information such as that associated with X-ray crystal structures.
Collapse
|
17
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
18
|
Parfenova LV, Galimshina ZR, Gil’fanova GU, Alibaeva EI, Danilko KV, Aubakirova VR, Farrakhov RG, Parfenov EV, Valiev RZ. Modeling of Biological Activity of PEO-Coated Titanium Implants with Conjugates of Cyclic RGD Peptide with Amino Acid Bisphosphonates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8120. [PMID: 36431607 PMCID: PMC9699121 DOI: 10.3390/ma15228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Titanium is considered to be the most essential metal in the field of implantology. The main factors determining metal biocompatibility, among others, include the morphology and chemical composition of the titanium surface. Therefore, the aim of this work was to develop approaches to control the biological activity of the titanium surface by creating coatings that combine both an inorganic phase with a given morphology and organic molecules containing an integrin-selective peptide that regulate cell adhesion and proliferation. As such, we synthesized new c(RGDfC) derivatives of amino acid bisphosphonates (four examples) with different bisphosphonate anchors and maleimide linkers. These molecules were deposited on a highly developed porous surface obtained via the plasma electrolytic oxidation (PEO) of coarse-grained and nanostructured titanium. In vitro studies demonstrated the increase in the viability degree of mesenchymal stem cells and fibroblasts on the surface of coarse-grained or nanostructured titanium modified with PEO and a c(RGDfC) derivative of ε-aminocaproic acid bisphophonate with an SMCC linker. As a result, the use of conjugates of amino acid bisphosphonates with a cyclic RGD peptide for the modification of PEO-coated titanium opens the ways for the effective control of the biological activity of the metal implant surface.
Collapse
Affiliation(s)
- Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Zulfiya R. Galimshina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Guzel U. Gil’fanova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Eliza I. Alibaeva
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Ksenia V. Danilko
- Central Research Laboratory, Bashkir State Medical University, 3 Lenin Street, 450000 Ufa, Russia
| | - Veta R. Aubakirova
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruzil G. Farrakhov
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Evgeny V. Parfenov
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruslan Z. Valiev
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| |
Collapse
|
19
|
Fetse J, Zhao Z, Liu H, Mamani UF, Mustafa B, Adhikary P, Ibrahim M, Liu Y, Patel P, Nakhjiri M, Alahmari M, Li G, Cheng K. Discovery of Cyclic Peptide Inhibitors Targeting PD-L1 for Cancer Immunotherapy. J Med Chem 2022; 65:12002-12013. [PMID: 36067356 PMCID: PMC10671706 DOI: 10.1021/acs.jmedchem.2c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blockade of the interaction between programmed cell death ligand-1 (PD-L1) and its receptor PD-1 has shown great success in cancer immunotherapy. Peptides possess unique characteristics that give them significant advantages as immune checkpoint inhibitors. However, unfavorable physicochemical properties and proteolytic stability profiles limit the translation of bioactive peptides as therapeutic agents. Studies have revealed that cyclization improves the biological activity and stability of linear peptides. In this study, we report the use of macrocyclization scanning for the discovery of cyclic anti-PD-L1 peptides with improved bioactivity. The cyclic peptides demonstrated up to a 34-fold improvement in the PD-1/PD-L1 blocking activity and significant in vivo anti-tumor activity. Our results demonstrate that macrocyclization scanning is an effective way to improve the serum stability and bioactivity of the anti-PD-L1 linear peptide. This strategy can be employed in the optimization of other bioactive peptides, particularly those for protein-protein interaction modulation.
Collapse
Affiliation(s)
- John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Hao Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Guangfu Li
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
20
|
Cyclic Peptides for the Treatment of Cancers: A Review. Molecules 2022; 27:molecules27144428. [PMID: 35889301 PMCID: PMC9317348 DOI: 10.3390/molecules27144428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic peptides have been widely reported to have therapeutic abilities in the treatment of cancer. This has been proven through in vitro and in vivo studies against breast, lung, liver, colon, and prostate cancers, among others. The multitude of data available in the literature supports the potential of cyclic peptides as anticancer agents. This review summarizes the findings from previously reported studies and discusses the different cyclic peptide compounds, the sources, and their modes of action as anticancer agents. The prospects and future of cyclic peptides will also be described to give an overview on the direction of cyclic peptide development for clinical applications.
Collapse
|
21
|
Cui Z, Feng C, Chen J, Wang Y, Meng Q, Zhao S, Zhang Y, Feng D, Li Z, Sun S. Network Pharmacology Deciphers the Action of Bioactive Polypeptide in Attenuating Inflammatory Osteolysis via the Suppression of Oxidative Stress and Restoration of Bone Remodeling Balance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4913534. [PMID: 35578727 PMCID: PMC9107052 DOI: 10.1155/2022/4913534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress involves enormously in the development of chronic inflammatory bone disease, wherein the overproduction of reactive oxygen species (ROS) negatively impacts the bone remodeling via promoting osteoclastogenesis and inhibiting osteogenesis. Lacking effective therapies highlights the importance of finding novel treatments. Our previous study screened a novel bioactive peptide D7 and demonstrated it could enhance the cell behaviors and protect bone marrow mesenchymal stem cells (BMSCs). Since BMSCs are progenitor cells of osteoblast (OB), we therefore ask whether D7 could also protect against the progress of inflammatory osteolysis. To validate our hypothesis and elucidate the underlying mechanisms, we first performed network pharmacology-based analysis according to the molecule structure of D7, and then followed by pharmacological evaluation on D7 by in vitro lipopolysaccharide(LPS)-induced models. The result from network pharmacology identified 20 candidate targets of D7 for inflammatory osteolysis intervention. The further analysis of Gene Ontology (GO)/KEGG pathway enrichment suggested the therapeutic effect of D7 may primarily affect osteoclast (OC) differentiation and function during the inflammatory osteolysis. Through validating the real effects of D7 on OC and OB as postulated, results demonstrated suppressive effects of D7 on LPS-stimulated OC differentiation and resorption, via the inhibition on OC marker genes. Contrarily, by improving the expression of OB marker genes, D7 displayed promotive effects on OB differentiation and alleviated LPS-induced osteogenic damage. Further mechanism study revealed that D7 could reduce LPS-induced ROS formation and strengthen antioxidants expressions in both OC and OB precursors, ameliorating LPS-triggered redox imbalance in bone remodeling. Taken together, our findings unveiled therapeutic effects of D7 against LPS-induced inflammatory osteolysis through the suppression of oxidative stress and the restoration of the bone remodeling process, providing a new therapeutic candidate for chronic inflammatory bone diseases.
Collapse
Affiliation(s)
- Zichen Cui
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiazheng Chen
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Shihao Zhao
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yuanji Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Dianjie Feng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
22
|
Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Mar Drugs 2022; 20:md20020093. [PMID: 35200623 PMCID: PMC8878463 DOI: 10.3390/md20020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG A, AEG625 and AEG657, and their interactions with metabolic enzymes are reported. Two aeruginosamides, AEG625 and AEG657, decreased the viability of human breast cancer cell line T47D, but neither of the peptides was active against human liver cancer cell line Huh7. AEGs also did not change the expression of MIR92b-3p, but for AEG625, the induction of oxidative stress was observed. In the presence of a liver S9 fraction containing microsomal and cytosolic enzymes, AEG625 and AEG657 showed high stability. In the same assays, quick removal of AEG A was recorded. The peptides had mild activity against three cytochrome P450 enzymes, CYP2C9, CYP2D6 and CYP3A4, but only at the highest concentration used in the study (60 µM). The properties of AEGs, i.e., cytotoxic activity and in vitro interactions with important metabolic enzymes, form a good basis for further studies on their pharmacological potential.
Collapse
|
23
|
Bagga T, Su Ning L, Sivaraman J, Shankar S. Sequence Preference and Scaffolding Requirement for the Inhibition of Human Neutrophil Elastase by Ecotin Peptide. Protein Sci 2022; 31:933-941. [PMID: 35014748 PMCID: PMC8927871 DOI: 10.1002/pro.4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Abstract
Human neutrophil elastase (hNE) is an abundant serine protease that is a major constituent of lung elastolytic activity. However, when secreted in excess, if not properly attenuated by selective inhibitor proteins, it can have detrimental effects on host tissues, leading to chronic lung inflammation and non-small cell lung cancer. To improve upon the design of inhibitors against hNE for therapeutic applications, here, we report the crystal structure of hNE in complex with an ecotin-derived peptide inhibitor. We show that the peptide binds in the non-prime substrate binding site. Unexpectedly, compared with full-length ecotin, we find that our short linear peptides and circular amide-backbone-linked peptides of ecotin are incapable of efficient hNE inhibition. Our structural insights point to a preferred amino acid sequence and the potential benefit of a scaffold for optimal binding and function of the peptide inhibitor, both of which are retained in the full-length ecotin protein. These findings will aid in the development of effective peptide-based inhibitors against hNE for targeted therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tanaya Bagga
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore
| | - Loh Su Ning
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore
| | - Srihari Shankar
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore
| |
Collapse
|
24
|
Kanwal I, Mushtaq F, Ali H, Tufail P, Jahan H, Shaheen F. First report on the synthesis and structural studies of trans-Phakellistatin 18: a rotamer of marine natural product phakellistatin 18. Nat Prod Res 2022; 37:1470-1479. [PMID: 34986732 DOI: 10.1080/14786419.2021.2023141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phakellistatin peptides from marine organisms are the sources of proline-rich cyclic peptides with reported significant antitumor activities. Phakellistatin 18 (1), reported from marine sponge Phakellia fusca, contains three proline-peptide linkages in cis form. We attempted the total synthesis of natural product 1 through solution-phase macrocyclization approach, as a result, the synthetic cyclic peptide 2 was obtained as a rotamer of natural product having all three proline residues in trans-conformation. Here, we describe the synthesis, structural, and cytotoxicity studies of trans-Phakellistatin 18 (2), and its analog [Ala1,3,6]-Phakellistatin 18 (3). Detailed NMR studies were carried out to characterize the synthesized peptides, and anti-cancer screening was performed by using MTT assay. The synthetic trans-Phakellistatin 18 (2) (IC50=67.5 ± 2.938 µM) showed comparable cytotoxicity against HepG2 cancer cell line with standard drug doxorubicin (IC50=63.88 ± 6.48 µM). Here, the first synthetic and structural studies on trans-Phakellistatin 18 (2), and its anticancer screening against HepG2 cell line was reported.
Collapse
Affiliation(s)
- Iqra Kanwal
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farkhanda Mushtaq
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hunain Ali
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farzana Shaheen
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
25
|
Nishimura SN, Nishida K, Tanaka M. A β-hairpin peptide with pH-controlled affinity for tumor cells. Chem Commun (Camb) 2021; 58:505-508. [PMID: 34874387 DOI: 10.1039/d1cc06218b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Considering that the pH in the tumor microenvironment is dysregulated, we designed a β-hairpin peptide (SSRFEWEFESSDPRGDPSSRFEWEFESS). The configuration of the peptide switched from a flexible linear to a rigid loop structure under weakly acidic conditions. The peptide internalized by tumor cells increased significantly under weakly acidic conditions.
Collapse
Affiliation(s)
- Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
26
|
Zheng B, Zhang P, Wang H, Wang J, Liu ZH, Zhang D. Advances in Research on Bladder Cancer Targeting Peptides: a Review. Cell Biochem Biophys 2021; 79:711-718. [PMID: 34468956 PMCID: PMC8558283 DOI: 10.1007/s12013-021-01019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 12/04/2022]
Abstract
Bladder cancer (Bca) is the second most common malignant tumor of the genitourinary system in Chinese male population with high potential of recurrence and progression. The overall prognosis has not been improved significantly for the past 30 years due to the lack of early theranostic technique. Currently the early theranostic technique for bladder cancer is mainly through the intravesical approach, but the clinical outcomes are poor due to the limited tumor-targeting efficiency. Therefore, the targeting peptides for bladder cancer provide possibility to advance intravesical theranostic technique. However, no systematic review has covered the wide use of the targeting peptides for intravesical theranostic techniques in bladder cancer. Herein, a summary of original researches introduces all aspects of the targeting peptides for bladder cancer, including the peptide screening, the targeting mechanism and its preclinical application.
Collapse
Affiliation(s)
- Bin Zheng
- Zhejiang Chinese Medical University, 310053, HangZhou, China
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Pu Zhang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Heng Wang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Jinxue Wang
- Handan Central hospital, 056001, Handan, China
| | - Zheng Hong Liu
- Zhejiang Chinese Medical University, 310053, HangZhou, China
| | - DaHong Zhang
- Zhejiang Chinese Medical University, 310053, HangZhou, China.
| |
Collapse
|
27
|
Traboulsi H, Khedr MA, Al-Faiyz YSS, Elgorashe R, Negm A. Structure-Based Epitope Design: Toward a Greater Antibody-SARS-CoV-2 RBD Affinity. ACS OMEGA 2021; 6:31469-31476. [PMID: 34869973 PMCID: PMC8637584 DOI: 10.1021/acsomega.1c03348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Efficient COVID-19 vaccines are widely acknowledged as the best way to end the global pandemic. SARS-CoV-2 receptor-binding domain (RBD) plays fundamental roles related to cell infection. Antibodies could be developed to target RBD and represent a potential approach for the neutralization of the virus. Epitopes used to produce antibodies are generally linear peptides and thus possess multiple confirmations that do not reflect the actual topology of the targeted part in the native protein. On the other hand, macrocyclic epitopes could constitute closer mimics of the native protein topology and, as such, could generate superior antibodies. In this study, we demonstrated the vital effect of the size and the three-dimensional shape of epitopes on the activity of the developed antibodies against the RBD of SARS-CoV-2. The molecular dynamics studies showed the greater stability of the cyclic epitopes compared with the linear counterparts, which was reflected in the affinity of the produced antibodies. The antibodies developed using macrocyclic epitopes showed superiority with respect to binding to RBD compared to antibodies formed from linear peptides. This study constitutes a roadmap for developing superior antibodies that could be used to inhibit the activity of SARS-CoV-2.
Collapse
Affiliation(s)
- Hassan Traboulsi
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed A. Khedr
- Department
of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-AHasa 31982, Saudi Arabia
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box Cairo 11795, Egypt
| | - Yasair S. S. Al-Faiyz
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Rafea Elgorashe
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Amr Negm
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Biochemistry
Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
28
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
29
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
30
|
Jiwacharoenchai N, Tabtimmai L, Kiriwan D, Suwattanasophon C, Seetaha S, Sinthuvanich C, Choowongkomon K. A novel cyclic NP1 reveals obstruction of EGFR kinase activity and attenuation of EGFR-driven cell lines. J Cell Biochem 2021; 123:248-258. [PMID: 34633106 DOI: 10.1002/jcb.30160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Aberrations of the epidermal growth factor receptor (EGFR), for example, mutations and overexpression, play pivotal roles in various cellular functions, such as proliferation, migration, and cell differentiation. Approved small molecule-based inhibitors, including gefitinib and erlotinib, are used clinically to target the tyrosine kinase domain of EGFR (TK-EGFR). However, the severity of the side effects, off-target effects, and drug resistance is a concern. Cyclic peptides are a well-known peptide format with high stability and are promising molecules for drug development. Herein, the Ph.D.™-C7C phage display library was used to screen cyclic peptides against TK-EGFR. Biopanning, both with and without propagation methods, was performed to assess the highest capacity peptides using the enzymatic activity of TK-EGFR. Interestingly, NP1, a peptide selected during biopanning without propagation demonstrated an inhibitory effect against TK-EGFR at IC50 within the nanomolar range; this effect was better than that of P1 obtained using biopanning with propagation. Moreover, NP1 elicited EGFR with an affinity binding (KD ) value of 18.40 ± 5.50 µM by surface plasmon resonance (SPR). Introducing cell-penetrating peptides or Arginine-9 (Arg9) at the N-terminus of NP1 thus improves cell-penetrability and can lead to the inhibition of EGFR-driven cancer cell lines; however, it exhibits no hepatotoxicity. Furthermore, NP1 caused a decrease in phosphorylated EGFR after activation within cells. A docking model shows that NP1 interacted primarily with TK-EGFR via hydrogen bonding. Together, this suggests that NP1 is a novel EGFR peptide inhibitor candidate with specificity and selectivity toward TK-EGFR, and may be applied to targeted therapy.
Collapse
Affiliation(s)
- Nattanan Jiwacharoenchai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut University of North Bangkok, Bangkok, Thailand
| | - Duangnapa Kiriwan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | | | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
31
|
Mertinková P, Mochnáčová E, Bhide K, Kulkarni A, Tkáčová Z, Hruškovicová J, Bhide M. Development of peptides targeting receptor binding site of the envelope glycoprotein to contain the West Nile virus infection. Sci Rep 2021; 11:20131. [PMID: 34635758 PMCID: PMC8505397 DOI: 10.1038/s41598-021-99696-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV), re-emerging neurotropic flavivirus, can cross the blood-brain barrier (BBB) and cause fatal encephalitis and meningitis. Infection of the human brain microvascular endothelial cells (hBMECs), building blocks of the BBB, represents the pivotal step in neuroinvasion. Domain III (DIII) of the envelope (E) glycoprotein is a key receptor-binding domain, thus, it is an attractive target for anti-flavivirus strategies. Here, two combinatorial phage display peptide libraries, Ph.D.-C7C and Ph.D.-12, were panned against receptor-binding site (RBS) on DIII to isolate peptides that could block DIII. From series of pannings, nine peptides (seven 7-mer cyclic and two 12-mer linear) were selected and overexpressed in E. coli SHuffle T5. Presence of disulfide bond in 7-mer peptides was confirmed with thiol-reactive maleimide labeling. Except for linear peptide 19 (HYSWSWIAYSPG), all peptides proved to be DIII binders. Among all peptides, 4 cyclic peptides (CTKTDVHFC, CIHSSTRAC, CTYENHRTC, and CLAQSHPLC) showed significant blocking of the interaction between DIII and hBMECs, and ability to neutralize infection in cultured cells. None of these peptides showed toxic or hemolytic activity. Peptides identified in this study may serve as potential candidates for the development of novel antiviral therapeutics against WNV.
Collapse
Affiliation(s)
- Patrícia Mertinková
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Evelína Mochnáčová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Katarína Bhide
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Amod Kulkarni
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia ,grid.419303.c0000 0001 2180 9405Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| | - Zuzana Tkáčová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Jana Hruškovicová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Mangesh Bhide
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia ,grid.419303.c0000 0001 2180 9405Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| |
Collapse
|
32
|
Oh K, Chi DY. Direct Fluorination Strategy for the Synthesis of Fluorine‐18 Labeled Oligopeptide—[
18
F
]
ApoPep
‐7. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keumrok Oh
- Department of Chemistry Sogang University 35 Baekbeomro Mapogu, Seoul 04107 Korea
| | - Dae Yoon Chi
- Department of Chemistry Sogang University 35 Baekbeomro Mapogu, Seoul 04107 Korea
| |
Collapse
|
33
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
34
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
35
|
Dahiya R, Dahiya S, Kumar P, Kumar RV, Dahiya S, Kumar S, Saharan R, Basu P, Mitra A, Sharma A, Kashaw SK, Patel JK. Structural and biological aspects of natural bridged macrobicyclic peptides from marine resources. Arch Pharm (Weinheim) 2021; 354:e2100034. [PMID: 33913195 DOI: 10.1002/ardp.202100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Among peptide-based drugs, naturally occurring bicyclic compounds have been established as molecules with unique therapeutic potential. The diverse pharmacological activities associated with bicyclic peptides from marine tunicates, sponges, and bacteria render them suitable to be employed as effective surrogate between complex and small therapeutic moieties. Bicyclic peptides possess greater conformational rigidity and higher metabolic stability as compared with linear and monocyclic peptides. The antibody-like affinity and specificity of bicyclic peptides enable their binding to the challenging drug targets. Bridged macrobicyclic peptides from natural marine resources represent an underexplored class of molecules that provides promising platforms for drug development owing to their biocompatibility, similarity, and chemical diversity to proteins. The present review explores major marine-derived bicyclic peptides including disulfide-bridged, histidinotyrosine-bridged, or histidinoalanine-bridged macrobicyclic peptides along with their structural characteristics, synthesis, structure-activity relationship, and bioproperties.The comparison of these macrobicyclic congeners with linear/monocyclic peptides along with their therapeutic potential are also briefly discussed.
Collapse
Affiliation(s)
- Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Priyank Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, California, USA
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California, USA
| | - Saurabh Dahiya
- Department of Quality Assurance, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, India
| | - Renu Saharan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Ambala, Haryana, India
| | - Paramita Basu
- Department of Pharmaceutical & Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Arindam Mitra
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Barasat, West Bengal, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar, Mehsana, Gujarat, India
| |
Collapse
|
36
|
Hong YT, Teo JY, Jeon H, Kong H. Shear-Resistant, Biological Tethering of Nanostimulators for Enhanced Therapeutic Cell Paracrine Factor Secretion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17276-17288. [PMID: 33830733 PMCID: PMC10440850 DOI: 10.1021/acsami.1c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesenchymal stromal cells (MSCs) secreting multiple growth factors and immunomodulatory cytokines are promising for regenerative medicine. To further enhance their secretory activity, efforts have emerged to tether nanosized carriers of secretory stimuli, named nanostimulators, to the MSC surface by forming nonchemical bonds. Despite some successes, there is a great need to improve the retention of nanostimulators during transport through a syringe needle, where high shear stress exerted on the cell surface separates them. To this end, we hypothesize that poly(lactic-co-glycolic acid)-block-hyaluronic acid (PLGA-HA) conjugated with integrin-binding RGD peptides, denoted PLGA-HA-RGD, can form nanostimulators that remain on the cell surface stably during the injection. The resulting HA-CD44 and RGD-integrin bonds would synergistically increase the adhesion strength of nanostimulators. Interestingly, nanostimulators prepared with PLGA-HA-RGD show 3- to 6-fold higher retention than those made with PLGA-HA. Therefore, the PLGA-HA-RGD nanostimulators induced MSCs to secrete 1.5-fold higher vascular endothelial growth factors and a 1.2-fold higher tissue inhibitor of matrix metalloproteinase-1 as compared to PLGA-HA nanostimulators. Consequently, MSCs tethered with PLGA-HA-RGD nanostimulators served to stimulate endothelial cell activities to form a blood vessel-like endothelial lumen with increased length and number of junctions. The nanostimulator design strategy would also be broadly applicable to regulate, protect, and home a broad array of therapeutic or immune cells by tethering carriers with bioactive molecules of interest.
Collapse
Affiliation(s)
- Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jye Yng Teo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Casey R, Adelfio A, Connolly M, Wall A, Holyer I, Khaldi N. Discovery through Machine Learning and Preclinical Validation of Novel Anti-Diabetic Peptides. Biomedicines 2021; 9:276. [PMID: 33803471 PMCID: PMC8000967 DOI: 10.3390/biomedicines9030276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
While there have been significant advances in drug discovery for diabetes mellitus over the past couple of decades, there is an opportunity and need for improved therapies. While type 2 diabetic patients better manage their illness, many of the therapeutics in this area are peptide hormones with lengthy sequences and a molecular structure that makes them challenging and expensive to produce. Using machine learning, we present novel anti-diabetic peptides which are less than 16 amino acids in length, distinct from human signalling peptides. We validate the capacity of these peptides to stimulate glucose uptake and Glucose transporter type 4 (GLUT4) translocation in vitro. In obese insulin-resistant mice, predicted peptides significantly lower plasma glucose, reduce glycated haemoglobin and even improve hepatic steatosis when compared to treatments currently in use in a clinical setting. These unoptimised, linear peptides represent promising candidates for blood glucose regulation which require further evaluation. Further, this indicates that perhaps we have overlooked the class of natural short linear peptides, which usually come with an excellent safety profile, as therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Audrey Wall
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (R.C.); (A.A.); (M.C.); (I.H.); (N.K.)
| | | | | |
Collapse
|
38
|
So IS, Kang JH, Hong JW, Sung S, Hasan AF, Sa KH, Han SW, Kim IS, Kang YM. A novel apoptosis probe, cyclic ApoPep-1, for in vivo imaging with multimodal applications in chronic inflammatory arthritis. Apoptosis 2021; 26:209-218. [PMID: 33655467 DOI: 10.1007/s10495-021-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
Apoptosis plays an essential role in the pathophysiologic processes of rheumatoid arthritis. A molecular probe that allows spatiotemporal observation of apoptosis in vitro, in vivo, and ex vivo concomitantly would be useful to monitoring or predicting pathophysiologic stages. In this study we investigated whether cyclic apoptosis-targeting peptide-1 (CApoPep-1) can be used as an apoptosis imaging probe in inflammatory arthritis. We tested the utility of CApoPep-1 for detecting apoptotic immune cells in vitro and ex vivo using flow cytometry and immunofluorescence. The feasibility of visualizing and quantifying apoptosis using this probe was evaluated in a murine collagen-induced arthritis (CIA) model, especially after treatment. CApoPep-1 peptide may successfully replace Annexin V for in vitro and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for ex vivo in the measurement of apoptotic cells, thus function as a sensitive probe enough to be used clinically. In vivo imaging in CIA mice revealed that CApoPep-1 had 42.9 times higher fluorescence intensity than Annexin V for apoptosis quantification. Furthermore, it may be used as an imaging probe for early detection of apoptotic response in situ after treatment. The CApoPep-1 signal was mostly co-localized with the TUNEL signal (69.6% of TUNEL+ cells) in defined cell populations in joint tissues of CIA mice. These results demonstrate that CApoPep-1 is sufficiently sensitive to be used as an apoptosis imaging probe for multipurpose applications which could detect the same target across in vitro, in vivo, to ex vivo in inflammatory arthritis.
Collapse
Affiliation(s)
- In-Seop So
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Hee Kang
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung Wan Hong
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Shijin Sung
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Al Faruque Hasan
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Keum Hee Sa
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seung Woo Han
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - In San Kim
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young Mo Kang
- Department of Internal Medicine (Rheumatology), Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
39
|
Sloand JN, Miller MA, Medina SH. Fluorinated peptide biomaterials. Pept Sci (Hoboken) 2021; 113:e24184. [PMID: 34541446 PMCID: PMC8448251 DOI: 10.1002/pep2.24184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Michael A Miller
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
40
|
Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021; 64:2064-2076. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile procedure for in situ peptide cyclization and phthalocyanine conjugation was developed by utilizing a bifunctional linker incorporated with a bis(bromomethyl)benzene unit and a cyclopentadiene moiety. These functional groups facilitated the nucleophilic substitution with the two cysteine residues of the linear peptides followed by the Diels-Alder reaction with the maleimide moiety attached to a zinc(II) phthalocyanine. With this approach, three cyclic peptide-phthalocyanine conjugates were prepared in 20-26% isolated yield via a one-pot procedure. One of the conjugates containing a cyclic form of the epidermal growth factor receptor (EGFR)-binding peptide sequence CMYIEALDKYAC displayed superior features as an advanced photosensitizer. It showed preferential uptake by two EGFR-positive cancer cell lines (HT29 and HCT116) compared with two EGFR-negative counterparts (HeLa and HEK293), resulting in significantly higher photocytotoxicity. Intravenous administration of this conjugate into HT29 tumor-bearing nude mice resulted in selective localization in tumor and effective inhibition of tumor growth upon photodynamic treatment.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
41
|
Bowen J, Schneible J, Bacon K, Labar C, Menegatti S, Rao BM. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands. Int J Mol Sci 2021; 22:ijms22041634. [PMID: 33562883 PMCID: PMC7915732 DOI: 10.3390/ijms22041634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
We present the construction and screening of yeast display libraries of post-translationally modified peptides wherein site-selective enzymatic treatment of linear peptides is achieved using bacterial transglutaminase. To this end, we developed two alternative routes, namely (i) yeast display of linear peptides followed by treatment with recombinant transglutaminase in solution; or (ii) intracellular co-expression of linear peptides and transglutaminase to achieve peptide modification in the endoplasmic reticulum prior to yeast surface display. The efficiency of peptide modification was evaluated via orthogonal detection of epitope tags integrated in the yeast-displayed peptides by flow cytometry, and via comparative cleavage of putative cyclic vs. linear peptides by tobacco etch virus (TEV) protease. Subsequently, yeast display libraries of transglutaminase-treated peptides were screened to isolate binders to the N-terminal region of the Yes-Associated Protein (YAP) and its WW domains using magnetic selection and fluorescence activated cell sorting (FACS). The identified peptide cyclo[E-LYLAYPAH-K] featured a KD of 1.75 μM for YAP and 0.68 μM for the WW domains of YAP as well as high binding selectivity against albumin and lysozyme. These results demonstrate the usefulness of enzyme-mediated cyclization in screening combinatorial libraries to identify cyclic peptide binders.
Collapse
Affiliation(s)
- John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - John Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Collin Labar
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| |
Collapse
|
42
|
Wang T, Peng Y, Li R, Li X, Zuo C. Preliminary study on SPECT/CT imaging of pancreatic cancer xenografts by targeting integrin α5 in pancreatic stellate cells. J Cancer 2021; 12:1729-1733. [PMID: 33613761 PMCID: PMC7890318 DOI: 10.7150/jca.51190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Integrin α5 (ITGA5) is overexpressed specifically in pancreatic cancer stroma, specially, in the activated pancreatic stellate cells (PSCs). Molecular imaging of pancreatic cancer via targeting PSCs has its advantages. Purpose: This study aims to investigate the feasibility of ITGA5-targeted SPECT/CT imaging of pancreatic cancer by targeting PSCs. Methods: ITGA5 expression in PSCs treated without or with pancreatic cancer SW1990 cells conditioned medium (SW1990-CM) was assessed by western blotting and immunofluorescence staining. ITGA5 specific inhibitor AV3 peptide was radiolabeled with 125I to synthesize 125I-AV3, and the labeling rate, in vitro stability and cellular uptake were further investigated. SW1990 cells alone or with PSCs were injected subcutaneously on the left and right lower limbs of nude mice respectively to establish pancreatic cancer xenograft model, and then 125I-AV3 SPECT/CT imaging of pancreatic cancer-bearing nude mice was performed. The expression of ITGA5 in tumors was detected by immunohistochemical (IHC) staining. Results:125I-AV3 has an excellent labeling rate and good in vitro stability. After treated with SW1990-CM, PSCs had an increased expression of ITGA5 and higher 125I-AV3 uptake. SPECT/CT imaging study showed that 125I-AV3 was mainly accumulated in the right xenografts (co-injection of cancer cells and PSCs), while the left xenografts tumors have a poor imaging. Moreover, the uptake of radiotracer in both side tumors was inhibited significantly after the non-radiolabeled AV3 pretreatment. IHC staining showed that SW1990 + PSCs tumor has a higher positive rate of ITGA5 than SW1990 tumor. Conclusion: The preliminary study suggests that 125I-AV3 can be used for SPECT/CT imaging of pancreatic cancer via targeting ITGA5 in PSCs, which is independent of the state of cancer cells and may have a special meaning.
Collapse
Affiliation(s)
- Tao Wang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ye Peng
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rou Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
43
|
Houshdar Tehrani MH, Gholibeikian M, Bamoniri A, Mirjalili BBF. Cancer Treatment by Caryophyllaceae-Type Cyclopeptides. Front Endocrinol (Lausanne) 2021; 11:600856. [PMID: 33519710 PMCID: PMC7841296 DOI: 10.3389/fendo.2020.600856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading diseases, which, in the most cases, ends with death and, thus, continues to be a major concern in human beings worldwide. The conventional anticancer agents used in the clinic often face resistance among many cancer diseases. Moreover, heavy financial costs preclude patients from continuing treatment. Bioactive peptides, active in several diverse areas against man's health problems, such as infection, pain, hypertension, and so on, show the potential to be effective in cancer treatment and may offer promise as better candidates for combating cancer. Cyclopeptides, of natural or synthetic origin, have several advantages over other drug molecules with low toxicity and low immunogenicity, and they are easily amenable to several changes in their sequences. Given their many demanded homologues, they have created new hope of discovering better compounds with desired properties in the field of challenging cancer diseases. Caryophyllaceae-type cyclopeptides show several biological activities, including cancer cytotoxicity. These cyclopeptides have been discovered in several plant families but mainly are from the Caryophyllaceae family. In this review, a summary of biological activities found for these cyclopeptides is given; the focus is on the anticancer findings of these peptides. Among these cyclopeptides, information about Dianthins (including Longicalycinin A), isolated from different species of Caryophyllaceae, as well as their synthetic analogues is detailed. Finally, by comparing their structures and cytotoxic activities, finding the common figures of these kinds of cyclopeptides as well as their possible future place in the clinic for cancer treatment is put forward.
Collapse
Affiliation(s)
| | | | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | |
Collapse
|
44
|
Huang H, Damjanovic J, Miao J, Lin YS. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces. Phys Chem Chem Phys 2021; 23:607-616. [PMID: 33331371 DOI: 10.1039/d0cp04633g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclization is commonly employed in efforts to improve the target binding affinity of peptide-based probes and therapeutics. Many structural motifs have been identified at protein-protein interfaces and provide promising targets for inhibitor design using cyclic peptides. Cyclized peptides are generally assumed to be rigidified relative to their linear counterparts. This rigidification potentially pre-organizes the molecules to interact properly with their targets. However, the actual impact of cyclization on, for example, peptide configurational entropy, is currently poorly understood in terms of both its magnitude and molecular-level origins. Moreover, even with thousands of desired structural motifs at hand, it is currently not possible to a priori identify the ones that are most promising to mimic using cyclic peptides nor to select the ideal linker length. Instead, labor-intensive chemical synthesis and experimental characterization of various cyclic peptide designs are required, in hopes of finding one with improved target affinity. Herein, using molecular dynamics simulations of polyglycines, we elucidated how head-to-tail cyclization impacts peptide backbone dihedral entropy and developed a simple strategy to rapidly screen for structures that can be reliably mimicked by preorganized cyclic peptides. As expected, cyclization generally led to a reduction in backbone dihedral entropy; notably, however, this effect was minimal when the length of polyglycines was >9 residues. We also found that the reduction in backbone dihedral entropy upon cyclization of small polyglycine peptides does not result from more restricted distributions of the dihedrals; rather, it was the correlations between specific dihedrals that caused the decrease in configurational entropy in the cyclic peptides. Using our comprehensive cyclo-Gn structural ensembles, we obtained a holistic picture of what conformations are accessible to cyclic peptides. Using "hot loops" recently identified at protein-protein interfaces as an example, we provide clear guidelines for choosing the "easiest" hot loops for cyclic peptides to mimic and for identifying appropriate cyclic peptide lengths. In conclusion, our results provide an understanding of the thermodynamics and structures of this interesting class of molecules. This information should prove particularly useful for designing cyclic peptide inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
45
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
46
|
Dmitrieva MD, Voitova AA, Dymova MA, Richter VA, Kuligina EV. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells. Int J Mol Sci 2020; 22:ijms22010314. [PMID: 33396774 PMCID: PMC7796297 DOI: 10.3390/ijms22010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.
Collapse
|
47
|
Bacon K, Bowen J, Reese H, Rao BM, Menegatti S. Use of Target-Displaying Magnetized Yeast in Screening mRNA-Display Peptide Libraries to Identify Ligands. ACS COMBINATORIAL SCIENCE 2020; 22:738-744. [PMID: 33089990 DOI: 10.1021/acscombsci.0c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work presents the first use of yeast-displayed protein targets for screening mRNA-display libraries of cyclic and linear peptides. The WW domains of Yes-Associated Protein 1 (WW-YAP) and mitochondrial import receptor subunit TOM22 were adopted as protein targets. Yeast cells displaying WW-YAP or TOM22 were magnetized with iron oxide nanoparticles to enable the isolation of target-binding mRNA-peptide fusions. Equilibrium adsorption studies were conducted to estimate the binding affinity (KD) of select WW-YAP-binding peptides: KD values of 37 and 4 μM were obtained for cyclo[M-AFRLC-K] and its linear cognate, and 40 and 3 μM for cyclo[M-LDFVNHRSRG-K] and its linear cognate, respectively. TOM22-binding peptide cyclo[M-PELNRAI-K] was conjugated to magnetic beads and incubated with yeast cells expressing TOM22 and luciferase. A luciferase-based assay showed a 4.5-fold higher binding of TOM22+ yeast compared to control cells. This work demonstrates that integrating mRNA- and yeast-display accelerates the discovery of peptide ligands.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - Hannah Reese
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
48
|
Peptide library screening as a tool to derive potent therapeutics: current approaches and future strategies. Future Med Chem 2020; 13:95-98. [PMID: 33275071 DOI: 10.4155/fmc-2020-0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Ng CX, Lee SH. The Potential Use of Anticancer Peptides (ACPs) in the Treatment of Hepatocellular Carcinoma. Curr Cancer Drug Targets 2020; 20:187-196. [PMID: 31713495 DOI: 10.2174/1568009619666191111141032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
50
|
Kanathasan JS, Gunasagaram D, Khan SU, Palanisamy UD, Radhakrishnan AK, Ahemad N, Swamy V. Linear versus Branched Peptide with Same Amino Acid Sequence for Legumain‐Targeting in Macrophages: Targeting Efficiency and Bioimaging Potential. ChemistrySelect 2020. [DOI: 10.1002/slct.202002161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jayasree S. Kanathasan
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Diivananthan Gunasagaram
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Uma D. Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Nafees Ahemad
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Varghese Swamy
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| |
Collapse
|