1
|
Shor E, Vainstein A. Petunia PHYTOCHROME INTERACTING FACTOR 4/5 transcriptionally activates key regulators of floral scent. PLANT MOLECULAR BIOLOGY 2024; 114:66. [PMID: 38816626 PMCID: PMC11139750 DOI: 10.1007/s11103-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024]
Abstract
Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- Institute of Plant Sciences, ARO, Volcani Institute, Rishon Lezion, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
2
|
Heuermann MC, Meyer RC, Knoch D, Tschiersch H, Altmann T. Strong prevalence of light regime-specific QTL in Arabidopsis detected using automated high-throughput phenotyping in fluctuating or constant light. PHYSIOLOGIA PLANTARUM 2024; 176:e14255. [PMID: 38528708 DOI: 10.1111/ppl.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.
Collapse
Affiliation(s)
- Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
3
|
Zhao J, Bo K, Pan Y, Li Y, Yu D, Li C, Chang J, Wu S, Wang Z, Zhang X, Gu X, Weng Y. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4520-4539. [PMID: 37201922 DOI: 10.1093/jxb/erad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.
Collapse
Affiliation(s)
- Jianyu Zhao
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
| | - Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Yuhong Li
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Daoliang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53705, USA
| |
Collapse
|
4
|
Zhou Y, Zhao C, Du T, Li A, Qin Z, Zhang L, Dong S, Wang Q, Hou F. Overexpression of 9- cis-Epoxycarotenoid Dioxygenase Gene, IbNCED1, Negatively Regulates Plant Height in Transgenic Sweet Potato. Int J Mol Sci 2023; 24:10421. [PMID: 37445599 DOI: 10.3390/ijms241310421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Plant height is one of the key agronomic traits for improving the yield of sweet potato. Phytohormones, especially gibberellins (GAs), are crucial to regulate plant height. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme for abscisic acid (ABA) biosynthesis signalling in higher plants. However, its role in regulating plant height has not been reported to date. Here, we cloned a new NCED gene, IbNCED1, from the sweet potato cultivar Jishu26. This gene encoded the 587-amino acid polypeptide containing an NCED superfamily domain. The expression level of IbNCED1 was highest in the stem and the old tissues in the in vitro-grown and field-grown Jishu26, respectively. The expression of IbNCED1 was induced by ABA and GA3. Overexpression of IbNCED1 promoted the accumulation of ABA and inhibited the content of active GA3 and plant height and affected the expression levels of genes involved in the GA metabolic pathway. Exogenous application of GA3 could rescue the dwarf phenotype. In conclusion, we suggest that IbNCED1 regulates plant height and development by controlling the ABA and GA signalling pathways in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunling Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Zhou H, Hwarari D, Ma H, Xu H, Yang L, Luo Y. Genomic survey of TCP transcription factors in plants: Phylogenomics, evolution and their biology. Front Genet 2022; 13:1060546. [PMID: 36437962 PMCID: PMC9682074 DOI: 10.3389/fgene.2022.1060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
Collapse
Affiliation(s)
- Haiying Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
6
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
7
|
He T, Hill CB, Angessa TT, Zhang XQ, Chen K, Moody D, Telfer P, Westcott S, Li C. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5603-5616. [PMID: 31504706 PMCID: PMC6812734 DOI: 10.1093/jxb/erz332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 05/10/2023]
Abstract
Single-marker genome-wide association studies (GWAS) have successfully detected associations between single nucleotide polymorphisms (SNPs) and agronomic traits such as flowering time and grain yield in barley. However, the analysis of individual SNPs can only account for a small proportion of genetic variation, and can only provide limited knowledge on gene network interactions. Gene-based GWAS approaches provide enormous opportunity both to combine genetic information and to examine interactions among genetic variants. Here, we revisited a previously published phenotypic and genotypic data set of 895 barley varieties grown in two years at four different field locations in Australia. We employed statistical models to examine gene-phenotype associations, as well as two-way epistasis analyses to increase the capability to find novel genes that have significant roles in controlling flowering time in barley. Genetic associations were tested between flowering time and corresponding genotypes of 174 putative flowering time-related genes. Gene-phenotype association analysis detected 113 genes associated with flowering time in barley, demonstrating the unprecedented power of gene-based analysis. Subsequent two-way epistasis analysis revealed 19 pairs of gene×gene interactions involved in controlling flowering time. Our study demonstrates that gene-based association approaches can provide higher capacity for future crop improvement to increase crop performance and adaptation to different environments.
Collapse
Affiliation(s)
- Tianhua He
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Kefei Chen
- SAGI-WEST, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | | | - Paul Telfer
- Australian Grain Technologies Pty Ltd (AGT), SA, Australia
| | - Sharon Westcott
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei Jingzhou, China
- Correspondence:
| |
Collapse
|
8
|
GIGANTEA gates gibberellin signaling through stabilization of the DELLA proteins in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:21893-21899. [PMID: 31597737 PMCID: PMC6815129 DOI: 10.1073/pnas.1913532116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock integrates environmental cues with internal biological processes to generate robust rhythms in almost all aspects of plant physiology. The molecular mechanisms underlying the pervasive regulation of plant physiology and development by the circadian clock are still being unraveled. Our study identifies the clock protein GIGANTEA as a key regulator of the response to gibberellins through the regulation of pivotal factors in the signaling of this hormone. Direct modulation of hub components in signaling networks by the circadian clock provides a means through which the oscillator can effectively transduce timing information to an extensive array of physiological pathways. Circadian clock circuitry intersects with a plethora of signaling pathways to adequately time physiological processes to occur at the most appropriate time of the day and year. However, our mechanistic understanding of how the clockwork is wired to its output is limited. Here we uncover mechanistic connections between the core clock component GIGANTEA (GI) and hormone signaling through the modulation of key components of the transduction pathways. Specifically, we show how GI modulates gibberellin (GA) signaling through the stabilization of the DELLA proteins, which act as negative components in the signaling of this hormone. GI function within the GA pathway is required to precisely time the permissive gating of GA sensitivity, thereby determining the phase of GA-regulated physiological outputs.
Collapse
|
9
|
Li H, Lyu Y, Chen X, Wang C, Yao D, Ni S, Lin Y, Chen Y, Zhang Z, Lai Z. Exploration of the Effect of Blue Light on Functional Metabolite Accumulation in Longan Embryonic Calli via RNA Sequencing. Int J Mol Sci 2019; 20:E441. [PMID: 30669555 PMCID: PMC6359358 DOI: 10.3390/ijms20020441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Light is an important factor that affects the synthesis of functional metabolites in longan embryogenic calli (ECs). However, analysis of the effect of light on functional metabolites in longan ECs via RNA sequencing has rarely been reported and their light regulation network is unclear. The contents of various functional metabolites as well as the enzymatic activities of superoxide dismutase and peroxidase and the level of H₂O₂ in longan ECs were significantly higher under blue light treatment than under the other treatments (dark, white). In this study, we sequenced three mRNA libraries constructed from longan ECs subjected to different treatments. A total of 4463, 1639 and 1806 genes were differentially expressed in the dark versus blue (DB), dark versus white (DW) and white versus blue (WB) combinations, respectively. According to GO and KEGG analyses, most of the differentially expressed genes (DEGs) identified were involved in transmembrane transport, taurine and hypotaurine metabolism, calcium transport and so forth. Mapman analysis revealed that more DEGs were identified in each DB combination pathway than in DW combination pathways, indicating that blue light exerts a significantly stronger regulatory effect on longan EC metabolism than the other treatments. Based on previous research and transcriptome data mining, a blue light signaling network of genes that affect longan functional metabolites was constructed and HY5, PIF4 and MYC2 were shown to be the key regulatory genes in the network. The results of this study demonstrate that the expression levels of phase-specific genes vary with changes in longan EC functional metabolites.
Collapse
Affiliation(s)
- Hansheng Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Resources and Chemical Engineering, Sanming University, Sanming 365004, China.
| | - Yumeng Lyu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Congqiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deheng Yao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Lorrai R, Boccaccini A, Ruta V, Possenti M, Costantino P, Vittorioso P. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AOB PLANTS 2018; 10:ply061. [PMID: 30386544 PMCID: PMC6204436 DOI: 10.1093/aobpla/ply061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 05/02/2023]
Abstract
Hypocotyl elongation of Arabidopsis seedlings is influenced by light and numerous growth factors. Light induces inhibition of hypocotyl elongation (photomorphogenesis), whereas in the dark hypocotyl elongation is promoted (skotomorphogenesis). Abscisic acid (ABA) plays a major role in inhibition of hypocotyl elongation, but the molecular mechanism remains unclear. We investigated the effect of ABA during photo- and skotomorphogenesis, making use of appropriate mutants, and we show that ABA negatively controls hypocotyl elongation acting on gibberellin (GA) metabolic genes, increasing the amount of the DELLA proteins GAI and RGA, thus affecting GA signalling, and (ultimately) repressing auxin biosynthetic genes.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Department of Biology and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Boccaccini
- Department of Biology and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
- Present address: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Veronica Ruta
- Department of Biology and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Vittorioso
- Department of Biology and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
- Corresponding author’s e-mail address:
| |
Collapse
|
12
|
Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. The evening complex coordinates environmental and endogenous signals in Arabidopsis. NATURE PLANTS 2017; 3:17087. [PMID: 28650433 PMCID: PMC5495178 DOI: 10.1038/nplants.2017.87] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Laura Gregoire
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Mathew S. Box
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) center, Mahidol University, Bangkok 10400, Thailand
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Xuelei Lai
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Dorothee Stöckle
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Chloe Zubieta
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Katja E. Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Philip A. Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Correspondence to:
| |
Collapse
|
13
|
Dubois M, Claeys H, Van den Broeck L, Inzé D. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. PLANT, CELL & ENVIRONMENT 2017; 40:180-189. [PMID: 27479938 DOI: 10.1111/pce.12809] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/06/2023]
Abstract
Drought stress is a major problem for agriculture worldwide, causing significant yield losses. Plants have developed highly flexible mechanisms to deal with drought, including organ- and developmental stage-specific responses. In young leaves, growth is repressed as an active mechanism to save water and energy, increasing the chances of survival but decreasing yield. Despite its importance, the molecular basis for this growth inhibition is largely unknown. Here, we present a novel approach to explore early molecular mechanisms controlling Arabidopsis leaf growth inhibition following mild drought. We found that growth and transcriptome responses to drought are highly dynamic. Growth was only repressed by drought during the day, and our evidence suggests that this may be due to gating by the circadian clock. Similarly, time of day strongly affected the extent, specificity, and in certain cases even direction of drought-induced changes in gene expression. These findings underscore the importance of taking into account diurnal patterns to understand stress responses, as only a small core of drought-responsive genes are affected by drought at all times of the day. Finally, we leveraged our high-resolution data to demonstrate that phenotypic and transcriptome responses can be matched to identify putative novel regulators of growth under mild drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Lisa Van den Broeck
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
14
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1101/068460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
15
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1016/j.tig.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
17
|
Press MO, Lanctot A, Queitsch C. PIF4 and ELF3 Act Independently in Arabidopsis thaliana Thermoresponsive Flowering. PLoS One 2016; 11:e0161791. [PMID: 27564448 PMCID: PMC5001698 DOI: 10.1371/journal.pone.0161791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Plants have evolved elaborate mechanisms controlling developmental responses to environmental stimuli. A particularly important stimulus is temperature. Previous work has identified the interplay of PIF4 and ELF3 as a central circuit underlying thermal responses in Arabidopsis thaliana. However, thermal responses vary widely among strains, possibly offering mechanistic insights into the wiring of this circuit. ELF3 contains a polyglutamine (polyQ) tract that is crucial for ELF3 function and varies in length across strains. Here, we use transgenic analysis to test the hypothesis that natural polyQ variation in ELF3 is associated with the observed natural variation in thermomorphogenesis. We found little evidence that the polyQ tract plays a specific role in thermal responses beyond modulating general ELF3 function. Instead, we made the serendipitous discovery that ELF3 plays a crucial, PIF4-independent role in thermoresponsive flowering under conditions more likely to reflect field conditions. We present evidence that ELF3 acts through the photoperiodic pathway, pointing to a previously unknown symmetry between low and high ambient temperature responses. Moreover, in analyzing two strain backgrounds with different thermal responses, we demonstrate that responses may be shifted rather than fundamentally rewired across strains. Our findings tie together disparate observations into a coherent framework in which multiple pathways converge in accelerating flowering in response to temperature, with some such pathways modulated by photoperiod.
Collapse
Affiliation(s)
- Maximilian O. Press
- University of Washington Department of Genome Sciences, Seattle, United States of America
| | - Amy Lanctot
- University of Washington Molecular and Cellular Biology Program, University of Washington Department of Biology, Seattle, United States of America
| | - Christine Queitsch
- University of Washington Department of Genome Sciences, Seattle, United States of America
- * E-mail:
| |
Collapse
|
18
|
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. PLANT MOLECULAR BIOLOGY 2016; 91:691-702. [PMID: 27061301 DOI: 10.1007/s11103-016-0477-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.
Collapse
Affiliation(s)
- Hagop S Atamian
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|