1
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
2
|
Papaioannou A, Liakopoulou A, Papoulis D, Gianni E, Gkolfi P, Zygouri E, Letsiou S, Hatziantoniou S. Effect of Peptides on the Synthesis, Properties and Wound Healing Capacity of Silver Nanoparticles. Pharmaceutics 2023; 15:2471. [PMID: 37896231 PMCID: PMC10609782 DOI: 10.3390/pharmaceutics15102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study is the synthesis of novel peptide-silver nanoparticle conjugates with enhanced wound healing capacity. Peptide-silver nanoparticle conjugates were synthesized using myristoyl tetrapeptide 6 (MT6) or copper tripeptide 1 (CuTP1). Peptide-free silver nanoparticles (AgNP) were synthesized using NaBH4 and sodium citrate and were used as control. The addition of the peptides during or after the synthesis of nanoparticles and its impact on the properties of the synthesized peptide-silver nanoparticle conjugates were assessed. The monitoring of the synthesis of nanoparticles was achieved using ultraviolet-visible spectrophotometry (UV-/Vis). The characteristics and colloidal stability of the nanoparticles (size and ζ-potential distribution, morphology, composition and structure) were monitored using dynamic laser scattering (DLS), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). The wound healing capacity of the peptide-silver nanoparticle conjugates was assessed using scratch test assay on fibroblasts (NIH/3T3). The results indicated that the addition of the peptides during the synthesis of nanoparticles lead to better yield of the reaction and more effective capping while the size distribution and ζ-potential of the conjugates indicated long-term colloidal stability. The MT6-AgNP conjugate exhibited 71.97 ± 4.35% wound closure, which was about 5.48-fold higher (p < 0.05) than the corresponding free MT6. The CuTP1-AgNP conjugate exhibited 62.37 ± 18.33% wound closure that was better by 2.82 fold (p < 0.05) compared to the corresponding free CuTP1. Both peptides led to the synthesis of silver nanoparticle conjugates with enhanced wound healing capacity compared to the respective free peptide or to the peptide-free AgNP (29.53 ± 4.71% wound closure, p < 0.05). Our findings demonstrated that the synthetized peptide-silver nanoparticle conjugates are promising ingredients for wound care formulation.
Collapse
Affiliation(s)
- Afroditi Papaioannou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| | - Angeliki Liakopoulou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| | - Dimitris Papoulis
- Department of Geology, University of Patras, 26504 Patras, Greece; (D.P.); (E.G.)
| | - Eleni Gianni
- Department of Geology, University of Patras, 26504 Patras, Greece; (D.P.); (E.G.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 15125 Athens, Greece
| | - Patroula Gkolfi
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.G.); (E.Z.)
| | - Eleni Zygouri
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.G.); (E.Z.)
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Agiou Spyridonos 28, 12243 Aegaleo, Greece;
| | - Sophia Hatziantoniou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| |
Collapse
|
3
|
Mondal A, Kang J, Kim D. Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma. ACS APPLIED BIO MATERIALS 2023; 6:3484-3503. [PMID: 36917648 DOI: 10.1021/acsabm.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.
Collapse
Affiliation(s)
- Amita Mondal
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Materials Research Science and Engineering Center, University of California at San Diego, 9500 Gilman Drive La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Junejo B, Solangi QA, Thani ASB, Palabiyik IM, Ghumro T, Bano N, Solangi AR, Taqvi SIH. Physical properties and pharmacological applications of Co 3O 4, CuO, NiO and ZnO nanoparticles. World J Microbiol Biotechnol 2023; 39:220. [PMID: 37269437 DOI: 10.1007/s11274-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Nano materials have found developing interest in biogenic approaches in the present times. In this study, metal oxide nanoparticles (NPs) such as cobalt oxide (Co3O4), copper oxide (CuO), nickel oxide (NiO) and zinc oxide (ZnO), were synthesized using a convenient and rapid method. The structural features of synthesized metal oxide NPs were studied using various microscopic and spectroscopic techniques like SEM, TEM, XRD, FTIR and EDX. The characterization results confirmed that the prepared NPs possess highly pure, unique and crystalline geometry with size ranging between 10 and 20 nm. The synthesized nanoparticles were successfully employed for pharmacological applications. Enzyme inhibition potential of NPs was evaluated against the urease and tyrosinase enzymes. The percent inhibition for the urease enzyme was observed as 80 to 90% by using Co3O4, CuO, NiO and ZnO NPs while ZnO NPs were found to have best anti-urease and anti-tyrosinase activities. Moreover, effective inhibition was observed in the case of ZnO NPs at IC50 values of 0.0833 and 0.1732 for urease and tyrosinase enzymes which were comparable to reference drugs thiourea and kojic acid. The lower the IC50 value, higher the free radical scavenging power. Antioxidant activity by DPPH free radical scavenging method was found moderately high for the synthesized metal oxide NPs while best results were obtained for Co3O4 and ZnO NPs as compared to the standard ascorbic acid. Antimicrobial potential was also evaluated via the disc diffusion and well diffusion methods. CuO NPs show a better zone of inhibition at 20 and 27 mm by using both methods. This study proves that the novel metal oxide NPs can compete with the standard materials used in the pharmacological studies nowadays.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar A Solangi
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ali Salman B Thani
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Nadia Bano
- Institute of Microbiology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University Hyderabad, Hyderabad, Sindh, Pakistan
| |
Collapse
|
5
|
Martinez de la Torre C, Freshwater KA, Looney-Sanders MA, Wang Q, Bennewitz MF. Caveat Emptor: Commercialized Manganese Oxide Nanoparticles Exhibit Unintended Properties. ACS OMEGA 2023; 8:18799-18810. [PMID: 37273625 PMCID: PMC10233837 DOI: 10.1021/acsomega.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Nano-encapsulated manganese oxide (NEMO) particles are noteworthy contrast agents for magnetic resonance imaging (MRI) due to their bright, pH-switchable signal ("OFF" to "ON" at low pH), high metal loading, and targeting capability for increased specificity. For the first time, we performed a head-to-head comparison of NEMO particles from In-house and commercialized sources (US Nano vs Nanoshel) to assess their potential as bright T1 MRI contrast agents. Manganese oxide nanocrystals (MnO, Mn2O3, and Mn3O4) were systematically evaluated for size, chemistry, release of manganese ions, and MRI signal pre- and post-encapsulation within poly(lactic-co-glycolic acid) (PLGA). Suprisingly, a majority of the commercialized formulations were not as advertised by displaying unintended sizes, morphologies, chemistry, dissolution profiles, and/or MRI signal that precludes in vivo use. US Nano's Mn3O4 and Mn2O3 nanocrystals contained impurities that impacted Mn ion release as well as micron-sized rodlike structures. Nanoshel's MnO and Mn2O3 nanoparticles had very large hydrodynamic sizes (>600 nm). In-house MnO and Nanoshel's Mn3O4 nanoparticles demonstrated the best characteristics with brighter T1 MRI signals, small hydrodynamic sizes, and high encapsulation efficiencies. Our findings highlight that researchers must confirm the properties of purchased nanomaterials before utilizing them in desired applications, as their experimental success may be impacted.
Collapse
Affiliation(s)
- Celia Martinez de la Torre
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Kasey A. Freshwater
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Mara A. Looney-Sanders
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Qiang Wang
- Shared
Research Facilities, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Margaret F. Bennewitz
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
Lebedenko C, Murray ME, Goncalves BG, Perez DS, Lambo DJ, Banerjee IA. Interactions of Nanoscale Self-Assembled Peptide-Based Assemblies with Glioblastoma Cell Models and Spheroids. ACS OMEGA 2023; 8:12124-12143. [PMID: 37033803 PMCID: PMC10077566 DOI: 10.1021/acsomega.2c08049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Peptide nanoassemblies have garnered remarkable importance in the development of novel nanoscale biomaterials for drug delivery into tumor cells. Taking advantage of receptor mediated recognition of two known peptides, angiopep-2 (TFFYGGSRGKRNNFKTEEY) and A-COOP-K (ACGLSGLC10 VAK) that bind to the over-expressed receptors low density lipoprotein (LRP-1) and fatty acid binding protein (FABP3) respectively, we have developed new peptide conjugates by combining the anti-inflammatory, antitumor compound azelaic acid with angiopep-2, which efficiently self-assembled into nanofibers. Those nanofibers were then functionalized with the A-COOP-K sequence and formed supramolecular hierarchical structures that were found to entrap the chemotherapeutic drug doxorubicin efficaciously. Furthermore, the nanoassemblies were found to release the drug in a dose-dependent manner and showed a stepwise increase over a period of 2 weeks under acidic conditions. Two cell lines (U-87-MG and U-138-MG) were utilized as models for glioblastoma cells grown in the presence of serum and under serum-free conditions to mimic the growth conditions of natural tumors. The drug entrapped assemblies were found to inhibit the cell proliferation of both U-87 and U-138MG glioblastoma cells. Three dimensional spheroids of different sizes were grown to mimic the tumors and evaluate the efficacy of drug release and internalization. Our results indicated that the nanoassemblies were found to have higher internalization of DOX and were well-spread throughout the spheroids grown, particularly under serum-free conditions. The nanoassemblies also displayed blood-brain barrier penetration when tested with a multicellular in vitro model. Such self-assembled nanostructures with targeting ability may provide a suitable platform for the development of new peptide-based biomaterials that can provide more insights about the mechanistic approach for drug delivery for not only 2D cell cultures but also 3D tumoroids that mimic the tumor microenvironments.
Collapse
|
7
|
Conte C, Longobardi G, Barbieri A, Palma G, Luciano A, Dal Poggetto G, Avitabile C, Pecoraro A, Russo A, Russo G, Laurienzo P, Romanelli A, Quaglia F. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int J Pharm 2023; 633:122618. [PMID: 36657553 DOI: 10.1016/j.ijpharm.2023.122618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.
Collapse
Affiliation(s)
- Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Barbieri
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giuseppe Palma
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Antonio Luciano
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
8
|
Yang T, Curtis S, Bai A, Young A, Derosier D, Ripley S, Bai S. CRISPR/Cas9 targeting liposomes knocked down multidrug resistance proteins in brain endothelial cells as a model to predict potential pharmacoresistance. Colloids Surf B Biointerfaces 2023; 222:113103. [PMID: 36571980 PMCID: PMC9899320 DOI: 10.1016/j.colsurfb.2022.113103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
This investigation aimed to use CRISPR-Cas9 gene-editing to knock down P-glycoprotein (P-gp) expression and then establish a feasible cell line to evaluate the potential pharmacoresistance of therapeutic agents mediated by efflux. A cationic liposome was prepared as a "smart bomb" by conjugating with a peptide-based targeting ligand (THRPPMWSPVWP), specifically binding to transferrin receptors at the blood-brain barrier (BBB), and then formed a nanocomplex with P-gp knockdown CRISPR/Cas9 plasmid. Higher uptakes of targeted and stable liposomes in bEND.3 cells were observed compared to non-peptide conjugated ones (p < 0.05). The P-gp transporters were successfully knocked down by the cell-nontoxic CRISPR/Cas9 targeted liposomes and P-gp associated ATP activities were higher in the transfected cells (p < 0.05). Functional studies of knocked down cells were evaluated by using prototypical P-gp substrates rhodamine 123 and doxorubicin. More accumulation of rhodamine 123 and higher cytotoxic sensitivity of doxorubicin was observed in the transfected cells as compared with those in the wild-type cells.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Skye Curtis
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Albert Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Abby Young
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Derek Derosier
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Shannon Ripley
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Shuhua Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA.
| |
Collapse
|
9
|
Matus MF, Malola S, Häkkinen H. Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy. ACS NANOSCIENCE AU 2021; 1:47-60. [PMID: 37102116 PMCID: PMC10125177 DOI: 10.1021/acsnanoscienceau.1c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanodrug delivery systems (NDDSs) based on water-soluble and atomically precise gold nanoclusters (AuNCs) are under the spotlight due to their great potential in cancer theranostics. Gastric cancer (GC) is one of the most aggressive cancers with a low early diagnosis rate, with drug therapy being the primary means to overcome its increasing incidence. In this work, we designed and characterized a set of 28 targeted nanosystems based on Au144(p-MBA)60 (p-MBA = para-mercaptobenzoic acid) nanocluster to be potentially employed as combination therapy in GC treatment. The proposed multifunctional AuNCs are functionalized with cytotoxic drugs (5-fluorouracil and epirubicin) or inhibitors of different signaling pathways (phosphatidylinositol 3-kinases (PI3K)/protein kinase B (Akt)/mammalian target of the rapamycin (mTOR), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)) and RGD peptides as targeting ligands, and we studied the role of ligand ratio in their optimal structural conformation using peptide-protein docking and all-atom molecular dynamics (MD) simulations. The results reveal that the peptide/drug ratio is a crucial factor influencing the potential targeting ability of the nanosystem. The most convenient features were observed when the peptide amount was favored over the drug in most cases; however, we demonstrated that the system composition and the intermolecular interactions on the ligand shell are crucial for achieving the desired effect. This approach helps guide the experimental stage, providing essential information on the size and composition of the nanosystem at the atomic level for ligand tuning in order to increase the desired properties.
Collapse
|
10
|
Verma P, Biswas S, Yadav N, Khatri A, Siddiqui H, Panda JJ, Rawat BS, Tailor P, Chauhan VS. Delivery of a Cancer-Testis Antigen-Derived Peptide Using Conformationally Restricted Dipeptide-Based Self-Assembled Nanotubes. Mol Pharm 2021; 18:3832-3842. [PMID: 34499836 DOI: 10.1021/acs.molpharmaceut.1c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Use of tumor-associated antigens for cancer immunotherapy is limited due to their poor in vivo stability and low cellular uptake. Delivery of antigenic peptides using synthetic polymer-based nanostructures has been actively pursued but with limited success. Peptide-based nanostructures hold much promise as delivery vehicles due to their easy design and synthesis and inherent biocompatibility. Here, we report self-assembly of a dipeptide containing a non-natural amino acid, α,β-dehydrophenylalanine (ΔF), into nanotubes, which efficiently entrapped a MAGE-3-derived peptide (M3). M3 entrapped in F-ΔF nanotubes was more stable to a nonspecific protease treatment and both F-ΔF and F-ΔF-M3 showed no cellular toxicity for four cancerous and noncancerous cell lines used. F-ΔF-M3 showed significantly higher cellular uptake in RAW 267.4 macrophage cells compared to M3 alone and also induced in vitro maturation of dendritic cells (DCs). Immunization of mice with F-ΔF-M3 selected a higher number of IFN-γ secreting CD8+ T cells and CD4+ T compared to M3 alone. On day 21, a tumor growth inhibition ratio (TGI, %) of 41% was observed in a murine melanoma model. These results indicate that F-ΔF nanotubes are highly biocompatible, efficiently delivered M3 to generate cytotoxic T lymphocytes responses, and able to protect M3 from degradation under in vivo conditions. The F-ΔF dipeptide-based nanotubes may be considered as a good platform for further development as delivery agents.
Collapse
Affiliation(s)
- Priyanka Verma
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Saikat Biswas
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nitin Yadav
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anjali Khatri
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Hamda Siddiqui
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Jiban Jyoti Panda
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | | | | | | |
Collapse
|
11
|
Ghadami SA, Ahmadi Z, Moosavi-Nejad Z. The albumin-based nanoparticle formation in relation to protein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119489. [PMID: 33524819 DOI: 10.1016/j.saa.2021.119489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Albumin is an attractive protein for the preparation of nanoparticle with possible therapeutic applications, due to its biodegradable, nontoxic, non-immunogenic, and metabolizable properties. Many studies have investigated the formation of albumin nanoparticles, generally by the desolvation or coacervation approaches. One of the most important parameters that should be considered in the formation of nanoparticles is their morphology (size and shape). There are many proposals to control the nanoparticle size, but it remains a challenge for researchers yet. In this study, we showed that control of BSA-based nanoparticles/microparticles size could be achieved by varying the temperature and pH and therefore controlling the rate of aggregation. The aggregation behavior was monitored by UV-Vis spectroscopy, SEM, and dye-binding assay. Our results provide more options for the size and shape control of BSA-based nanoparticle in natural buffer systems. The aggregation of BSA at different temperatures within the range of 50-80 °C were studied under the effect of different pHs in the range of 4.7-6.2. In this research, we found that protein aggregation under extreme conditions of pH and temperature, or at the pH near to pI appears to be amorphous, and at the pH above the pI seems to be the amyloid fibril structure. In some instances where the aggregation is neither too fast nor too slow, in the initial phase of the aggregation process, nanoparticle structures can be identified and separated by mechanistic approaches. This observation suggests that the best condition for monitoring the formation of albumin-based nanoparticles could be pH 5.7, 70 °C. Satisfactory rationalization of all aspects of our experimental observation requires further and more detailed study.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
12
|
Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. JOURNAL OF BIOPHOTONICS 2021; 14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
13
|
The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020; 5:92-101. [PMID: 31956738 PMCID: PMC6962647 DOI: 10.1016/j.bioactmat.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macrophages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based nanomaterials as immunomodulatory agents.
Collapse
Affiliation(s)
- Noah T. Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Vascular Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Kumar K, Moitra P, Bashir M, Kondaiah P, Bhattacharya S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. NANOSCALE 2020; 12:1067-1074. [PMID: 31845927 DOI: 10.1039/c9nr08475d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanobiotechnology has been gaining ever-increasing interest for the successful implementation of chemotherapy based treatment of cancer. Gold nanoparticles (AuNPs) capped with a natural pH-responsive short tripeptide (Lys-Phe-Gly or KFG) sequence are presented herein for significant intracellular delivery of an anti-cancer drug, doxorubicin (DOX). A particularly increased apoptotic response has been observed for DOX treatments mediated by KFG-AuNPs when compared with drug alone treatments in various cell lines (BT-474, HeLa, HEK 293 T and U251). Furthermore, KFG-AuNP mediated DOX treatment significantly decreases cell proliferation and tumor growth in a BT-474 cell xenograft model in nude mice. In addition, KFG-AuNPs demonstrate efficacious drug delivery in DOX-resistant HeLa cells (HeLa-DOXR).
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
16
|
Veena V, Shivaprasad K, Lokesh K, Sharanagouda H, Ramakrishna D. Design, Synthesis, Computational and Biological Evaluation of 4-Amino-3,5-dimercapto-1,2,4-triazole Surface Functionalized Gold Nanoparticles. ASIAN JOURNAL OF CHEMISTRY 2019; 31:2875-2884. [DOI: 10.14233/ajchem.2019.22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Gold nanoparticles (AuNPs) are an obvious choice for rapid advance in nanotechnology due to their amenability of synthesis, functionalization and less toxicity. Functionalization of AuNP surface with 4-amino-3,5-dimercapto-1,2,4-triazole (ADMT) ligand as ADMT-AuNPs was investigated with the aim to probe the suitability of innovative product to develop new antibacterial and anticancer strategies. Various characterization studies like UV-spectra, Zeta size, Zeta potential, XRD, SEM, TEM and FTIR results of AuNPs and ADMT-AuNPs have been performed to study the structural and electronic properties. The studies revealed that the functionalized nanoparticles are highly crystalline in nature with the sizes ranging between 20-22 and 50-55 nm for AuNPs and ADMT-AuNPs, respectively with FCC structures. The characterization data reveals that the synthesized nanoparticles are stable and presence of strong interactions between the metallic surface and the organic ligand. Further, ADMT-AuNPs showed good antibacterial activity against Gram-positive and Gram-negative bacteria. MTT assay exhibited the cell viability with an IC50 value of 45.32 % v/v for ADMT-AuNPs against breast adenocarcinoma (MCF-7) cell lines. Molecular characterization i.e., in silico docking analysis helped in identifying and organizing the structural similarity/diversity at the molecular level. The in silico study indicated that the structure S1a has good glide score and glide energy for H-bonding among the possible conformations against bacterial and breast cancer protein. Molecular docking studies confirmed the introduction of conformational changes that are essential to surpass the potential energy barriers of ADMT-AuNPs for biocompatibility and proved that they hold a promising future in the medical field.
Collapse
Affiliation(s)
- V. Veena
- Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, India
| | - K.H. Shivaprasad
- Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, India
| | - K.S. Lokesh
- Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, India
| | - H. Sharanagouda
- Department of Processing and Food Engineering, College of Agricultural Engineering, University of Agricultural Sciences, Raichur-584102, India
| | - D. Ramakrishna
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560078, India
| |
Collapse
|
17
|
Ranjitha VR, Muddegowda U, Ravishankar Rai V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 2019; 45:1496-1505. [DOI: 10.1080/03639045.2019.1634090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- V. R. Ranjitha
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Umashankar Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University (KSOU), Mysore, India
| | - V. Ravishankar Rai
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| |
Collapse
|
18
|
Antosova A, Bednarikova Z, Koneracka M, Antal I, Marek J, Kubovcikova M, Zavisova V, Jurikova A, Gazova Z. Amino Acid Functionalized Superparamagnetic Nanoparticles Inhibit Lysozyme Amyloid Fibrillization. Chemistry 2019; 25:7501-7514. [DOI: 10.1002/chem.201806262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Antosova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Iryna Antal
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Jozef Marek
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Kubovcikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Alena Jurikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Gazova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| |
Collapse
|
19
|
Poddar A, Joglekar MV, Hardikar AA, Shukla R. A Novel Gene Delivery Approach Using Metal Organic Frameworks in Human Islet-Derived Progenitor Cells. Methods Mol Biol 2019; 2029:81-91. [PMID: 31273735 DOI: 10.1007/978-1-4939-9631-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to regenerate insulin-producing β cells is the ultimate goal for treatment of type 1 diabetes. Several sources of stem cells have been investigated by studying their differential potential to form insulin-producing β cells that can be used for replacement therapy. Progenitor cells derived from human islets that are lineage committed have been shown to be better alternatives with regard to their differentiation capabilities for the generation of insulin-producing β-like cells. Controlling the differentiation of progenitor cells is a vital approach in exploiting cellular expansion, mesenchymal transition and β-cell generation. One of the most powerful and useful methods involve the intracellular delivery of biomolecules like genes, miRNAs, siRNAs, proteins, and peptides. However, the delivery vehicle used for such approaches is the most significant factor that determines the in vivo efficacy. Current delivery systems, although promising, are deterred by issues like toxicity, sustained release, loading capacity, and cost-effectiveness. In this chapter, we show an alternative nanomaterial called metal organic frameworks (MOFs) as gene delivery systems in human islet-derived progenitor cells (hIPCs). Based on our results, we believe that nanoscale MOFs can function as controlled cellular delivery agents that deliver, protect, and maintain functional activity of genes or other bioactive molecules into the cytoplasm or nucleus of progenitor cells. Here, we describe the details for the synthesis, characterization, and transfection of selected, biocompatible MOFs in hIPCs.
Collapse
Affiliation(s)
- Arpita Poddar
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab (NBRL), School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab (NBRL), School of Science, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Huang YQ, Yuan JD, Ding HF, Song YS, Qian G, Wang JL, Ji M, Zhang Y. Design, synthesis and pharmacological evaluation of a novel PEG-cRGD-conjugated irinotecan derivative as potential antitumor agent. Eur J Med Chem 2018; 158:82-90. [DOI: 10.1016/j.ejmech.2018.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
21
|
Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review. NANOMATERIALS 2018; 8:nano8090740. [PMID: 30231587 PMCID: PMC6164038 DOI: 10.3390/nano8090740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
Abstract
Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins. The second part deals with the functionalization by various moieties of numerous MNPs’ surfaces (molecules, peptides, antibody fragments, or whole antibodies of MNPs) for the detection and the quantification of amyloid aggregates. The last part of this review focuses on the use of MNPs for magnetic-resonance-based amyloid imaging in biomedical fields, with particular attention to the application of gadolinium-based paramagnetic nanoparticles (AGuIX), which have been recently developed. Biocompatible AGuIX nanoparticles show favorable characteristics for in vivo use, such as nanometric and straightforward functionalization. Their properties have enabled their application in MRI. Here, we report that AGuIX nanoparticles grafted with the Pittsburgh compound B can actively target amyloid aggregates in the brain, beyond the blood–brain barrier, and remain the first step in observing amyloid plaques in a mouse model of Alzheimer’s disease.
Collapse
|
22
|
Bansal K, Aqdas M, Kumar M, Bala R, Singh S, Agrewala JN, Katare OP, Sharma RK, Wangoo N. A Facile Approach for Synthesis and Intracellular Delivery of Size Tunable Cationic Peptide Functionalized Gold Nanohybrids in Cancer Cells. Bioconjug Chem 2018; 29:1102-1110. [DOI: 10.1021/acs.bioconjchem.7b00772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Mohammad Aqdas
- CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | - Sanpreet Singh
- CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | |
Collapse
|
23
|
Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther Deliv 2017; 7:521-44. [PMID: 27444493 DOI: 10.4155/tde-2016-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Parvifloron D is a natural diterpene with a broad and not selective cytotoxicity toward human tumor cells. In order to develop a targeted antimelanoma drug delivery platform for Parvifloron D, hybrid nanoparticles were prepared with biopolymers and functionalized with α-melanocyte stimulating hormone. Results/methodology: Nanoparticles were produced according to a solvent displacement method and the physicochemical properties were assessed. It was shown that Parvifloron D is cytotoxic and can induce, both as free and as encapsulated drug, cell death in melanoma cells (human A375 and mouse B16V5). Parvifloron D-loaded nanoparticles showed a high encapsulation efficiency (87%) and a sustained release profile. In vitro experiments showed the nanoparticles' uptake and cell internalization. CONCLUSION Hybrid nanoparticles appear to be a promising platform for long-term drug release, presenting the desired structure and a robust performance for targeted anticancer therapy.
Collapse
|
24
|
Zhang J, Zheng Y, Xie X, Wang L, Su Z, Wang Y, Leong KW, Chen M. Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy. Mol Pharm 2017; 14:3644-3659. [PMID: 28994600 DOI: 10.1021/acs.molpharmaceut.7b00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although tumor-targeting nanovehicles for hepatocellular carcinoma (HCC) chemotherapy have attracted great research and clinic interest, the poor cancer penetration, inefficient cellular uptake, and slow intracellular drug release greatly compromise their therapeutic outcomes. In this work, a multifunctional mixed micellar system, consisting of glycyrrhetinic acid (GA) for specific liver-targeting, trans-activator of transcription (TAT) peptide for potent cell penetration, and pH-sensitive poly(β-amino ester) polymers for acidic-triggered drug release, was developed to provide HCC-targeting delivery and pH-triggered release of doxorubicin (DOX). These micelles were hypothesized to efficaciously accumulate in HCC site by the guide of GA ligands, enter into cancer cells facilitated by the activated TAT peptide on the micellar surface, and finally rapidly release DOX in cytoplasm. To demonstrate this design, DOX was initially loaded in micelles modified with both GA and TAT (DOX/GA@TAT-M) with high drug loading efficiency and pH-sensitive drug release profiles. The HCC-targeting cellular uptake and synergetic anticancer efficacy were tested, indicating DOX/GA@TAT-M could be specifically and effectively internalized into HCC cells by the effect of GA targeting and TAT penetrating with enhanced cytotoxicity. In addition, the prolonged circulation time and enhanced accumulation in tumor facilitated its potent tumor growth inhibition activity in vivo. These results demonstrated that the cleavable multifunctional mixed micelles with tumor targeting, controlled TAT peptide activation, and sequential pH-sensitive drug release could be an efficient strategy for HCC treatment.
Collapse
Affiliation(s)
- Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Yifeng Zheng
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University , Guangzhou 510275, China
| | - Lan Wang
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Ziren Su
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| |
Collapse
|
25
|
Nayebi N, Cetinel S, Omar SI, Tuszynski JA, Montemagno C. A computational method for selecting short peptide sequences for inorganic material binding. Proteins 2017; 85:2024-2035. [PMID: 28734030 DOI: 10.1002/prot.25356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
Discovering or designing biofunctionalized materials with improved quality highly depends on the ability to manipulate and control the peptide-inorganic interaction. Various peptides can be used as assemblers, synthesizers, and linkers in the material syntheses. In another context, specific and selective material-binding peptides can be used as recognition blocks in mining applications. In this study, we propose a new in silico method to select short 4-mer peptides with high affinity and selectivity for a given target material. This method is illustrated with the calcite (104) surface as an example, which has been experimentally validated. A calcite binding peptide can play an important role in our understanding of biomineralization. A practical aspect of calcite is a need for it to be selectively depressed in mining sites.
Collapse
Affiliation(s)
- Niloofar Nayebi
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sibel Cetinel
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Ibrahim Omar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Carlo Montemagno
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Huey R, O’Hagan B, McCarron P, Hawthorne S. Targeted drug delivery system to neural cells utilizes the nicotinic acetylcholine receptor. Int J Pharm 2017; 525:12-20. [DOI: 10.1016/j.ijpharm.2017.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/30/2022]
|
27
|
Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. CURRENT STEM CELL REPORTS 2017; 3:83-97. [PMID: 28596936 PMCID: PMC5445180 DOI: 10.1007/s40778-017-0081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we provide a general overview of recent bioengineering breakthroughs and enabling tools that are transforming the field of regenerative medicine (RM). We focus on five key areas that are evolving and increasingly interacting including mechanobiology, biomaterials and scaffolds, intracellular delivery strategies, imaging techniques, and computational and mathematical modeling. RECENT FINDINGS Mechanobiology plays an increasingly important role in tissue regeneration and design of therapies. This knowledge is aiding the design of more precise and effective biomaterials and scaffolds. Likewise, this enhanced precision is enabling ways to communicate with and stimulate cells down to their genome. Novel imaging technologies are permitting visualization and monitoring of all these events with increasing resolution from the research stages up to the clinic. Finally, algorithmic mining of data and soft matter physics and engineering are creating growing opportunities to predict biological scenarios, device performance, and therapeutic outcomes. SUMMARY We have found that the development of these areas is not only leading to revolutionary technological advances but also enabling a conceptual leap focused on targeting regenerative strategies in a holistic manner. This approach is bringing us ever more closer to the reality of personalized and precise RM.
Collapse
Affiliation(s)
- Alvaro Mata
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lorenzo Botto
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Nuria Gavara
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lei Su
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
28
|
Sun Q, Du Y, Zhao Z, Hall EAH, Gao H, Sukhorukov GB, Routh AF. Functional Silver-Coated Colloidosomes as Targeted Carriers for Small Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3755-3764. [PMID: 28358200 DOI: 10.1021/acs.langmuir.6b04594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidosomes have attracted great interest in recent years because of their capability for storage and delivery of small molecules for medical and pharmaceutical applications. However, traditional polymer shell colloidosomes leak low molecular weight drugs due to their intrinsic shell permeability. Here, we report aqueous core colloidosomes with a silver shell, which seals the core and makes the shell impermeable. The silver-coated colloidosomes were prepared by reacting l-ascorbic acid in the microcapsule core with silver nitrate in the wash solution. The silver shell colloidosomes were then modified by using 4,4'-dithiodibutyric acid and cross-linked with rabbit Immunoglobulin G (IgG). Label-free surface plasmon resonance was used to test the specific targeting of the functional silver shell with rabbit antigen. To break the shells, ultrasound treatment was used. The results demonstrate that a new type of functional silver-coated colloidosome with immunoassay targeting, nonpermeability, and ultrasound sensitivity could be applied to many medical applications.
Collapse
Affiliation(s)
- Qian Sun
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Yao Du
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Ziyan Zhao
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Elizabeth A H Hall
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Hui Gao
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, E1 4NS London, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, E1 4NS London, United Kingdom
| | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, CB2 3RA Cambridge, United Kingdom
| |
Collapse
|
29
|
Sangtani A, Nag OK, Field LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28299903 DOI: 10.1002/wnan.1466] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/04/2017] [Accepted: 01/29/2017] [Indexed: 01/01/2023]
Abstract
With continued advancements in nanoparticle (NP) synthesis and in the interfacing of NPs with biological systems has come the exponential growth in the use of NPs for therapeutic drug delivery and imaging applications. In recent years, the advent of NP multifunctionality-the ability to perform multiple, disparate functions on a single NP platform-has garnered much excitement for the potential realization of highly functional NP-mediated drug delivery for use in the clinical setting. This Overview will survey the current state of the art (reports published within the last 5 years) of multifunctional NPs for therapeutic drug delivery, imaging or a combination thereof. We provide extensive examples of both soft (micelles, liposomes, polymeric NPs) and hard (noble metals, quantum dots, metal oxides) NP formulations that have been used for multimodal drug delivery and imaging. The criteria for inclusion, herein, is that there must be at least two therapeutic drug cargos or imaging agents or a combination of the two. We next offer an assessment of the cytotoxicity of therapeutic NP constructs in biological systems. We then conclude with a forward-looking perspective on how we expect this field to develop in the coming years. WIREs Nanomed Nanobiotechnol 2017, 9:e1466. doi: 10.1002/wnan.1466 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ajmeeta Sangtani
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,National Research Council, Washington, DC, USA
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
30
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
31
|
Silva CO, Petersen SB, Reis CP, Rijo P, Molpeceres J, Fernandes AS, Gonçalves O, Gomes AC, Correia I, Vorum H, Neves-Petersen MT. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy. PLoS One 2016; 11:e0165419. [PMID: 27788212 PMCID: PMC5082958 DOI: 10.1371/journal.pone.0165419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Spain
| | - Steffen B. Petersen
- Medical Photonics Lab, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Catarina Pinto Reis
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- * E-mail: (MTNP); (CPR)
| | - Patrícia Rijo
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Spain
| | - Ana Sofia Fernandes
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Odete Gonçalves
- Medical Photonics Lab, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, Braga, Portugal
- CFUM (Centre of Physics of University of Minho), Department of Physics, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
32
|
San BH, Li Y, Tarbet EB, Yu SM. Nanoparticle Assembly and Gelatin Binding Mediated by Triple Helical Collagen Mimetic Peptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19907-19915. [PMID: 27403657 PMCID: PMC5453869 DOI: 10.1021/acsami.6b05707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Peptide-conjugated nanoparticles (NPs) have promising potential for applications in biosensing, diagnosis, and therapeutics because of their appropriate size, unique self-assembly, and specific substrate-binding properties. However, controlled assembly and selective target binding are difficult to achieve with simple peptides on NP surfaces because high surface energy makes NPs prone to self-aggregate and adhere nonspecifically. Here, we report the self-assembly and gelatin binding properties of collagen mimetic peptide (CMP) conjugated gold NPs (CMP-NPs). We show that the orientation of CMPs displayed on the NP surface can control NP assembly either by promoting or hindering triple helical folding between CMPs of neighboring NPs. We also show that CMP-NPs can specifically bind to denatured collagen by forming triple-helical hybrids between denatured collagen strands and CMPs, demonstrating their potential use for detection and selective removal of gelatin from protein mixtures. CMP conjugated NPs offer a simple and effective method for NP assembly and for targeting denatured collagens with high specificity. Therefore, they may lead to new types of functional nanomaterials for detection and study of denatured collagen associated with diseases characterized by high levels of collagen degradation.
Collapse
Affiliation(s)
- Boi Hoa San
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - E. Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, Utah 84322, United States
| | - S. Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
33
|
Cavigli L, Tatini F, Borri C, Ratto F, Centi S, Cini A, Lelli B, Matteini P, Pini R. Preparation and Photoacoustic Analysis of Cellular Vehicles Containing Gold Nanorods. J Vis Exp 2016:53328. [PMID: 27167995 PMCID: PMC4942024 DOI: 10.3791/53328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro. Here, we describe the preparation and the photoacoustic inspection of cellular vehicles containing gold nanorods. PEGylated gold nanorods are modified with quaternary ammonium compounds, in order to achieve a cationic profile. On contact with murine macrophages in ordinary Petri dishes, these particles are found to undergo massive uptake into endocytic vesicles. Then these cells are embedded in biopolymeric hydrogels, which are used to verify that the stability of photoacoustic conversion of the particles is retained in their inclusion into cellular vehicles. We are confident that these results may provide new inspiration for the development of novel strategies to deliver plasmonic particles to tumors.
Collapse
Affiliation(s)
- Lucia Cavigli
- Institute of Applied Physics, Italian National Research Council
| | | | - Claudia Borri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze
| | - Fulvio Ratto
- Institute of Applied Physics, Italian National Research Council;
| | - Sonia Centi
- Institute of Applied Physics, Italian National Research Council
| | - Alberto Cini
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino
| | - Beatrice Lelli
- Department of Pharmacy and Biotechnology, University of Bologna
| | - Paolo Matteini
- Institute of Applied Physics, Italian National Research Council
| | - Roberto Pini
- Institute of Applied Physics, Italian National Research Council
| |
Collapse
|
34
|
Nisar M, Khan SA, Qayum M, Khan A, Farooq U, Jaafar HZE, Zia-Ul-Haq M, Ali R. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay. Molecules 2016; 21:411. [PMID: 27023506 PMCID: PMC6274037 DOI: 10.3390/molecules21040411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH4 as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.
Collapse
Affiliation(s)
- Muhammad Nisar
- Office of Research Innovation and Commercialization, University of Peshawar, Peshawar-25120, Pakistan.
| | - Shujaat Ali Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Umar Farooq
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, 43400 UPM Serdang, Selangor, Malaysia.
| | - Muhammad Zia-Ul-Haq
- Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore 54600, Pakistan.
| | - Rashid Ali
- Department of Physics, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| |
Collapse
|
35
|
Gobbo P, Luo W, Cho SJ, Wang X, Biesinger MC, Hudson RHE, Workentin MS. Small gold nanoparticles for interfacial Staudinger-Bertozzi ligation. Org Biomol Chem 2016; 13:4605-12. [PMID: 25786777 DOI: 10.1039/c5ob00372e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small gold nanoparticles (AuNPs) that possess interfacial methyl-2-(diphenylphosphino)benzoate moieties have been successfully synthesized (Staudinger-AuNPs) and characterized by multi-nuclear MR spectroscopy, transmission electron microscopy (TEM), UV-Vis spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS). In particular, XPS was remarkably sensitive for characterization of the novel nanomaterial, and in furnishing proof of its interfacial reactivity. These Staudinger-AuNPs were found to be stable to the oxidation of the phosphine center. The reaction with benzyl azide in a Staudinger-Bertozzi ligation, as a model system, was investigated using (31)P NMR spectroscopy. This demonstrated that the interfacial reaction was clean and quantitative. To showcase the potential utility of these Staudinger-AuNPs in bioorganic chemistry, a AuNP bioconjugate was prepared by reacting the Staudinger-AuNPs with a novel azide-labeled CRGDK peptide. The CRGDK peptide could be covalently attached to the AuNP efficiently, chemoselectively, and with a high loading.
Collapse
Affiliation(s)
- Pierangelo Gobbo
- The University of Western Ontario and the Centre for Materials and Biomaterials Research, Richmond Street, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu F, Reiser M, Yu X, Gummuluru S, Wetzler L, Reinhard BM. Lipid-Mediated Targeting with Membrane-Wrapped Nanoparticles in the Presence of Corona Formation. ACS NANO 2016; 10:1189-200. [PMID: 26720275 PMCID: PMC4842014 DOI: 10.1021/acsnano.5b06501] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Membrane-wrapped nanoparticles represent a versatile platform for utilizing specific lipid-receptor interactions, such as siallyllactose-mediated binding of the ganglioside GM3 to Siglec1 (CD169), for targeting purposes. The membrane wrap around the nanoparticles not only serves as a matrix to incorporate GM3 as targeting moiety for antigen-presenting cells but also offers unique opportunities for constructing a biomimetic surface from lipids with potentially protein-repellent properties. We characterize nonspecific protein adsorption (corona formation) to membrane-wrapped nanoparticles with core diameters of approximately 35 and 80 nm and its effect on the GM3-mediated targeting efficacy as a function of surface charge through combined in vitro and in vivo studies. The stability and fate of the membrane wrap around the nanoparticles in a simulated biological fluid and after uptake in CD169-expressing antigen-presenting cells is experimentally tested. Finally, we demonstrate in hock immunization studies in mice that GM3-decorated membrane-wrapped nanoparticles achieve a selective enrichment in the peripheral regions of popliteal lymph nodes that contain high concentrations of CD169-expressing antigen-presenting cells.
Collapse
Affiliation(s)
- Fangda Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | - Michael Reiser
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Xinwei Yu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Lee Wetzler
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
37
|
Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:853-869. [PMID: 26772424 DOI: 10.1016/j.nano.2015.12.381] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) has a fairly high morbidity and is notoriously difficult to treat due to long latent period before detection, multidrug resistance and severe drug-related adverse effects from chemotherapy. Targeted drug delivery systems (DDS) that can selectively deliver therapeutic drugs into tumor sites have demonstrated a great potential in cancer treatment, which could be utilized to resolve the limitations of conventional chemotherapy. Numerous preclinical studies of DDS have been published, but targeted DDS for HCC has yet to be made for practical clinical use. Since rational targeted DDS design should take cancer-specific properties into consideration, we have reviewed the biological and physicochemical properties of HCC extensively to provide a comprehensive understanding on HCC, and recent DDS studies on HCC, aiming to find some potential targeted DDSs for HCC treatment and a meaningful platform for further development of HCC treatments. FROM THE CLINICAL EDITOR Hepatocellular carcinoma has a high incidence worldwide and is known to be multidrug resistant. Thus, intensive research is being carried out to find better chemotherapeutic agents as well as new drug delivery systems. In this article, the authors reviewed in depth the current challenges facing new drug designs and also outlined novel targeted drug delivery systems (DDS) in the fight against HCC.
Collapse
|
38
|
Ramesh S, Grijalva M, Debut A, de la Torre BG, Albericio F, Cumbal LH. Peptides conjugated to silver nanoparticles in biomedicine – a “value-added” phenomenon. Biomater Sci 2016; 4:1713-1725. [DOI: 10.1039/c6bm00688d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents a glimpse of the various aspects of nanoparticles, in particular silver nanoparticles and their conjugation to peptides, thus opening an avenue for new discoveries in nanomaterials.
Collapse
Affiliation(s)
- Suhas Ramesh
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Marcelo Grijalva
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Luis H. Cumbal
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| |
Collapse
|
39
|
Maity AR, Stepensky D. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly “Targeted” Drug Delivery Systems. Mol Pharm 2015; 13:1-7. [DOI: 10.1021/acs.molpharmaceut.5b00697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amit Ranjan Maity
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
40
|
Maity S, Zanuy D, Razvag Y, Das P, Alemán C, Reches M. Elucidating the mechanism of interaction between peptides and inorganic surfaces. Phys Chem Chem Phys 2015; 17:15305-15. [PMID: 25995084 DOI: 10.1039/c5cp00088b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanism of interaction between peptides and inorganic materials is of high importance for the development of new composite materials. Here, we combined an experimental approach along with molecular simulations in order to gain insights into this binding process. Using single molecule force spectroscopy by atomic force microscopy and molecular simulations we studied the binding of a peptide towards an inorganic substrate. By performing alanine scan we examined the propensity of each amino acid in the peptide sequence to bind the substrate (mica). Our results indicate that this binding is not controlled by the specific sequence of the peptide, but rather by its conformational freedom in solution versus its freedom when it is in proximity to the substrate. When the conformational freedom of the peptide is identical in both environments, the peptide will not adhere to the substrate. However, when the conformational freedom is reduced, i.e., when the peptide is in close proximity to the substrate, binding will occur. These results shed light on the interaction between peptides and inorganic materials.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
41
|
Mitophagy induced by nanoparticle-peptide conjugates enabling an alternative intracellular trafficking route. Biomaterials 2015; 65:56-65. [PMID: 26142776 DOI: 10.1016/j.biomaterials.2015.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
The intracellular behaviors of nanoparticles are fundamentally important for the evaluation of their biosafety and the designs of nano carrier-assisted drug delivery with high therapeutic efficacy. It is still in a great need to discover how functionalized nanoparticles are transported inside the cells, for instance, in a complicated fashion of translocation between different types of cell organelles. Here we report a new understanding of the interactions between nanoparticles and cells by the development of polyoxometalates nanoparticle-peptide conjugates and investigation of their intracellular trafficking behaviors. The as-prepared nanoparticles are featured with a unique combination of fluorescence and high contrast for synchrotron X-ray-based imaging. Functional surface modification with peptides facilitates effective delivery of the nanoparticles onto the target organelle (mitochondria) and subsequent intracellular trafficking in a dynamic mode. Interestingly, our experimental results have revealed that autophagy of mitochondria (mitophagy) can be induced by NP-peptide as a cellular response for recycling the damaged organelles, through molecular mediation associated with the change of mitochondrial membrane potential. The biological effects induced by NP-peptide reciprocally affect the distribution patterns and fates of nanoparticles in the cell metabolism by providing an alternative route of intracellular trafficking. The new understanding of the mutual activities between nanoparticles and cells will enrich our approaches in the development of nanobiotechnology and nano-medicine for disease treatments.
Collapse
|
42
|
Field LD, Delehanty JB, Chen Y, Medintz IL. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? Acc Chem Res 2015; 48:1380-90. [PMID: 25853734 DOI: 10.1021/ar500449v] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interfacing of nanomaterials and especially nanoparticles within all aspects of biological research continues to grow at a nearly unabated pace with projected applications focusing on powerful new tools for cellular labeling, imaging, and sensing, theranostic materials, and drug delivery. At the most fundamental level, many of these nanoparticles are meant to target not only very specific cell-types, regardless of whether they are in a culture, tissue, an animal model, or ultimately a patient, but also in many cases a specific subcellular organelle. During this process, these materials will undergo a complex journey that must first find the target cell of interest, then be taken up by those cells across the extracellular membrane, and ultimately localize to a desired subcellular organelle, which may include the nucleus, plasma membrane, endolysosomal system, mitochondria, cytosol, or endoplasmic reticulum. To accomplish these complex tasks in the correct sequence, researchers are increasingly interested in selecting for and exploiting targeting peptides that can impart the requisite capabilities to a given nanoparticle construct. There are also a number of related criteria that need careful consideration for this undertaking centering on the nature and properties of the peptide vector itself, the peptide-nanoparticle conjugate characteristics, and the target cell. Here, we highlight some important issues and key research areas related to this burgeoning field. We begin by providing a brief overview of some criteria for optimal attachment of peptides to nanoparticles, the predominant methods by which nanoparticles enter cells, and some of the peptide sequences that have been utilized to facilitate nanoparticle delivery to cells focusing on those that engender the initial targeting and uptake. Because almost all materials delivered to cells by peptides utilize the endosomal system of vesicular transport and in many cases remain sequestered within the vesicles, we critically evaluate the issue of endosomal escape in the context of some recently reported successes in this regard. Following from this, peptides that have been reported to deliver nanoparticles to specific subcellular compartments are examined with a focus on what they delivered and the putative mechanisms by which they were able to accomplish this. The last section focuses on two areas that are critical to realizing this overall approach in the long term. The first is how to select for peptidyl sequences capable of improved or more specific cellular or subcellular targeting based upon principles commonly associated with drug discovery. The second looks at what has been done to create modular peptides that incorporate multiple desirable functionalities within a single, contiguous sequence. This provides a viable alternative to either the almost insurmountable challenge of finding one sequence capable of all functions or, alternatively, attaching different peptides with different functionalities to the same nanoparticle in different ratios when trying to orchestrate their net effects. Finally, we conclude with a brief perspective on the future evolution and broader impact of this growing area of bionanoscience.
Collapse
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, Maryland 20742, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - YungChia Chen
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
- American Society for Engineering Education Washington, D.C. 20036, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
43
|
Durzyńska J, Przysiecka Ł, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Goździcka-Józefiak A. Viral and Other Cell-Penetrating Peptides as Vectors of Therapeutic Agents in Medicine. J Pharmacol Exp Ther 2015; 354:32-42. [DOI: 10.1124/jpet.115.223305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
|
44
|
Dobroff AS, Rangel R, Guzman-Roja L, Salmeron CC, Gelovani JG, Sidman RL, Bologa CG, Oprea TI, Brinker CJ, Pasqualini R, Arap W. Ligand-directed profiling of organelles with internalizing phage libraries. ACTA ACUST UNITED AC 2015; 79:30.4.1-30.4.30. [PMID: 25640897 DOI: 10.1002/0471140864.ps3004s79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, create vaccines, and engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. This unit describes the methods for generating and screening the iPhage display system, and explains how to select and validate candidate internalizing homing peptide.
Collapse
Affiliation(s)
- Andrey S Dobroff
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,These authors contributed equally to this work
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,These authors contributed equally to this work
| | - Liliana Guzman-Roja
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,These authors contributed equally to this work
| | - Carolina C Salmeron
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Juri G Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Richard L Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Cristian G Bologa
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - C Jeffrey Brinker
- Department of Chemical and Nuclear Engineering, The University of New Mexico Cancer Center, Albuquerque, New Mexico
| | - Renata Pasqualini
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,These authors contributed equally as senior authors to this work
| | - Wadih Arap
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,These authors contributed equally as senior authors to this work
| |
Collapse
|
45
|
Slegerova J, Hajek M, Rehor I, Sedlak F, Stursa J, Hruby M, Cigler P. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. NANOSCALE 2015; 7:415-20. [PMID: 25132312 DOI: 10.1039/c4nr02776k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.
Collapse
Affiliation(s)
- Jitka Slegerova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
46
|
Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors. J Neuroimmune Pharmacol 2015; 10:88-101. [PMID: 25559020 DOI: 10.1007/s11481-014-9576-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Progress in AIDS treatment shifted emphasis towards limiting adverse effects of antiviral drugs while improving the treatment of hard-to-reach viral reservoirs. Many therapeutic nucleoside reverse transcriptase inhibitors (NRTI) have a limited access to the central nervous system (CNS). Increased NRTI levels induced various complications during the therapy, including neurotoxicity, due to the NRTI toxicity to mitochondria. Here, we describe an innovative design of biodegradable cationic cholesterol-ε-polylysine nanogel carriers for delivery of triphosphorylated NRTIs that demonstrated high anti-HIV activity along with low neurotoxicity, warranting minimal side effects following systemic administration. Efficient CNS targeting was achieved by nanogel modification with brain-specific peptide vectors. Novel dual and triple-drug nanoformulations, analogous to therapeutic NRTI cocktails, displayed equal or higher antiviral activity in HIV-infected macrophages compared to free drugs. Our results suggest potential alternative approach to HIV-1 treatment focused on the effective nanodrug delivery to viral reservoirs in the CNS and reduced neurotoxicity.
Collapse
|
47
|
Vasoactive Intestinal Peptide (VIP) Nanoparticles for Diagnostics and for Controlled and Targeted Drug Delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:145-68. [DOI: 10.1016/bs.apcsb.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Adams CF, Rai A, Sneddon G, Yiu HH, Polyak B, Chari DM. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:19-29. [DOI: 10.1016/j.nano.2014.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/04/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023]
|
49
|
Zhang J, Liu J, Zhao Y, Wang G, Zhou F. Plasma and cellular pharmacokinetic considerations for the development and optimization of antitumor block copolymer micelles. Expert Opin Drug Deliv 2014; 12:263-81. [PMID: 25217414 DOI: 10.1517/17425247.2014.945417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Clinical application of anticancer drugs is often limited by poor pharmacokinetic profile. The biocompatible and/or biodegradable block copolymer micelles (BCMs) can improve the pharmacokinetic behavior of drugs, thus enhancing antitumor effect. However, there are still many problems that needed to be solved before there is a wide clinical application of BCMs. AREAS COVERED Micelles have been quickly developed recently to deliver hydrophobic antitumor drugs specifically. However, the final therapeutic effect of BCMs is often challenged by many factors in vivo from both plasma and cellular pharmacokinetic view: i) inefficient transport from administration site to tumor tissue; ii) poor penetration into tumor mass; iii) inadequate accumulation in tumor cell; and iv) insufficient intracellular/subcellular release in cells. This review emphasized on the newest methods and solutions based on the main challenges of BCMs application in vivo, and the new problems caused by these methods are also discussed. EXPERT OPINION Different strategies and designs of BCMs can help solve problems in each key step respectively. However, overemphasis on one aspect will result in problems on others. Therefore, a comprehensive consideration is urgently needed to integrate the advantages of each strategy and overcome the disadvantages. Only with thorough understanding and scientific assessments, the desired BCMs are expected to be applied in clinical treatments.
Collapse
Affiliation(s)
- Jingwei Zhang
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics , 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009 , PR China
| | | | | | | | | |
Collapse
|
50
|
Breger J, Delehanty JB, Medintz IL. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:131-51. [PMID: 25154379 PMCID: PMC4345423 DOI: 10.1002/wnan.1281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
Abstract
The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future.
Collapse
Affiliation(s)
- Joyce Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | |
Collapse
|