1
|
Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect 2021; 10:317-330. [PMID: 33560940 PMCID: PMC7919907 DOI: 10.1080/22221751.2021.1888660] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that lacks effective therapeutic interventions. SARS-CoV-2 infects ACE2-expressing cells and gains cell entry through either direct plasma membrane fusion or endocytosis. Recent studies have shown that in addition to ACE2, heparan sulfate proteoglycans (HSPGs) also play an important role in SARS-CoV-2 cell attachment by serving as an attachment factor. Binding of viral spike protein to HSPGs leads to the enrichment of local concentration for the subsequent specific binding with ACE2. We therefore hypothesize that blocking the interactions between viral spike protein and the HSPGs will lead to inhibition of viral replication. In this study, we report our findings of the broad-spectrum antiviral activity and the mechanism of action of lactoferrin (LF) against multiple common human coronaviruses as well as SARS-CoV-2. Our study has shown that LF has broad-spectrum antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E in cell culture, and bovine lactoferrin (BLF) is more potent than human lactoferrin. Mechanistic studies revealed that BLF binds to HSPGs, thereby blocking viral attachment to the host cell. The antiviral activity of BLF can be antagonized by the HSPG mimetic heparin. Combination therapy experiment showed that the antiviral activity of LF is synergistic with remdesivir in cell culture. Molecular modelling suggests that the N-terminal positively charged region in BLF (residues 17-41) confers the binding to HSPGs. Overall, LF appears to be a promising drug candidate for COVID-19 that warrants further investigation.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
3
|
New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Ther Deliv 2020; 11:713-732. [DOI: 10.4155/tde-2020-0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The advancement of the oral route for macromolecules has gained a lot of attention due to its noninvasive nature, safe and challenging in active research but with limited success. Oral administration poses challenges due to poor solubility, short half-life, quick elimination and the physical, chemical and biological barriers of the gastrointestinal tract. Approaches of past for improving oral absorption, such as enhancers, mucoadhesive delivery and enzyme inhibitors have been taken over by novel approaches like advanced liposomes, self-nanoemulsifying drug delivery system, nanoparticles and targeted delivery. Eudratech™ Pep, Peptelligence, Rani Pill and Pharm Film are the emerging technologies for delivering oral proteins and peptide. Calcitonin, semaglutide and octreotide are the peptides available in the market for oral delivery as outcomes of these technologies.
Collapse
|
4
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
5
|
Singh A, Yadagiri G, Parvez S, Singh OP, Verma A, Sundar S, Mudavath SL. Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B 12-stearic acid conjugate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111279. [PMID: 32919641 DOI: 10.1016/j.msec.2020.111279] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/07/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Despite the advancement of new anti-leishmanials, amphotericin B (AmB) prevails as one of the most potent agent in the treatment of visceral leishmaniasis (VL), a neglected tropical disease affecting mostly poverty ridden and underdeveloped regions of the globe. Nonetheless, many patients display intolerance to parenteral AmB, notably at higher dosages. Also, conventional AmB presents an apparently poor absorption. Therefore, to improve AmB bioavailability and overcome multiple barriers for oral delivery of AmB, we fabricated a promising vitamin B12-stearic acid (VBS) conjugate coated solid lipid nanoparticles (SLNs) encapsulated with AmB (VBS-AmB-SLNs) by a combination of double emulsion solvent evaporation and thermal sensitive hydrogel techniques. VBS-AmB-SLNs showed a particle size of 306.66 ± 3.35 nm with polydispersity index of 0.335 ± 0.08 while the encapsulation efficiency and drug loading was observed to be 97.99 ± 1.6% and 38.5 ± 5.6% respectively. In vitro drug release showed a biphasic release pattern and chemical stability of AmB was ensured against simulated gastrointestinal fluids. Cellular uptake studies confirmed complete internalization of the formulation. Anti-leishmanial evaluation against intramacrophage amastigotes showed an enhanced efficacy of 94% which was significantly (P < 0.01) higher than conventional AmB without showing any toxic effects on J774A.1 cells. VBS-AmB-SLNs could serve as a potential therapeutic strategy against VL.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Shabi Parvez
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
6
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
7
|
Adeoye O, Cabral-Marques H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int J Pharm 2017; 531:521-531. [DOI: 10.1016/j.ijpharm.2017.04.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 02/05/2023]
|
8
|
Carvalho CAM, Casseb SMM, Gonçalves RB, Silva EVP, Gomes AMO, Vasconcelos PFC. Bovine lactoferrin activity against Chikungunya and Zika viruses. J Gen Virol 2017; 98:1749-1754. [PMID: 28699858 DOI: 10.1099/jgv.0.000849] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chikungunya (CHIKV) and Zika (ZIKV) viruses are arboviruses which have recently broken their sylvatic isolation and gone on to spread rampantly among humans in some urban areas of the world, especially in Latin America. Given the lack of effective interventions against such viruses, the aim of this work was to evaluate the antiviral potential of bovine lactoferrin (bLf) in their infections. Through viability, plaque, immunofluorescence and nucleic acid quantification assays, our data show that bLf exerts a dose-dependent strong inhibitory effect on the infection of Vero cells by the aforementioned arboviruses, reducing their infection efficiency by up to nearly 80 %, with no expressive cytotoxicity, and that such antiviral activity occurs at the levels of input and output of virus particles. These findings reveal that bLf antimicrobial properties are extendable to CHIKV and ZIKV, underlining a generic inhibition mechanism that can be explored to develop a potential strategy against their infections.
Collapse
Affiliation(s)
- Carlos A M Carvalho
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - Samir M M Casseb
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - Rafael B Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana V P Silva
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro F C Vasconcelos
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| |
Collapse
|
9
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Buckley ST, Hubálek F, Rahbek UL. Chemically modified peptides and proteins - critical considerations for oral delivery. Tissue Barriers 2016; 4:e1156805. [PMID: 27358754 DOI: 10.1080/21688370.2016.1156805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Numerous approaches have been explored to date in the pursuit of delivering peptides or proteins via the oral route. One such example is chemical modification, whereby the native structure of a peptide or protein is tailored to provide a more efficient uptake across the epithelial barrier of the gastrointestinal tract via incorporation of a chemical motif or moiety. In this regard, a diverse array of concepts have been reported, ranging from the exploitation of endogenous transport mechanisms to incorporation of physicochemical modifications in the molecule, which promote more favorable interactions with the absorptive membrane at the cell surface. This review provides an overview of the modification technologies described in the literature and offers insights into some pragmatic considerations pertaining to their translation into clinically viable concepts.
Collapse
|
11
|
In-vitro evaluation of the effect of polymer structure on uptake of novel polymer-insulin polyelectrolyte complexes by human epithelial cells. Int J Pharm 2015; 479:103-17. [DOI: 10.1016/j.ijpharm.2014.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
|
12
|
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 2014; 19:898-904. [DOI: 10.1016/j.drudis.2014.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/08/2023]
|
13
|
Li X, Yu M, Fan W, Gan Y, Hovgaard L, Yang M. Orally active-targeted drug delivery systems for proteins and peptides. Expert Opin Drug Deliv 2014; 11:1435-47. [DOI: 10.1517/17425247.2014.924500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
15
|
The oral delivery of peptides and proteins: established versus recently patented approaches. Pharm Pat Anal 2013; 2:125-45. [DOI: 10.4155/ppa.12.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past 30 years there has been significant research into technologies that promote the delivery of high molecular weight, poor membrane-permeable compounds across the gut. Most work has concentrated on the delivery of peptides and proteins. However, technologies have also been applied to compounds such as poorly membrane-permeable small molecules, heparin and oligonucleotides. Much of this research has been characterized by early promise with many systems showing positive results in animal studies. Success in man has proven more elusive. In 2011, however, the oral delivery of peptides took one step closer to commercial reality when Tarsa Therapeutics announced that it had achieved positive Phase III data for oral recombinant salmon calcitonin. This article reviews the current development status of oral delivery systems for peptides and proteins and examines recent patent activity in this field based mainly on US patents issued in the last 2–3 years.
Collapse
|
16
|
Alpers DH, Russell-Jones G. Gastric intrinsic factor: the gastric and small intestinal stages of cobalamin absorption. a personal journey. Biochimie 2012; 95:989-94. [PMID: 23274574 DOI: 10.1016/j.biochi.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 01/23/2023]
Abstract
Intrinsic factor (IF) was first identified as a component of the gastric mucosa that reacted with an extrinsic factor, later discovered to be vitamin B12 (VB12). IF has been extensively characterized, and its cloned cDNA used to produce sufficient IF to produce high quality antibodies, and to elucidate its 3-dimensional structure bound to cobalamin (Cbl, VB12). The absorption of the IF-Cbl complex involves internalization by endocytosis, incorporation into multivesicular/lysosomal bodies, release of Cbl by lysosomal proteolysis and pH effects, with subsequent binding to transcobalamin (TC). Hereditary IF deficiency is rare, consistent with the need for IF to absorb Cbl, a vitamin essential for cell replication. When mutations occur, they are most often associated with loss of function, but some mutations occur outside the coding region. The IF-mediated intestinal uptake of Cbl has been harnessed for use as a transporter for peptides, proteins and even nanoparticles. Nanoparticle (NP) technology has produced Cbl-coated NPs that can incorporate peptides (insulin, IgG) that can be absorbed orally to function as hormones and antibodies in rodent models, but these systems are not yet ready for clinical use.
Collapse
|
17
|
Kochut A, Dersch P. Bacterial invasion factors: tools for crossing biological barriers and drug delivery? Eur J Pharm Biopharm 2012. [PMID: 23207324 DOI: 10.1016/j.ejpb.2012.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral route is the preferential route of drug delivery in humans. However, effective delivery through the gastrointestinal tract is often hampered by the low permeability of the intestinal epithelium. One possibility to overcome this problem is the encapsulation of drugs inside nanoparticulate systems, containing targeting moieties with cell invasive properties. The bioinvasive features of the delivery system could be provided by the attachment of bacterial invasion factors, which promote efficient uptake into host cells and mediate rapid transcytosis of the pathogen through the intestinal epithelium. This review gives an overview of bacterial invasion systems. The molecular structure and function of suitable bacterial invasins, their relative values as targeting agents and possible pitfalls of their use are described. The potential of bioinvasive drug delivery systems is mainly presented on the basis of the well-characterized Yersinia invasin protein, which enters M cells to gain access to subepithelial layers of the gastrointestinal tract, but alternative approaches and future prospects for oral drug delivery are also discussed.
Collapse
Affiliation(s)
- Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
18
|
Clardy-James S, Chepurny OG, Leech CA, Holz GG, Doyle RP. Synthesis, characterization and pharmacodynamics of vitamin-B(12)-conjugated glucagon-like peptide-1. ChemMedChem 2012. [PMID: 23203941 DOI: 10.1002/cmdc.201200461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clearing the way: Glucagon-like peptide-1 (GLP-1) receptor agonists are proving a potent weapon in the treatment of type II diabetes. A new vitamin B(12)-GLP-1 conjugate is investigated and shown to have insulinotropic properties similar to the unmodified peptide. These results are critical to the exploitation of the vitamin B(12) oral uptake pathway for peptide delivery.
Collapse
Affiliation(s)
- Susan Clardy-James
- Department of Chemistry, Syracuse University, 111 College Place Syracuse, NY 13244, USA
| | | | | | | | | |
Collapse
|
19
|
Clardy-James S, Allis DG, Fairchild TJ, Doyle RP. Examining the effects of vitamin B12 conjugation on the biological activity of insulin: a molecular dynamic and in vivo oral uptake investigation. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20040f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|