1
|
Huo X, Xu X, Wang Q, Zhang J, Hylkema MN, Zeng Z. Associations of co-exposure to polycyclic aromatic hydrocarbons and lead (Pb) with IGF1 methylation in peripheral blood of preschool children from an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2024; 190:108833. [PMID: 38908275 DOI: 10.1016/j.envint.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) or lead (Pb) is associated with epigenetic modifications. However, the effects of their co-exposures on IGF1 (Insulin-like growth factor 1) methylation and the potential role in child physical growth are unclear. METHODS From our previous children study (N = 238, ages of 3-6), 75 children with higher total concentrations of urinary ten hydroxyl PAH metabolites (∑10OH-PAHs) from an e-waste recycling area, Guiyu, and 75 with lower ∑10OH-PAHs from Haojiang (reference area) were included. Pb and IGF1 P2 promoter methylation in peripheral blood were also measured. Multivariable linear regression analyses were performed to estimate individual associations, overall effects and interactions of co-exposure to OH-PAHs and Pb on IGF1 methylation were further explored using Bayesian kernel machine regression. RESULTS Methylation of IGF1 (CG-232) was lower (38.00 vs. 39.74 %, P < 0.001), but of CG-207 and CG-137 were higher (59.94 vs. 58.41 %; 57.60 vs. 56.28 %, both P < 0.05) in exposed children than the reference. The elevated urinary 2-OHPhe was associated with reduced methylation of CG-232 (B = -0.051, 95 % CI: -0.096, -0.005, P < 0.05), whereas blood Pb was positively associated with methylation of CG-108 (B = 0.106, 95 %CI: 0.013, 0.199, P < 0.05), even after full adjustment. Methylations of CG-224 and 218 significantly decreased when all OH-PAHs and Pb mixtures were set at 35th - 40th and 45th - 55th percentile compared to when all fixed at 50th percentile. There were bivariate interactions of co-exposure to the mixtures on methylations of CG-232, 224, 218, and 108. Methylations correlated with height, weight, were observed in the exposed children. CONCLUSIONS Childhood co-exposure to high PAHs and Pb from the e-waste may be associated with IGF1 promoter methylation alterations in peripheral blood. This, in turn, may interrupt the physical growth of preschool children.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| |
Collapse
|
2
|
Townsel C, Truax B, Quaid M, Covault J, Dolinoy DC, Goodrich JM. Increased risk of severe neonatal opioid withdrawal syndrome in pregnancies with low placental ABCB1 DNA methylation. J Perinatol 2024:10.1038/s41372-024-02060-9. [PMID: 39033231 PMCID: PMC11743817 DOI: 10.1038/s41372-024-02060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Neonatal opioid withdrawal syndrome (NOWS) is unpredictable. We assessed relationships between placental DNA methylation with in-utero opioid exposure and NOWS severity. METHODS Secondary analysis of a prospective multicenter cohort study of pregnancies on methadone or buprenorphine, ≥34 weeks, singleton, 18 or greater. Placental biopsies were collected. Placental DNA methylation levels of ABCG1, ABCG2, CYP19A1, and HSD11B2 were quantified via pyrosequencing following bisulfite conversion. CYP19A1 mRNA levels and umbilical cord drug levels were determined by RT-qPCR and LC-MS respectively. Severe NOWS was diagnosed through Finnegan scoring. P value < 0.05 was significant. RESULTS Thirty-eight dyads were included. Promoter region methylation for placental ABCB1 was lower in severe NOWS compared to non-severe NOWS (p = 0.04). Placental CYP19A1 methylation was inversely related to CYP19A1 mRNA levels and associated with umbilical cord norbuprenorphine levels (p < 0.01), but not umbilical cord methadone levels. DISCUSSION Lower placental ABCB1 methylation was associated with severe NOWS. Higher placental CYP19A1 methylation correlated with higher umbilical cord norbuprenorphine levels.
Collapse
Affiliation(s)
- Courtney Townsel
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, USA.
| | - Burnley Truax
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Margaret Quaid
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Covault
- Department of Psychiatry, University of Connecticut, Farmington, CT, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Aljahdali AA, Goodrich JM, Dolinoy DC, Kim HM, Ruiz-Narváez EA, Baylin A, Cantoral A, Torres-Olascoaga LA, Téllez-Rojo MM, Peterson KE. DNA Methylation Is a Potential Biomarker for Cardiometabolic Health in Mexican Children and Adolescents. EPIGENOMES 2023; 7:4. [PMID: 36810558 PMCID: PMC9944859 DOI: 10.3390/epigenomes7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [β = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = -0.018, p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.
Collapse
Affiliation(s)
- Abeer A. Aljahdali
- Department of Clinical Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Hyungjin M. Kim
- Center for Computing, Analytics and Research, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Cantoral
- Department of Health, Iberoamericana University, Mexico City 01219, Mexico
| | - Libni A. Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Colwell ML, Townsel C, Petroff RL, Goodrich JM, Dolinoy DC. Epigenetics and the Exposome: DNA Methylation as a Proxy for Health Impacts of Prenatal Environmental Exposures. EXPOSOME 2023; 3:osad001. [PMID: 37333730 PMCID: PMC10275510 DOI: 10.1093/exposome/osad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The accumulation of every day exposures can impact health across the life course, but our understanding of such exposures is impeded by our ability to delineate the relationship between an individual's early life exposome and later life health effects. Measuring the exposome is challenging. Exposure assessed at a given time point captures a snapshot of the exposome but does not represent the full spectrum of exposures across the life course. In addition, the assessment of early life exposures and their effects is often further challenged by lack of relevant samples and the time gap between exposures and related health outcomes in later life. Epigenetics, specifically DNA methylation, has the potential to overcome these barriers as environmental epigenetic perturbances can be retained through time. In this review, we describe how DNA methylation can be framed in the world of the exposome. We offer three compelling examples of common environmental exposures, including cigarette smoke, the endocrine active compound bisphenol A (BPA), and the metal lead (Pb), to illustrate the application of DNA methylation as a proxy to measure the exposome. We discuss areas for future explorations and current limitations of this approach. Epigenetic profiling is a promising and rapidly developing tool and field of study, offering us a unique and powerful way to assess the early life exposome and its effects across different life stages.
Collapse
Affiliation(s)
- Mathia L. Colwell
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Courtney Townsel
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Issah I, Arko-Mensah J, Rozek LS, Rentschler K, Agyekum TP, Dwumoh D, Batterman S, Robins TG, Fobil JN. Association between global DNA methylation (LINE-1) and occupational particulate matter exposure among informal electronic-waste recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2406-2424. [PMID: 34404291 DOI: 10.1080/09603123.2021.1969007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the associations between PM (2.5 and 10) and global DNA methylation among 100 e-waste workers and 51 non-e-waste workers serving as controls. Long interspersed nucleotide repetitive elements-1 (LINE-1) was measured by pyrosequencing. Personal PM2.5 and PM10 were measured over a 4-hour work-shift using real-time particulate monitors incorporated into a backpack . Linear regression models were used to assess the association between PM and LINE-1 DNA methylation. The concentrations of PM2.5 and PM10 were significantly higher among the e-waste workers than the controls (77.32 vs 34.88, p < 0.001 and 210.21 vs 121.92, p < 0.001, respectively). PM2.5 exposure was associated with increased LINE-1 CpG2 DNA methylation (β = 0.003; 95% CI; 0.001, 0.006; p = 0.022) but not with the average of all 4 CpG sites of LINE-1. In summary, high levels of PM2.5 exposure was associated with increased levels of global DNA methylation in a site-specific manner.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katie Rentschler
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwumoh
- Department of Biostatistics, University of Ghana School of Public Health, Legon, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
6
|
Issah I, Arko-Mensah J, Rozek LS, Zarins KR, Dwomoh D, Agyekum TP, Basu N, Batterman S, Robins TG, Fobil JN. Association between toxic and essential metals in blood and global DNA methylation among electronic waste workers in Agbogbloshie, Ghana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72946-72956. [PMID: 35614359 DOI: 10.1007/s11356-022-20954-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Aberrant global DNA methylation status is a known biomarker for increased disease risk, especially cancer. There is little published data on the association between toxic and essential metal mixtures and global DNA methylation in electronic waste (e-waste) workers. We aimed to establish the association between toxic and essential metals in blood and the effect of their interactions on global DNA methylation among e-waste recyclers and a reference group in Ghana. We used ICP-MS to measure the level of five metals (Se, Zn, Mn, Cd, and Pb) in the blood of 100 e-waste workers and 51 controls. We quantified blood DNA methylation levels of LINE-1 as an indicator of global DNA methylation. Cd, Mn, and Se levels were significantly higher in the reference group than in e-waste workers. Only Pb was significantly higher in the e-waste workers compared to the controls. Our linear regression analysis results showed a significant inverse association between Zn and LINE-1 DNA methylation (βZn = - 0.912; 95% CI, - 1.512, - 0.306; p = 0.003) which corresponds to a 0.009 decrease in %LINE-1 methylation (95% CI, - 0.015, - 0.003; p = 0.003) for a 1% increase in Zn concentration. Potential interactions between Cd and Zn on global DNA methylation were observed. In summary, co-exposure to toxic and essential metals is associated with global (LINE-1) DNA methylation.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures. TOXICS 2022; 10:toxics10040157. [PMID: 35448418 PMCID: PMC9027623 DOI: 10.3390/toxics10040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb.
Collapse
|
10
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
11
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Childebayeva A, Goodrich JM, Chesterman N, Leon-Velarde F, Rivera-Ch M, Kiyamu M, Brutsaert TD, Bigham AW, Dolinoy DC. Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. ENVIRONMENT INTERNATIONAL 2021; 155:106587. [PMID: 33940396 PMCID: PMC9903334 DOI: 10.1016/j.envint.2021.106587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan Chesterman
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Ch
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR, Solano-González M, Hu H, Tellez-Rojo MM, Schnaas L, Marcela E, Peterson KE, Goodrich JM. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab005. [PMID: 34141453 PMCID: PMC8206046 DOI: 10.1093/eep/dvab005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 05/08/2023]
Abstract
Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity. This longitudinal study investigated the associations between trimester-specific (T1, T2, and T3) maternal blood Pb concentrations, gene-specific DNAm in umbilical cord blood, and infant neurodevelopmental outcomes at 12 and 24 months of age (mental development index, psychomotor development index, and behavioral rating scale of orientation/engagement and emotional regulation) among 85 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. In the mediation analysis for this pilot study, P < 0.1 was considered significant. DNAm at a locus in CCSER1 (probe ID cg02901723) mediated the association between T2 Pb on 24-month orientation/engagement [indirect effect estimate 4.44, 95% confidence interval (-0.09, 10.68), P = 0.06] and emotional regulation [3.62 (-0.05, 8.69), P = 0.05]. Cg18515027 (GCNT1) DNAm mediated the association of T1 Pb [-4.94 (-10.6, -0.77), P = 0.01] and T2 Pb [-3.52 (-8.09, -0.36), P = 0.02] with 24-month EMOCI, but there was a positive indirect effect estimate between T2 Pb and 24-month psychomotor development index [1.25 (-0.11, 3.32), P = 0.09]. The indirect effect was significant for cg19703494 (TRAPPC6A) DNAm in the association between T2 Pb and 24-month mental development index [1.54 (0, 3.87), P = 0.05]. There was also an indirect effect of cg23280166 (VPS11) DNAm on T3 Pb and 24-month EMOCI [2.43 (-0.16, 6.38), P = 0.08]. These associations provide preliminary evidence for gene-specific DNAm as mediators between prenatal Pb and adverse cognitive outcomes in offspring.
Collapse
Affiliation(s)
- Christine A Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Max T Aung
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 490 Illinois Street, San Francisco, CA 94143, USA
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, 12474 East 19th Avenue, Aurora, CO 80045, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90033, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Lourdes Schnaas
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Erika Marcela
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Karen E Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Rygiel CA, Goodrich JM, Solano-González M, Mercado-García A, Hu H, Téllez-Rojo MM, Peterson KE, Dolinoy DC. Prenatal Lead (Pb) Exposure and Peripheral Blood DNA Methylation (5mC) and Hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67002. [PMID: 34152198 PMCID: PMC8216410 DOI: 10.1289/ehp8507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gestational lead (Pb) exposure can adversely affect offspring health through multiple mechanisms, including epigenomic alterations via DNA methylation (5mC) and hydroxymethylation (5hmC), an intermediate in oxidative demethylation. Most current methods do not distinguish between 5mC and 5hmC, limiting insights into their individual roles. OBJECTIVE Our study sought to identify the association of trimester-specific (T1, T2, T3) prenatal Pb exposure with 5mC and 5hmC levels at multiple cytosine-phosphate-guanine sites within gene regions previously associated with prenatal Pb (HCN2, NINJ2, RAB5A, TPPP) in whole blood leukocytes of children ages 11-18 years of age. METHODS Participants from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohorts were selected (n=144) for pyrosequencing analysis following oxidative or standard sodium bisulfite treatment. This workflow directly quantifies total methylation (5mC+5hmC) and 5mC only; 5hmC is estimated by subtraction. RESULTS Participants were 51% male, and mean maternal blood lead levels (BLL) were 6.43±5.16μg/dL in Trimester 1 (T1), 5.66±5.21μg/dL in Trimester 2 (T2), and 5.86±4.34μg/dL in Trimester 3 (T3). In addition, 5hmC levels were calculated for HCN2 (mean±standard deviation(SD), 2.08±4.18%), NINJ2 (G/C: 2.01±5.95; GG: 0.90±3.97), RAB5A (0.66±0.80%), and TPPP (1.11±6.67%). Furthermore, 5mC levels were measured in HCN2 (81.3±9.63%), NINJ2 (heterozygotes: 38.6±7.39%; GG homozygotes: 67.3±9.83%), RAB5A (1.41±1.21%), and TPPP (92.5±8.03%). Several significant associations between BLLs and 5mC/5hmC were identified: T1 BLLs with 5mC in HCN2 (β=-0.37, p=0.03) and 5hmC in NINJ2 (β=0.49, p=0.003); T2 BLLs with 5mC in HCN2 (β=0.37, p=0.03) and 5hmC in NINJ2 (β=0.27, p=0.008); and T3 BLLs with 5mC in HCN2 (β=0.50, p=0.01) and NINJ2 (β=-0.35, p=0.004) and 5hmC in NINJ2 (β=0.45, p<0.001). NINJ2 5mC was negatively correlated with gene expression (Pearson r=-0.5, p-value=0.005), whereas 5hmC was positively correlated (r=0.4, p-value=0.04). DISCUSSION These findings suggest there is variable 5hmC in human whole blood and that prenatal Pb exposure is associated with gene-specific 5mC and 5hmC levels at adolescence, providing evidence to consider 5hmC as a regulatory mechanism that is responsive to environmental exposures. https://doi.org/10.1289/EHP8507.
Collapse
Affiliation(s)
- Christine A. Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Karen E. Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Devóz PP, Reis MBD, Gomes WR, Maraslis FT, Ribeiro DL, Antunes LMG, Batista BL, Grotto D, Reis RM, Barbosa F, Barcelos GRM. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. CHEMOSPHERE 2021; 269:128758. [PMID: 33143897 DOI: 10.1016/j.chemosphere.2020.128758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
It is well known that one of the most outstanding adverse effects related to lead (Pb) exposure is oxidative stress; moreover, recent findings suggest that disturbances of the redox status of cells are associated with epigenetic responses, and metabolism of glutathione (GSH) plays an important role in this process. This study aimed to assess Pb exposure on % methylation of GSH-related genes' promoter regions (%CH3-CpG) and their influence on biomarkers of oxidative stress, in workers exposed to the metal. One hundred nine male workers participated in the study; ICP-MS determined blood lead levels (BLL); biochemical parameters related to redox status, named GSH, glutathione peroxidase (GPX) and glutathione-S-transferase (GST) were quantified by UV/Vis spectrophotometry. Determination of %CH3-CpG of genes GCLC, GPX1, GSR, and GSTP1 were done by pyrosequencing. Inverse associations were seen between BLL and %CH3-CpG-GCLC, and %CH3-CpG-GSTP1. Moreover, metal exposure did not impact GSH, GPX, and GST; however, negative associations were observed between %CH3-CpG-GPX1 and %CH3-CpG-GSTP1, and the activities of GPX and GST, respectively. Taken together, our results give further evidence about adaptive epigenetic response to avoid oxidative damage induced by Pb exposure, allowing a better understanding of the molecular mechanisms related to the metal toxicity.
Collapse
Affiliation(s)
- Paula Pícoli Devóz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Mariana Bisarro Dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela 1331, CEP 14784-400, Barretos, SP, Brazil
| | - Willian Robert Gomes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Avenida Ana Costa 95, CEP 11060-001, Santos, SP, Brazil
| | - Diego Luis Ribeiro
- Departament of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Denise Grotto
- University of Sorocaba, Rodovia Raposo Tavares km 92.5, CEP 18023-000, Sorocaba, SP, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela 1331, CEP 14784-400, Barretos, SP, Brazil; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Gualtar Campus, 4710-057, Braga, Portugal
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Avenida Ana Costa 95, CEP 11060-001, Santos, SP, Brazil.
| |
Collapse
|
16
|
Yang W, Guo Y, Ni W, Tian T, Jin L, Liu J, Li Z, Ren A, Wang L. Hypermethylation of WNT3A gene and non-syndromic cleft lip and/or palate in association with in utero exposure to lead: A mediation analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111415. [PMID: 33091767 DOI: 10.1016/j.ecoenv.2020.111415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES We aim to investigate association between WNT3A methylation and risk of non-syndromic cleft lip and/or palate (NSCL/P), and examine mediating effect of WNT3A methylation on the association of NSCL/P and lead (Pb) exposure in fetuses. METHODS DNA methylation of WNT3A in umbilical cord blood was determined among 59 NSCL/P cases and 118 non-malformed controls. Mediation analysis was performed to evaluate the potential mediating effect of WNT3A methylation on association between concentrations of Pb in umbilical cord and risk for NSCL/P. Additionally, an animal experiment in which cleft palates were induced by lead acetate was conducted. RESULTS The overall average methylation level of WNT3A was significant higher in NSCL/P cases as compared to controls. The risk for NSCL/P was increased by 1.90-fold with hypermethylation of WNT3A. Significant correlation was observed between concentrations of Pb in umbilical cord and methylation level of WNT3A. The hypermethylation of WNT3A had a mediating effect by 9.32% of total effect of Pb on NSCL/P risk. Gender-specific association between WNT3A methylation and NSCL/P was observed in male fetuses, and the percentage of the mediating effect increased to 14.28%. Animal experiment of mice showed that maternal oral exposure to lead acetate may result in cleft palate in offspring. CONCLUSION Hypermethylation of WNT3A was associated with the risk for NSCL/P and may be partly explain the association between exposure to Pb and risk for NSCL/P. The teratogenic and fetotoxic effects of Pb were found in mice.
Collapse
Affiliation(s)
- Wenlei Yang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Wenli Ni
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
17
|
Early Life Exposure to Aflatoxin B1 in Rats: Alterations in Lipids, Hormones, and DNA Methylation among the Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020589. [PMID: 33445757 PMCID: PMC7828191 DOI: 10.3390/ijerph18020589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/30/2023]
Abstract
Aflatoxins are toxic compounds produced by molds of the Aspergillus species that contaminate food primarily in tropical countries. The most toxic aflatoxin, aflatoxin B1 (AFB1), is a major cause of hepatocellular carcinoma (HCC) in these countries. In sub-Saharan Africa, aflatoxin contamination is common, and perinatal AFB1 exposure has been linked to the early onset of HCC. Epigenetic programming, including changes to DNA methylation, is one mechanism by which early life exposures can lead to adult disease. This study aims to elucidate whether perinatal AFB1 exposure alters markers of offspring health including weight, lipid, and hormone profiles as well as epigenetic regulation that may later influence cancer risk. Pregnant rats were exposed to two doses of AFB1 (low 0.5 and high 5 mg/kg) before conception, throughout pregnancy, and while weaning and compared to an unexposed group. Offspring from each group were followed to 3 weeks or 3 months of age, and their blood and liver samples were collected. Body weights and lipids were assessed at 3 weeks and 3 months while reproductive, gonadotropic, and thyroid hormones were assessed at 3 months. Prenatal AFB1 (high dose) exposure resulted in significant 16.3%, 31.6%, and 7.5% decreases in weight of the offspring at birth, 3 weeks, and 3 months, respectively. Both doses of exposure altered lipid and hormone profiles. Pyrosequencing was used to quantify percent DNA methylation at tumor suppressor gene Tp53 and growth-regulator H19 in DNA from liver and blood. Results were compared between the control and AFB1 exposure groups in 3-week liver samples and 3-week and 3-month blood samples. Relative to controls, Tp53 DNA methylation in both low- and high-dose exposed rats was significantly decreased in liver samples and increased in the blood (p < 0.05 in linear mixed models). H19 methylation was higher in the liver from low- and high-exposed rats and decreased in 3-month blood samples from the high exposure group (p < 0.05). Further research is warranted to determine whether such hormone, lipid, and epigenetic alterations from AFB1 exposure early in life play a role in the development of early-onset HCC.
Collapse
|
18
|
Goodrich JM, Hector EC, Tang L, LaBarre JL, Dolinoy DC, Mercado-Garcia A, Cantoral A, Song PX, Téllez-Rojo MM, Peterson KE. Integrative Analysis of Gene-Specific DNA Methylation and Untargeted Metabolomics Data from the ELEMENT Cohort. Epigenet Insights 2020; 13:2516865720977888. [PMID: 33354655 PMCID: PMC7734565 DOI: 10.1177/2516865720977888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation, influence gene expression and cardiometabolic phenotypes that are manifest in developmental periods in later life, including adolescence. Untargeted metabolomics analysis provide a comprehensive snapshot of physiological processes and metabolism and have been related to DNA methylation in adults, offering insights into the regulatory networks that influence cellular processes. We analyzed the cross-sectional correlation of blood leukocyte DNA methylation with 3758 serum metabolite features (574 of which are identifiable) in 238 children (ages 8-14 years) from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study. Associations between these features and percent DNA methylation in adolescent blood leukocytes at LINE-1 repetitive elements and genes that regulate early life growth (IGF2, H19, HSD11B2) were assessed by mixed effects models, adjusting for sex, age, and puberty status. After false discovery rate correction (FDR q < 0.05), 76 metabolites were significantly associated with LINE-1 DNA methylation, 27 with HSD11B2, 103 with H19, and 4 with IGF2. The ten identifiable metabolites included dicarboxylic fatty acids (five associated with LINE-1 or H19 methylation at q < 0.05) and 1-octadecanoyl-rac-glycerol (q < 0.0001 for association with H19 and q = 0.04 for association with LINE-1). We then assessed the association between these ten known metabolites and adiposity 3 years later. Two metabolites, dicarboxylic fatty acid 17:3 and 5-oxo-7-octenoic acid, were inversely associated with measures of adiposity (P < .05) assessed approximately 3 years later in adolescence. In stratified analyses, sex-specific and puberty-stage specific (Tanner stage = 2 to 5 vs Tanner stage = 1) associations were observed. Most notably, hundreds of statistically significant associations were observed between H19 and LINE-1 DNA methylation and metabolites among children who had initiated puberty. Understanding relationships between subclinical molecular biomarkers (DNA methylation and metabolites) may increase our understanding of genes and biological pathways contributing to metabolic changes that underlie the development of adiposity during adolescence.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Emily C Hector
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Statistics, North Carolina State University, USA
| | - Lu Tang
- Deptartment of Biostatistics, University of Pittsburgh, USA
| | - Jennifer L LaBarre
- Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Peter Xk Song
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Karen E Peterson
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Neonatal Lead (Pb) Exposure and DNA Methylation Profiles in Dried Bloodspots. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186775. [PMID: 32957503 PMCID: PMC7559513 DOI: 10.3390/ijerph17186775] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) exposure remains a major concern in the United States (US) and around the world, even following the removal of Pb from gasoline and other products. Environmental Pb exposures from aging infrastructure and housing stock are of particular concern to pregnant women, children, and other vulnerable populations. Exposures during sensitive periods of development are known to influence epigenetic modifications which are thought to be one mechanism of the Developmental Origins of Health and Disease (DOHaD) paradigm. To gain insights into early life Pb exposure-induced health risks, we leveraged neonatal dried bloodspots in a cohort of children from Michigan, US to examine associations between blood Pb levels and concomitant DNA methylation profiles (n = 96). DNA methylation analysis was conducted via the Infinium MethylationEPIC array and Pb levels were assessed via high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). While at-birth Pb exposure levels were relatively low (average 0.78 µg/dL, maximum of 5.27 ug/dL), we identified associations between DNA methylation and Pb at 33 CpG sites, with the majority (82%) exhibiting reduced methylation with increasing Pb exposure (q < 0.2). Biological pathways related to development and neurological function were enriched amongst top differentially methylated genes by p-value. In addition to increases/decreases in methylation, we also demonstrate that Pb exposure is related to increased variability in DNA methylation at 16 CpG sites. More work is needed to assess the accuracy and precision of metals assessment using bloodspots, but this study highlights the utility of this unique resource to enhance environmental epigenetics research around the world.
Collapse
|
20
|
Rygiel CA, Dolinoy DC, Perng W, Jones TR, Solano M, Hu H, Téllez-Rojo MM, Peterson KE, Goodrich JM. Trimester-Specific Associations of Prenatal Lead Exposure With Infant Cord Blood DNA Methylation at Birth. Epigenet Insights 2020; 13:2516865720938669. [PMID: 32734142 PMCID: PMC7372614 DOI: 10.1177/2516865720938669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Gestational exposure to lead (Pb) adversely impacts offspring health through multiple mechanisms, one of which is the alteration of the epigenome including DNA methylation. This study aims to identify differentially methylated CpG sites associated with trimester-specific maternal Pb exposure in umbilical cord blood (UCB) leukocytes. Eighty-nine mother-child dyads from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) longitudinal birth cohorts with available UCB samples were selected for DNA methylation analysis via the Infinium Methylation EPIC BeadChip, which quantifies methylation at >850 000 CpG sites. Maternal blood lead levels (BLLs) during each trimester (T1: 6.56 ± 5.35 µg/dL; T2: 5.93 ± 5.00 µg/dL; T3: 6.09 ± 4.51 µg/dL), bone Pb (patella: 11.8 ± 9.25 µg/g; tibia: 11.8 ± 6.73 µg/g), a measure of cumulative Pb exposure, and UCB Pb (4.86 ± 3.74 µg/dL) were measured. After quality control screening, data from 786 024 CpG sites were used to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) by Pb biomarkers using separate linear regression models, controlling for sex and estimated UCB cell-type proportions. We identified 3 DMPs associated with maternal T1 BLL, 2 with T3 BLL, and 2 with tibia bone Pb. We identified one DMR within PDGFRL associated with T1 BLL, one located at chr6:30095136-30095295 with T3 BLL, and one within TRHR with tibia bone Pb (adjusted P-value < .05). Pathway analysis identified 15 overrepresented gene pathways for differential methylation that overlapped among all 3 trimesters with the largest overlap between T1 and T2 (adjusted P-value < .05). Pathways of interest include nodal signaling pathway and neurological system processes. These data provide evidence for differential methylation by prenatal Pb exposure that may be trimester-specific.
Collapse
Affiliation(s)
- Christine A Rygiel
- Department of Environmental Health
Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health
Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences,
University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Perng
- Department of Epidemiology, University
of Colorado School of Public Health, Denver, CO, USA
| | - Tamara R Jones
- Department of Environmental Health
Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Howard Hu
- Department of Environmental and
Occupational Health Sciences, University of Washington School of Public Health,
Seattle, WA, USA
| | | | - Karen E Peterson
- Department of Environmental Health
Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences,
University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health
Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
22
|
Jansen EC, Dolinoy DC, O’Brien LM, Peterson KE, Chervin RD, Banker M, Téllez-Rojo MM, Cantoral A, Mercado-Garcia A, Sanchez B, Goodrich JM. Sleep duration and fragmentation in relation to leukocyte DNA methylation in adolescents. Sleep 2019; 42:zsz121. [PMID: 31181146 PMCID: PMC7255500 DOI: 10.1093/sleep/zsz121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation and low sleep quality are widespread among adolescents, and associate with obesity risk. Plausible mediators include diet and physical activity. Another potential interrelated pathway, as yet unexplored in adolescents, could involve epigenetic modification of metabolism genes. METHODS In a cohort of 351 Mexico City adolescents (47% male; mean [SD] age = 14 [2] years), 7-day actigraphy was used to assess average sleep duration, sleep fragmentation, and movement index. DNA isolated from blood leukocytes was bisulfite-converted, amplified, and pyrosequenced at four candidate regions. Linear mixed models evaluated sex-stratified associations between sleep characteristics (split into quartiles [Q]) and DNA methylation of each region, adjusted for potential confounders. RESULTS Mean sleep duration was 8.5 [0.8] hours for boys and 8.7 [1] hours for girls. There were sex-specific associations between sleep duration and LINE-1 (long interspersed nuclear element) methylation. Boys with longer sleep duration (Q4) had lower LINE-1 methylation than boys in the 3rd quartile reference category, while girls with both longer and shorter sleep duration had higher LINE-1 methylation compared to Q3. Longer sleep duration was associated with higher H19 methylation among girls (comparing highest to third quartile, -0.9% [-2.2, 0.5]; p, trend = 0.047). Sleep fragmentation was inversely associated with peroxisome proliferator-activated receptor alpha (PPARA) methylation among girls (comparing highest to lowest fragmentation quartile, 0.9% [0.1 to 1.8]). Girls also showed an inverse association between sleep fragmentation and hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2; Q4 to Q1, 0.6% [-1.2%, 0%]). CONCLUSIONS Sleep duration and fragmentation in adolescents show sex-specific associations with leukocyte DNA methylation patterns of metabolism genes.
Collapse
Affiliation(s)
- Erica C Jansen
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Louise M O’Brien
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ronald D Chervin
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Margaret Banker
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Brisa Sanchez
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| |
Collapse
|
23
|
Mani MS, Kabekkodu SP, Joshi MB, Dsouza HS. Ecogenetics of lead toxicity and its influence on risk assessment. Hum Exp Toxicol 2019; 38:1031-1059. [PMID: 31117811 DOI: 10.1177/0960327119851253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Lead (Pb) toxicity is a public health problem affecting millions worldwide. Advances in 'omic' technology have paved the way to toxico-genomics which is currently revolutionizing the understanding of interindividual variations in susceptibility to Pb toxicity and its functional consequences to exposure. Our objective was to identify, comprehensively analyze, and curate all the potential genetic and epigenetic biomarkers studied to date in relation to Pb toxicity and its association with diseases. We screened a volume of research articles that focused on Pb toxicity and its association with genetic and epigenetic signatures in the perspective of occupational and environmental Pb exposure. Due to wide variations in population size, ethnicity, age-groups, and source of exposure in different studies, researchers continue to be skeptical on the topic of the influence of genetic variations in Pb toxicity. However, surface knowledge of the underlying genetic factors will aid in elucidating the mechanism of action of Pb. Moreover, in recent years, the application of epigenetics in Pb toxicity has become a promising area in toxicology to understand the influence of epigenetic mechanisms such as DNA methylation, chromatin remodeling, and small RNAs for the regulation of genes in response to Pb exposure during early life. Growing evidences of ecogenetic understanding (both genetic and epigenetic processes) in a dose-dependent manner may help uncover the mechanism of action of Pb and in the identification of susceptible groups. Such studies will further help in refining uncertainty factors and in addressing risk assessment of Pb poisoning.
Collapse
Affiliation(s)
- M S Mani
- 1 Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S P Kabekkodu
- 2 Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M B Joshi
- 3 Department of Ageing, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H S Dsouza
- 1 Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Montes-Castro N, Alvarado-Cruz I, Torres-Sánchez L, García-Aguiar I, Barrera-Hernández A, Escamilla-Núñez C, Del Razo LM, Quintanilla-Vega B. Prenatal exposure to metals modified DNA methylation and the expression of antioxidant- and DNA defense-related genes in newborns in an urban area. J Trace Elem Med Biol 2019; 55:110-120. [PMID: 31345348 DOI: 10.1016/j.jtemb.2019.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
The developmental period in utero is a critical window for environmental exposure. Epigenetic fetal programming via DNA methylation is a pathway through which metal exposure influences the risk of developing diseases later in life. Genetic damage repair can be modified by alterations in DNA methylation, which, in turn, may modulate gene expression due to metal exposure. We investigated the impact of prenatal metal exposure on global and gene-specific DNA methylation and mRNA expression in 181 umbilical cord blood samples from newborns in Mexico City. Global (LINE1) and promoter methylation of DNA-repair (OGG1 and PARP1) and antioxidant (Nrf2) genes was evaluated by pyrosequencing. Prenatal metal exposure (As, Cu, Hg, Mn, Mo, Pb, Se, and Zn) was determined by ICP-MS analysis of maternal urine samples. Multiple regression analyses revealed that DNA methylation of LINE1, Nrf2, OGG1, and PARP1 was associated with potentially toxic (As, Hg, Mn, Mo, and Pb) and essential (Cu, Se, and Zn) elements, and with their interactions. We also evaluated the association between gene expression (mRNA levels quantified by p-PCR) and DNA methylation. An increase in OGG1 methylation at all sites and at CpG2, CpG3, and CpG4 sites was associated with reduced mRNA levels; likewise, methylation at the CpG5, CpG8, and CpG11 sites of PARP1 was associated with reduced mRNA expression. In contrast, methylation at the PARP1 CpG7 site was positively associated with its mRNA levels. No associations between Nrf2 expression and CpG site methylation were observed. Our data suggest that DNA methylation can be influenced by prenatal metal exposure, which may contribute to alterations in the expression of repair genes, and therefore, result in a lower capacity for DNA damage repair in newborns.
Collapse
Affiliation(s)
- N Montes-Castro
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - I Alvarado-Cruz
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - L Torres-Sánchez
- National Institute of Public Health-INSP, Ave. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - I García-Aguiar
- Department of Molecular Biomedicine, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - A Barrera-Hernández
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - C Escamilla-Núñez
- National Institute of Public Health-INSP, Ave. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - L M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - B Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
25
|
Perng W, Tamayo-Ortiz M, Tang L, Sánchez BN, Cantoral A, Meeker JD, Dolinoy DC, Roberts EF, Martinez-Mier EA, Lamadrid-Figueroa H, Song PXK, Ettinger AS, Wright R, Arora M, Schnaas L, Watkins DJ, Goodrich JM, Garcia RC, Solano-Gonzalez M, Bautista-Arredondo LF, Mercado-Garcia A, Hu H, Hernandez-Avila M, Tellez-Rojo MM, Peterson KE. Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open 2019; 9:e030427. [PMID: 31455712 PMCID: PMC6720157 DOI: 10.1136/bmjopen-2019-030427] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project is a mother-child pregnancy and birth cohort originally initiated in the mid-1990s to explore: (1) whether enhanced mobilisation of lead from maternal bone stores during pregnancy poses a risk to fetal and subsequent offspring neurodevelopment; and (2) whether maternal calcium supplementation during pregnancy and lactation can suppress bone lead mobilisation and mitigate the adverse effects of lead exposure on offspring health and development. Through utilisation of carefully archived biospecimens to measure other prenatal exposures, banking of DNA and rigorous measurement of a diverse array of outcomes, ELEMENT has since evolved into a major resource for research on early life exposures and developmental outcomes. PARTICIPANTS n=1643 mother-child pairs sequentially recruited (between 1994 and 2003) during pregnancy or at delivery from maternity hospitals in Mexico City, Mexico. FINDINGS TO DATE Maternal bone (eg, patella, tibia) is an endogenous source for fetal lead exposure due to mobilisation of stored lead into circulation during pregnancy and lactation, leading to increased risk of miscarriage, low birth weight and smaller head circumference, and transfer of lead into breastmilk. Daily supplementation with 1200 mg of elemental calcium during pregnancy and lactation reduces lead resorption from maternal bone and thereby, levels of circulating lead. Beyond perinatal outcomes, early life exposure to lead is associated with neurocognitive deficits, behavioural disorders, higher blood pressure and lower weight in offspring during childhood. Some of these relationships were modified by dietary factors; genetic polymorphisms specific for iron, folate and lipid metabolism; and timing of exposure. Research has also expanded to include findings published on other toxicants such as those associated with personal care products and plastics (eg, phthalates, bisphenol A), other metals (eg, mercury, manganese, cadmium), pesticides (organophosphates) and fluoride; other biomarkers (eg, toxicant levels in plasma, hair and teeth); other outcomes (eg, sexual maturation, metabolic syndrome, dental caries); and identification of novel mechanisms via epigenetic and metabolomics profiling. FUTURE PLANS As the ELEMENT mothers and children age, we plan to (1) continue studying the long-term consequences of toxicant exposure during the perinatal period on adolescent and young adult outcomes as well as outcomes related to the original ELEMENT mothers, such as their metabolic and bone health during perimenopause; and (2) follow the third generation of participants (children of the children) to study intergenerational effects of in utero exposures. TRIAL REGISTRATION NUMBER NCT00558623.
Collapse
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado, USA
| | - Marcela Tamayo-Ortiz
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - Lu Tang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alejandra Cantoral
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth F Roberts
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Esperanza Angeles Martinez-Mier
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | | | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Adrienne S Ettinger
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Robert Wright
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Manish Arora
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Lourdes Schnaas
- Division of Research in Community Interventions, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Robin C Garcia
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Howard Hu
- Department of Environmental and Occupational Health, University of Washington School of Public Health, Seattle, Washington, USA
| | - Mauricio Hernandez-Avila
- Dirección de Prestaciones Económicas y Sociales, Mexican Institute of Social Security, Mexico City, Mexico
| | - Martha Maria Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Wu Y, Peterson KE, Sánchez BN, Dolinoy DC, Mercado-Garcia A, Téllez-Rojo MM, Goodrich JM. Association of blood leukocyte DNA methylation at LINE-1 and growth-related candidate genes with pubertal onset and progression. Epigenetics 2018; 13:1222-1233. [PMID: 30582410 PMCID: PMC6986794 DOI: 10.1080/15592294.2018.1556198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023] Open
Abstract
Puberty is a developmentally plastic phase. Variations in pubertal tempo have implications for the risk of later adult diseases. Influences on pubertal tempo have been widely discussed, but the underlying biological mechanisms remain unclear. Epigenetic modifications are known to regulate development processes; they could play an important role in affecting pubertal outcomes. We conducted a population-based analysis to investigate the association of peripubertal blood DNA methylation at LINE-1 and growth-related candidate genes with pubertal onset and progression in healthy adolescents. The analytic sample included 114 males and 129 females aged 10 to 18 years. DNA methylation at growth-related candidate loci IGF2, H19, HSD11B2, as well as LINE-1 repetitive elements were quantified. Cox survival and ordinal regression models were used to examine sex- and locus-specific associations of epigenetic markers with pubertal development using physician-assessed Tanner stages and self-reported menarche, adjusted for covariates. Among boys, DNA methylation at H19 was associated with later pubarche. HSD11B2 methylation was associated with earlier onset of pubic hair and genitalia development and slower pubertal progression. IGF2 was associated with later onset of genital development. Among girls, LINE-1 methylation was associated with later onset of breast development. For each percent increase of methylation at H19, there was 5% increased odds in the earlier onset of breast development. DNA methylation of IGF2 was associated with earlier onset of pubic hair. DNA methylation at genes known to influence early-life growth may also influence pubertal outcomes.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Brisa N. Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Martha M. Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
28
|
House JS, Mendez M, Maguire RL, Gonzalez-Nahm S, Huang Z, Daniels J, Murphy SK, Fuemmeler BF, Wright FA, Hoyo C. Periconceptional Maternal Mediterranean Diet Is Associated With Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes. Front Cell Dev Biol 2018; 6:107. [PMID: 30246009 PMCID: PMC6137242 DOI: 10.3389/fcell.2018.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Maternal diet during pregnancy has been shown to influence the child neuro-developmental outcomes. Studies examining effects of dietary patterns on offspring behavior are sparse. Objective: Determine if maternal adherence to a Mediterranean diet is associated with child behavioral outcomes assessed early in life, and to evaluate the role of differentially methylated regions (DMRs) regulating genomically imprinted genes in these associations. Methods: Among 325 mother/infant pairs, we used regression models to evaluate the association between tertiles of maternal periconceptional Mediterranean diet adherence (MDA) scores derived from a Food Frequency Questionnaire, and social and emotional scores derived from the Infant Toddler Social and Emotional Assessment (ITSEA) questionnaire in the second year of life. Methylation of nine genomically imprinted genes was measured to determine if MDA was associated with CpG methylation. Results: Child depression was inversely associated with maternal MDA (Bonferroni-corrected p = 0.041). While controlling for false-discovery, compared to offspring of women with the lowest MDA tertile, those with MDA scores in middle and high MDA tertiles had decreased odds for atypical behaviors [OR (95% CI) = 0.40 (0.20, 0.78) for middle and 0.40 (0.17, 0.92) for highest tertile], for maladaptive behaviors [0.37 (0.18, 0.72) for middle tertile and 0.42 (0.18, 0.95) for highest tertile] and for an index of autism spectrum disorder behaviors [0.46 (0.23, 0.90) for middle and 0.35 (0.15, 0.80) for highest tertile]. Offspring of women with the highest MDA tertile were less likely to exhibit depressive [OR = 0.28 (0.12, 0.64)] and anxiety [0.42 (0.18, 0.97)] behaviors and increased odds of social relatedness [2.31 (1.04, 5.19)] behaviors when compared to low MDA mothers. Some associations varied by sex. Perinatal MDA score was associated with methylation differences for imprinted control regions of PEG10/SGCE [females: Beta (95% CI) = 1.66 (0.52, 2.80) - Bonferroni-corrected p = 0.048; males: -0.56 (-1.13, -0.00)], as well as both MEG3 and IGF2 in males [0.97 (0.00, 1.94)] and -0.92 (-1.65, -0.19) respectively. Conclusion: In this ethnically diverse cohort, maternal adherence to a Mediterranean diet in early pregnancy was associated with favorable neurobehavioral outcomes in early childhood and with sex-dependent methylation differences of MEG3, IGF2, and SGCE/PEG10 DMRs.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Michelle Mendez
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel L Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah Gonzalez-Nahm
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Julie Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Bernard F Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, United States
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Statistics, North Carolina State University, Raleigh, NC, United States
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
29
|
Tindula G, Murphy SK, Grenier C, Huang Z, Huen K, Escudero-Fung M, Bradman A, Eskenazi B, Hoyo C, Holland N. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. Epigenomics 2018; 10:1011-1026. [PMID: 29957030 PMCID: PMC6088267 DOI: 10.2217/epi-2017-0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
AIM Imprinted genes exhibit expression in a parent-of-origin-dependent manner and are critical for child development. Recent limited evidence suggests that prenatal exposure to phthalates, ubiquitous endocrine disruptors, can affect their epigenetic dysregulation. MATERIALS & METHODS We quantified DNA methylation of nine imprinted gene differentially methylated regions by pyrosequencing in 296 cord blood DNA samples in a Mexican-American cohort. Fetal exposure was estimated by phthalate metabolite concentrations in maternal urine samples during pregnancy. RESULTS Several differentially methylated regions of imprinted genes were associated with high molecular weight phthalates. The most consistent, positive, and false discovery rate significant associations were observed for MEG3. CONCLUSION Phthalate exposure in utero may affect methylation status of imprinted genes in newborn children.
Collapse
Affiliation(s)
- Gwen Tindula
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Susan K Murphy
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Carole Grenier
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Zhiqing Huang
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Karen Huen
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Asa Bradman
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cathrine Hoyo
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University (NCSU), Raleigh, NC 27606, USA
| | - Nina Holland
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
The Influence of Metabolic Syndrome and Sex on the DNA Methylome in Schizophrenia. Int J Genomics 2018; 2018:8076397. [PMID: 29850476 PMCID: PMC5903198 DOI: 10.1155/2018/8076397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on atypical antipsychotics. Methods Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses. Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing. Results A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall sample. Additionally, differential methylation was found within the MAP3K13 gene in females and the CCDC8 gene within males. Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation sample set. Conclusions This study provides preliminary evidence that DNA methylation may be associated with metabolic syndrome and sex in schizophrenia.
Collapse
|
31
|
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 2018; 113:125-133. [DOI: 10.1016/j.fct.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
32
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
33
|
Montrose L, Faulk C, Francis J, Dolinoy D. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:540-550. [PMID: 28833526 PMCID: PMC5784428 DOI: 10.1002/em.22119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 05/17/2023]
Abstract
Epidemiological and animal data suggest that adult chronic disease is influenced by early-life exposure-induced changes to the epigenome. Previously, we observed that perinatal lead (Pb) exposure results in persistent murine metabolic- and activity-related effects. Using phylogenetic and DNA methylation analysis, we have also identified novel intracisternal A particle (IAP) retrotransposons exhibiting regions of variable methylation as candidate loci for environmental effects on the epigenome. Here, we now evaluate brain and kidney DNA methylation profiles of four representative IAPs in adult mice exposed to human physiologically relevant levels of Pb two weeks prior to mating through lactation. When IAPs across the genome were evaluated globally, average (sd) methylation levels were 92.84% (3.74) differing by tissue (P < 0.001), but not sex or dose. By contrast, the four individual IAPs displayed tissue-specific Pb and sex effects. Medium Pb-exposed mice had 3.86% less brain methylation at IAP 110 (P < 0.01), while high Pb-exposed mice had 2.83% less brain methylation at IAP 236 (P = 0.01) and 1.77% less at IAP 506 (P = 0.05). Individual IAP DNA methylation differed by sex for IAP 110 in the brain and kidney, IAP 236 in the kidney, and IAP 1259 in the kidney. Using Tomtom, we identified three binding motifs that matched to each of our novel IAPs impacted by Pb, one of which (HMGA2) has been linked to metabolic-related conditions in both mice and humans. Thus, these recently identified IAPs display tissue-specific environmental lability as well as sex-specific differences supporting an epigenetic link between early exposure to Pb and later-in-life health outcomes. Environ. Mol. Mutagen. 58:540-550, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L. Montrose
- Environmental Health Sciences, University of Michigan
| | - C. Faulk
- Animal Science, University of Minnesota
| | - J. Francis
- Environmental Health Sciences, University of Michigan
| | - D.C. Dolinoy
- Environmental Health Sciences, University of Michigan
- Nutritional Sciences, University of Michigan
- Corresponding author: Dana C. Dolinoy, 1415 Washington Heights, Ann Arbor, Michigan 48109-2029, Tel: 734 647-3155,
| |
Collapse
|
34
|
Appleton AA, Jackson BP, Karagas M, Marsit CJ. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics 2017; 12:607-615. [PMID: 28548590 DOI: 10.1080/15592294.2017.1320637] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Epigenetic alterations related to prenatal neurotoxic metals exposure may be key in understanding the origins of cognitive and neurobehavioral problems in children. Placental glucocorticoid receptor (NR3C1) methylation has been linked to neurobehavioral risk in early life, but has not been examined in response to neurotoxic metals exposure despite parallel lines of research showing metals exposure and NR3C1 methylation each contribute to a similar set of neurobehavioral phenotypes. Thus, we conducted a study of prenatal neurotoxic metals exposure and placental NR3C1 methylation in a cohort of healthy term singleton pregnancies from Rhode Island, USA (n = 222). Concentrations of arsenic (As; median 0.02 ug/g), cadmium (Cd; median 0.03 μg/g), lead (Pb; median 0.40 μg/g), manganese (Mn; median 0.56 μg/g), mercury (Hg; median 0.02 μg/g), and zinc (Zn; 145.18 μg/g) measured in infant toenails were categorized as tertiles. Multivariable linear regression models tested the independent associations for each metal with NR3C1 methylation, as well as the cumulative risk of exposure to multiple metals simultaneously. Compared to the lowest exposure tertiles, higher levels of As, Cd, Pb, Mn, and Hg were each associated with increased placental NR3C1 methylation (all P<0.02). Coefficients for these associations corresponded with a 0.71-1.41 percent increase in NR3C1 methylation per tertile increase in metals concentrations. For Zn, the lowest exposure tertile compared with the highest tertile was associated with 1.26 percent increase in NR3C1 methylation (P=0.01). Higher cumulative metal risk scores were marginally associated with greater NR3C1 methylation. Taken together, these results indicate that prenatal exposure to neurotoxic metals may affect the offspring's NR3C1 activity, which may help explain cognitive and neurodevelopmental risk later in life.
Collapse
Affiliation(s)
- Allison A Appleton
- a Department of Epidemiology and Biostatistics , University at Albany School of Public Health , Rensselaer , NY , USA
| | - Brian P Jackson
- b Department of Earth Sciences, Dartmouth College , Hanover , NH , USA
| | - Margaret Karagas
- c Department of Epidemiology , Geisel School of Medicine at Dartmouth , One Medical Center Drive, Lebanon , NH , USA
| | - Carmen J Marsit
- d Department of Environmental Health, Rollins School of Public Health , Emory University , Atlanta , GA , USA
| |
Collapse
|
35
|
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DMH, Miller R, Murphy SK. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:511-526. [PMID: 28362264 PMCID: PMC5382002 DOI: 10.1289/ehp595] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Characterization of the epigenome is a primary interest for children's environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children's Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children's health. CONCLUSION The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli.
Collapse
Affiliation(s)
| | | | | | - Kari Nadeau
- Stanford University, Palo Alto, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Nina Holland
- University of California, Berkeley, Berkeley, California, USA
| | | | | | - Paul Yousefi
- University of California, Berkeley, Berkeley, California, USA
| | | | - Bonnie R. Joubert
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Joseph Wiemels
- University of California at San Francisco, San Francisco, California, USA
| | | | - Ivana V. Yang
- University of Colorado, Denver, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
| | - Rui Chen
- Stanford University, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
36
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017. [PMID: 28234024 DOI: 10.2217/epi-20160112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
37
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
38
|
Alvarado-Cruz I, Sánchez-Guerra M, Hernández-Cadena L, De Vizcaya-Ruiz A, Mugica V, Pelallo-Martínez NA, Solís-Heredia MDJ, Byun HM, Baccarelli A, Quintanilla-Vega B. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 813:27-36. [DOI: 10.1016/j.mrgentox.2016.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
|
39
|
Grove TB, Burghardt KJ, Kraal AZ, Dougherty RJ, Taylor SF, Ellingrod VL. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:151-160. [PMID: 27867940 DOI: 10.1159/000448173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/30/2016] [Indexed: 01/17/2023]
Abstract
Previous reports have identified an association between cognitive impairment and genetic variation in psychotic disorders. In particular, this association may be related to abnormal regulation of genes responsible for broad cognitive functions such as the oxytocin receptor (OXTR). Within psychotic disorders, it is unknown if OXTR methylation, which can have important implications for gene regulation, is related to cognitive function. The current study examined peripheral blood OXTR methylation and general cognition in people with schizophrenia, schizoaffective disorder, and psychotic disorder not otherwise specified (N = 101). Using hierarchical multiple regression analysis, methylation at the Chr3:8767638 site was significantly associated with composite cognitive performance independent of demographic and medication factors while controlling for multiple testing in this combined diagnostic sample (adjusted p = 0.023).
Collapse
Affiliation(s)
- Tyler B Grove
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Kyle J Burghardt
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Mich., USA
| | - A Zarina Kraal
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Ryan J Dougherty
- Luskin School of Public Affairs, University of California, Los Angeles, Los Angeles, Calif.,USA
| | - Stephan F Taylor
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA
| | - Vicki L Ellingrod
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA; College of Pharmacy, University of Michigan, Ann Arbor, Mich., USA
| |
Collapse
|
40
|
Goodrich JM, Dolinoy DC, Sánchez BN, Zhang Z, Meeker JD, Mercado-Garcia A, Solano-González M, Hu H, Téllez-Rojo MM, Peterson KE. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw018. [PMID: 29492298 PMCID: PMC5804533 DOI: 10.1093/eep/dvw018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/18/2016] [Indexed: 05/07/2023]
Abstract
Epigenetic perturbations induced by environmental exposures at susceptible lifestages contribute to disease development. Even so, the influence of early life and ongoing exposures on the adolescent epigenome is rarely examined. We examined the association of exposure biomarkers for lead (Pb), bisphenol A (BPA), and nine phthalates metabolites with blood leukocyte DNA methylation at LINE-1 repetitive elements and environmentally responsive genes ( IGF2 , H19 , and HSD11B2 ) in peri-adolescents. Participants ( n = 247) from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) birth cohorts were followed-up once between the ages of 8 and 14 years, and concurrent exposures were measured in biospecimen collected at that time (blood Pb, urinary BPA, and phthalate metabolites). Prenatal and childhood exposures to Pb were previously approximated using maternal and child samples. BPA and phthalate metabolites were measured in third trimester maternal urine samples. Significant associations ( P < 0.05) were observed between DNA methylation and exposure biomarkers that were gene and biomarker specific. For example, Pb was only associated with LINE-1 hypomethylation during pregnancy ( P = 0.04), while early childhood Pb was instead associated with H19 hypermethylation ( P = 0.04). Concurrent urinary mono (2-ethylhexyl) phthalate (MEHP) was associated with HSD11B2 hypermethylation ( P = 0.005). Sex-specific associations, particularly among males, were also observed. In addition to single exposure models, principal component analysis was employed to examine exposure mixtures. This method largely corroborated the findings of the single exposure models. This study along with others in the field suggests that environment-epigenetic relationships vary by chemical, exposure timing, and sex.
Collapse
Affiliation(s)
- Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Brisa N. Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zhenzhen Zhang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Maritsa Solano-González
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Martha M. Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- *Correspondence address: 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA. Tel: +1 734 647 1923; Fax: +1 734 936 7283; E-mail:
| |
Collapse
|
41
|
Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord 2016; 18:423-32. [PMID: 27542345 PMCID: PMC5322870 DOI: 10.1111/bdi.12422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Atypical antipsychotics (AAPs) carry a significant risk of cardiometabolic side effects, including insulin resistance. It is thought that the insulin resistance resulting from the use of AAPs may be associated with changes in DNA methylation. We aimed to identify and validate a candidate gene associated with AAP-induced insulin resistance by using a multi-step approach that included an epigenome-wide association study (EWAS) and validation with site-specific methylation and metabolomics data. METHODS Subjects with bipolar disorder treated with AAPs or lithium monotherapy were recruited for a cross-sectional visit to analyze peripheral blood DNA methylation and insulin resistance. Epigenome-wide DNA methylation was analyzed in a discovery sample (n = 48) using the Illumina 450K BeadChip. Validation analyses of the epigenome-wide findings occurred in a separate sample (n = 72) using site-specific methylation with pyrosequencing and untargeted metabolomics data. Regression analyses were conducted controlling for known confounders in all analyses and a mediation analysis was performed to investigate if AAP-induced insulin resistance occurs through changes in DNA methylation. RESULTS A differentially methylated probe associated with insulin resistance was discovered and validated in the fatty acyl CoA reductase 2 (FAR2) gene of chromosome 12. Functional associations of this DNA methylation site with untargeted phospholipid-related metabolites were also detected. Our results identified a mediating effect of this FAR2 methylation site on AAP-induced insulin resistance. CONCLUSIONS Going forward, prospective, longitudinal studies assessing comprehensive changes in FAR2 DNA methylation, expression, and lipid metabolism before and after AAP treatment are required to assess its potential role in the development of insulin resistance.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Department of Pharmacy Practice. 259 Mack Avenue, Suite 2190. Detroit Michigan 48201. USA
| | - Jacyln M. Goodrich
- University of Michigan School of Public Health, Department of Environmental Sciences; 6638 SPH Tower, 1415 Washington Heights Ann Arbor, Michigan 48109. USA
| | - Dana C. Dolinoy
- University of Michigan School of Public Health, Department of Environmental Sciences; 6638 SPH Tower, 1415 Washington Heights Ann Arbor, Michigan 48109. USA
| | - Vicki L. Ellingrod
- University of Michigan, College of Pharmacy, Department of Clinical Social and Administrative Sciences. 428 Church Street, Ann Arbor, Michigan 48109. USA
- University of Michigan, School of Medicine, Department of Psychiatry. 1301 Catherine Ann Arbor, MI 48109. USA
| |
Collapse
|
42
|
|
43
|
Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil Steril 2016; 106:629-639.e10. [PMID: 27288894 DOI: 10.1016/j.fertnstert.2016.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the effect of infertility and intracytoplasmic sperm injection (ICSI) on DNA methylation of offspring. DESIGN Microarray analysis of DNA methylation in archived neonatal bloodspots of in vitro fertilization (IVF)/ICSI-conceived children compared with controls born to fertile and infertile parents. SETTING Academic research laboratory. PATIENT(S) Neonatal blood spots of 137 newborns conceived spontaneously, through intrauterine insemination (IUI), or through ICSI using fresh or cryopreserved (frozen) embryo transfer. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The Illumina Infinium HumanMethylation450k BeadChip assay determined genome-wide DNA methylation. Methylation differences between conception groups were detected using a Bioconductor package, ChAMP, in conjunction with Adjacent Site Clustering (A-clustering). RESULT(S) The methylation profiles of assisted reproductive technology and IUI newborns were dramatically different from those of naturally (in vivo) conceived newborns. Interestingly, the profiles of ICSI-frozen (FET) and IUI infants were strikingly similar, suggesting that cryopreservation may temper some of the epigenetic aberrations induced by IVF or ICSI. The DNA methylation changes associated with IVF/ICSI culture conditions and/or parental infertility were detected at metastable epialleles, suggesting a lasting impact on a child's epigenome. CONCLUSION(S) Both infertility and ICSI alter DNA methylation at specific genomic loci, an effect that is mitigated to some extent by FET. The impact of assisted reproductive technology and/or fertility status on metastable epialleles in humans was uncovered. This study provides an expanded set of loci for future investigations on IVF populations.
Collapse
|
44
|
Keating DP. Transformative Role of Epigenetics in Child Development Research: Commentary on the Special Section. Child Dev 2016; 87:135-42. [DOI: 10.1111/cdev.12488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Vangeel EB, Izzi B, Hompes T, Vansteelandt K, Lambrechts D, Freson K, Claes S. DNA methylation in imprinted genesIGF2andGNASXLis associated with prenatal maternal stress. GENES BRAIN AND BEHAVIOR 2015; 14:573-82. [DOI: 10.1111/gbb.12249] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Affiliation(s)
- E. B. Vangeel
- Genetic Research about Stress and Psychiatry (GRASP), Department of Neurosciences; Leuven Belgium
- Center for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences; University of Leuven; Leuven Belgium
| | - B. Izzi
- Center for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences; University of Leuven; Leuven Belgium
| | - T. Hompes
- Genetic Research about Stress and Psychiatry (GRASP), Department of Neurosciences; Leuven Belgium
- University Psychiatric Center, University of Leuven; Leuven Belgium
| | - K. Vansteelandt
- University Psychiatric Center, University of Leuven; Leuven Belgium
| | - D. Lambrechts
- Laboratory of Translational Genetics, Department of Oncology; University of Leuven; Leuven Belgium
- Vesalius Research Center (VRC), VIB; Leuven Belgium
| | - K. Freson
- Center for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences; University of Leuven; Leuven Belgium
| | - S. Claes
- Genetic Research about Stress and Psychiatry (GRASP), Department of Neurosciences; Leuven Belgium
- University Psychiatric Center, University of Leuven; Leuven Belgium
| |
Collapse
|