1
|
Li L, McWhorter A, Chousalkar K. Ensuring egg safety: Salmonella survival, control, and virulence in the supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70075. [PMID: 39667949 DOI: 10.1111/1541-4337.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Salmonella contamination of eggs is a global food safety concern, producers, regulatory authorities, and affecting public health. To mitigate Salmonella risks on-farm and along the supply chain, egg producers have adopted various quality assurance, animal husbandry, and biosecurity practices recommended by organizations such as Australian eggs, the European Commission, and the US Department of Agriculture (USDA). However, egg storage requirements vary significantly worldwide. In Australia, most states follow the Food Standards Australia New Zealand, but discrepancies exist. In the United States, the USDA mandates refrigeration of eggs below 7.2°C to prevent Salmonella growth, whereas the European Union requires that eggs must not be refrigerated to avoid condensation, which may promote bacterial growth. Refrigeration of eggs is associated with reduced Salmonella growth and decreased infection risk. Yet, conflicting data regarding the impact of storage temperatures on Salmonella survival may contribute to the disparity between international recommendations for egg storage. Studies indicated better Salmonella survival in egg contents at 5°C due to higher expression levels of survival and stress response-related genes compared to 25°C, yet this may not lead to an increased risk or higher severity of Salmonella infection. Evidence suggests that storing eggs at less than 7°C will influence the virulence of bacteria. Warmer storage temperatures may lead to increased potential of Salmonella multiplication in the nutrient-rich yolk and may cause the expression of certain virulence genes. Eggs can be exposed to various temperatures in the supply chain. Further studies are essential to understand the relationship between the storage temperature on the farm, in the supply chain, and bacterial virulence.
Collapse
Affiliation(s)
- Lingyun Li
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Li J, Guttmann N, Drew GC, Hector TE, Wolinska J, King KC. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history. PLoS Biol 2024; 22:e3002900. [PMID: 39556605 PMCID: PMC11611255 DOI: 10.1371/journal.pbio.3002900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change is causing extreme heating events and can lead to more infectious disease outbreaks, putting species persistence at risk. The extent to which warming temperatures and infection may together impair host health is unclear. Using a meta-analysis of >190 effect sizes representing 101 ectothermic animal host-pathogen systems, we demonstrate that warming significantly increased the mortality of hosts infected by bacterial pathogens. Pathogens that have been evolutionarily established within the host species showed higher virulence under warmer temperatures. Conversely, the effect of warming on novel infections-from pathogens without a shared evolutionary history with the host species-were more pronounced with larger differences between compared temperatures. We found that compared to established infections, novel infections were more deadly at lower/baseline temperatures. Moreover, we revealed that the virulence of fungal pathogens increased only when temperatures were shifted upwards towards the pathogen thermal optimum. The magnitude of all these significant effects was not impacted by host life-stage, immune complexity, pathogen inoculation methods, or exposure time. Overall, our findings reveal distinct patterns in changes of pathogen virulence during warming. We highlight the importance of pathogen taxa, thermal optima, and evolutionary history in determining the impact of global change on infection outcomes.
Collapse
Affiliation(s)
- Jingdi Li
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Nele Guttmann
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Georgia C. Drew
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Collegium Helveticum, The joint Institute for Advanced Studies (IAS) of the ETH Zurich, The University of Zurich, &The Zurich University of the Arts, Zurich, Switzerland
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Min S, Xu Z, Huang Y, Wu X, Zhan T, Yu X, Wang H, Xu B. 3D Wetting Gradient Janus Sports Bras for Efficient Sweat Removal: A Strategy to Improve Women's Sports Comfort and Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404137. [PMID: 38990076 DOI: 10.1002/smll.202404137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Developing Janus fabrics with excellent one-way sweat transport capacity is an attractive way for providing comfort sensation and protecting the health during exercise. In this work, a 3D wetting gradient Janus fabric (3DWGJF) is first proposed to address the issue of excessive sweat accumulation in women's breasts, followed by integration with a sponge pad to form a 3D wetting gradient Janus sports bra (3DWGJSB). The 3D wetting gradient enables the prepared fabric to control the horizontal migration of sweat in one-way mode (x/y directions) and then unidirectionally penetrate downward (z direction), finally keeping the water content on the inner side of 3DWGJF (skin side) at ≈0%. In addition, the prepared 3DWGJF has good water vapor transmittance rate (WVTR: 0.0409 g cm-2 h-1) and an excellent water evaporation rate (0.4704 g h-1). Due to the high adhesion of transfer prints to the fabrics and their excellent mechanical properties, the 3DWGJF is remarkably durable and capable of withstanding over 500 laundering cycles and 400 abrasion cycles. This work may inspire the design and fabrication of next-generation moisture management fabrics with an effective sweat-removal function for women's health.
Collapse
Affiliation(s)
- Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yange Huang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xianchang Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohua Yu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - He Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
4
|
Jacobsen KL, Griffin M, Phinney BS, Salemi M, Yazdi Z, Balami S, Older CE, Soto E. Temperature-dependent alterations in the proteome of the emergent fish pathogen Edwardsiella piscicida. JOURNAL OF FISH DISEASES 2024:e14017. [PMID: 39304982 DOI: 10.1111/jfd.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 10/02/2024]
Abstract
Edwardsiella piscicida is an emerging bacterial pathogen and the aetiological agent of edwardsiellosis among cultured and wild fish species globally. The increased frequency of outbreaks of this Gram-negative, facultative intracellular pathogen pose not only a threat to the aquaculture industry but also a possible foodborne/waterborne public health risk due to the ill-defined zoonotic potential. Thus, understanding the role of temperature on the virulence of this emerging pathogen is essential for comprehending the pathogenesis of piscine edwardsiellosis in the context of current warming trends associated with climate change, as well as providing insight into its zoonotic potential. In this study, significant temperature-dependent alterations in bacterial growth patterns were observed, with bacterial isolates grown at 17°C displaying higher peak growth sizes, extended lag times, and slower maximal growth rates than isolates grown at 27or 37°C. When E. piscicida isolates were grown at 37°C compared to 27 and 17°C, mass spectrometry analysis of the E. piscicida proteome revealed significant downregulation of crucial virulence proteins, such as Type VI secretion system proteins and flagellar proteins. Although in vivo models of infection are warranted, this in vitro data suggests possible temperature-associated alterations in the virulence and pathogenic potential of E. piscicida in poikilotherms and homeotherms.
Collapse
Affiliation(s)
- Kim L Jacobsen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Matt Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California, USA
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Sujita Balami
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Aquaculture, Stoneville, Mississippi, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
5
|
Wang Y, Wang KM, Zhang X, Wang W, Qian W, Wang FF. Stenotrophomonas maltophilia uses a c-di-GMP module to sense the mammalian body temperature during infection. PLoS Pathog 2024; 20:e1012533. [PMID: 39231185 PMCID: PMC11404848 DOI: 10.1371/journal.ppat.1012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The body temperature of Warm-blooded hosts impedes and informs responses of bacteria accustomed to cooler environments. The second messenger c-di-GMP modulates bacterial behavior in response to diverse, yet largely undiscovered, stimuli. A long-standing debate persists regarding whether a local or a global c-di-GMP pool plays a critical role. Our research on a Stenotrophomonas maltophilia strain thriving at around 28°C, showcases BtsD as a thermosensor, diguanylate cyclase, and effector. It detects 37°C and diminishes c-di-GMP synthesis, resulting in a responsive sequence: the periplasmic c-di-GMP level is decreased, the N-terminal region of BtsD disengages from c-di-GMP, activates the two-component signal transduction system BtsKR, and amplifies sod1-3 transcription, thereby strengthening the bacterium's pathogenicity and adaptation during infections in 37°C warm Galleria mellonella larvae. This revelation of a single-protein c-di-GMP module introduces unrecognized dimensions to the functional and structural paradigms of c-di-GMP modules and reshapes our understanding of bacterial adaptation and pathogenicity in hosts with a body temperature around 37°C. Furthermore, the discovery of a periplasmic c-di-GMP pool governing BtsD-BtsK interactions supports the critical role of a local c-di-GMP pool.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Kai-Ming Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Müller JU, Schwabe M, Swiatek LS, Heiden SE, Schlüter R, Sittner M, Bohnert JA, Becker K, Idelevich EA, Guenther S, Eger E, Schaufler K. Temperatures above 37°C increase virulence of a convergent Klebsiella pneumoniae sequence type 307 strain. Front Cell Infect Microbiol 2024; 14:1411286. [PMID: 38947124 PMCID: PMC11211929 DOI: 10.3389/fcimb.2024.1411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.
Collapse
Affiliation(s)
- Justus U. Müller
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Michael Schwabe
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Lena-Sophie Swiatek
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Max Sittner
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Lusiastuti AM, Suhermanto A, Hastilestari BR, Suryanto S, Mawardi M, Sugiani D, Syahidah D, Sudaryatma PE, Caruso D. Impact of temperature on the virulence of Streptococcus agalactiae in Indonesian aquaculture: A better vaccine design is required. Vet World 2024; 17:682-689. [PMID: 38680157 PMCID: PMC11045521 DOI: 10.14202/vetworld.2024.682-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024] Open
Abstract
Due to their poikilothermic nature, fish are very sensitive to changes in temperature. Due to climate change, the average global temperature has increased by 1.5°C in the last century, which may have caused an increase in farmed fish mortality recently. Predictions using the model estimate that a 1°C increase in temperature could cause 3%-4% and 4%-6% mortality due to infectious diseases in organisms living in warm and temperate waters, respectively. There is a need to determine whether there is a relationship between increasing environmental temperature and disease virulence. This review examines the influence and impact of increasing temperatures due to climate change on the physiology and pathogenicity of Streptococcus agalactiae, which causes streptococcosis in tilapia and causes significant economic losses. Changes in the pathogenicity of S. agalactiae, especially its virulence properties due to increasing temperature, require changes in the composition design of the fish vaccine formula to provide better protection through the production of protective antibodies.
Collapse
Affiliation(s)
- Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Achmad Suhermanto
- The Marine and Fisheries Polytechnic Karawang, The Ministry of Marine Affairs and Fisheries Indonesia
| | | | - Suryanto Suryanto
- Research Center for Fisheries, National Research and Innovation Agency, Indonesia
| | - Mira Mawardi
- Main Center for Freshwater Aquaculture – The Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Desy Sugiani
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Dewi Syahidah
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | | | - Domenico Caruso
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari BAZ, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BMC Biol 2024; 22:27. [PMID: 38317219 PMCID: PMC10845740 DOI: 10.1186/s12915-024-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39 °C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37 °C, by using RNAseq and physiological assays including in vivo experiments. RESULTS In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes in both species. Altered metabolic features at 39 °C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39 °C, they upregulated ethanol oxidation-related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα, and pmsβ genes at 39 °C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphyloxantin production, and a decrease in biofilm formation at 39 °C. On the side of PA monocultures, we observed an increase in extracellular lipase and protease and biofilm formation at 39 °C along with a decrease in the motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in vitro and in vivo. S. aureus monocultured at 39οC showed a decrease in cellular invasion and an increase in IL-8-but not in IL-6-production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39 °C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37 and 39 °C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39 °C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39 °C comparing with 37 °C. CONCLUSIONS Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
Affiliation(s)
- E C Solar Venero
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
- Present addressDepartment of BiochemistrySchool of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - M B Galeano
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - A Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - M M Ricardi
- IFIBYNE (UBA-CONICET), FBMC, FCEyN-UBA, Buenos Aires, Argentina
| | - F Serral
- Instituto del Calculo-UBA-CONICET, Buenos Aires, Argentina
| | | | - S A Robaldi
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - B A Z Ashari
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - T H Munif
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - D E Egoburo
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - S Nemirovsky
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - J Escalante
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - B Nishimura
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - M S Ramirez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - F Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - P M Tribelli
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina.
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
11
|
Rihacek M, Kosaristanova L, Fialova T, Kuthanova M, Eichmeier A, Hakalova E, Cerny M, Berka M, Palkovicova J, Dolejska M, Svec P, Adam V, Zurek L, Cihalova K. Zinc effects on bacteria: insights from Escherichia coli by multi-omics approach. mSystems 2023; 8:e0073323. [PMID: 37905937 PMCID: PMC10734530 DOI: 10.1128/msystems.00733-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A long-term exposure of bacteria to zinc oxide and zinc oxide nanoparticles leads to major alterations in bacterial morphology and physiology. These included biochemical and physiological processes promoting the emergence of strains with multi-drug resistance and virulence traits. After the removal of zinc pressure, bacterial phenotype reversed back to the original state; however, certain changes at the genomic, transcriptomic, and proteomic level remained. Why is this important? The extensive and intensive use of supplements in animal feed effects the intestinal microbiota of livestock and this may negatively impact the health of animals and people. Therefore, it is crucial to understand and monitor the impact of feed supplements on intestinal microorganisms in order to adequately assess and prevent potential health risks.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Michaela Kuthanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ales Eichmeier
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Eliska Hakalova
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Martin Cerny
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, Brno, Czechia
| | - Jana Palkovicova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Monika Dolejska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czechia
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Zhang M, Yu B, Fang Q, Liu J, Xia Q, Ye K, Zhang D, Qiang Z, Pan X. Microbiome recognition of virulence-factor-governed interfacial mechanisms in antibiotic resistance and pathogenicity removal by functionalized microbubbles. WATER RESEARCH 2023; 242:120224. [PMID: 37352673 DOI: 10.1016/j.watres.2023.120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The frequent occurrence of epidemics around the world gives rise to increasing concerns of the pollution of pathogens and antibiotic resistant bacteria in water. This study investigated the impacts of virulence factors (VFs) on the removal of antibiotic resistant and pathogenic bacteria from municipal wastewater by ozone-free or ozone-encapsulated Fe(III)-coagulant-modified colloidal microbubbles (O3_free-CCMBs or O3-CCMBs). The highly interface-dependent process was initiated with cell-capture on the microbubble surface where the as-collected cells could be further inactivated with the bubble-released ozone and oxidative species if O3-CCMBs were used. The microbiome sequencing analyses denote that the O3_free-CCMB performance of antibiotic resistant and pathogenic bacteria removal was dependent on the virulence phenotypes related to cell-surface properties or structures. The adhesion-related VFs facilitated the effective attachment between cells and the coagulant-modified bubble-surface, which further enhanced cell inactivation by bubble-released ozone. On the contrary, the motility-related VFs might help cells to escape from the bubble capture by locomotion; however, this could be overcome by O3-CCMB-induced oxidative demolition of the movement structures. Besides, the microbubble performance was also impacted with the cell-membrane structure related to antibiotic resistance (i.e., efflux pumps) and the dissolved organic matter through promoting the surface-capture and decreasing the oxidation efficacy. The ozone-encapsulated microbubbles with surface functionalization are robust and promising tools in hampering antibiotic resistance and pathogenicity dissemination from wastewater to surface water environment; and awareness should be raised for the influence of virulence signatures on its performance.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Beilei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayuan Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoyun Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kun Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari B, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.529514. [PMID: 36993402 PMCID: PMC10055263 DOI: 10.1101/2023.03.21.529514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Staphylococcus aureus and Pseudomonas aeruginosa cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39°C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37°C, by using RNAseq and physiological assays including in-vivo experiments. Results In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes on both species. Altered metabolic features at 39°C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39°C they upregulated ethanol oxidation related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα and pmsβ genes at 39°C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphylxantin production and a decrease in biofilm formation at 39°C. On the side of PA monocultures, we observed increase in extracellular lipase and protease and biofilm formation at 39°C along with a decrease in motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in-vitro and in-vivo . S. aureus monocultured at 39°C showed a decrease in cellular invasion and an increase in IL-8 -but not in IL-6- production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39°C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37°C and 39°C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39°C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39°C comparing with 37°C. Conclusion Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
|
14
|
Ali J, Joshi M, Ahmadi A, Strætkvern KO, Ahmad R. Increased growth temperature and vitamin B12 supplementation reduces the lag time for rapid pathogen identification in BHI agar and blood cultures. F1000Res 2023; 12:131. [PMID: 37122874 PMCID: PMC10133824 DOI: 10.12688/f1000research.129668.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Rapid diagnostics of pathogens is essential to prescribe appropriate antibiotic therapy. The current methods for pathogen detection require the bacteria to grow in a culture medium, which is time-consuming. This increases the mortality rate and global burden of antimicrobial resistance. Culture-free detection methods are still under development and are not common in the clinical routine. Therefore, decreasing the culture time for accurately detecting infection and resistance is vital for diagnosis. Methods: This study investigated easy-to-implement factors (in a minimal laboratory set-up), including inoculum size, incubation temperature, and additional supplementation (e.g., vitamin B12 and trace metals), that can significantly reduce the bacterial lag time (tlag). These factors were arranged in simple two-level factorial designs using Gram-positive cocci (Staphylococcus aureus), Gram-positive bacilli (Bacillus subtilis), and Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa) bacteria, including clinical isolates with known antimicrobial resistance profiles. Blood samples spiked with a clinical isolate of E. coli CCUG 17620 (Culture Collection University of Gothenburg) were also tested to see the effect of elevated incubation temperature on bacterial growth in blood cultures. Results: We observed that increased incubation temperature (42°C) along with vitamin B12 supplementation significantly reduced the tlag (10 – 115 minutes or 4% - 49%) in pure clinical isolates and blood samples spiked with E. coli CCUG17620. In the case of the blood sample, PCR results also detected bacterial DNA after only 3h of incubation and at three times the CFU/mL. Conclusion: Enrichment of bacterial culture media with growth supplements such as vitamin B12 and increased incubation temperature can be a cheap and rapid method for the early detection of pathogens. This proof-of-concept study is restricted to a few bacterial strains and growth conditions. In the future, the effect of other growth conditions and difficult-to-culture bacteria should be explored to shorten the lag phase.
Collapse
Affiliation(s)
- Jawad Ali
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Mukund Joshi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Knut Olav Strætkvern
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Dhungel L, Bonner R, Cook M, Henson D, Moulder T, Benbow ME, Jordan H. Impact of Temperature and Oxygen Availability on Gene Expression Patterns of Mycobacterium ulcerans. Microbiol Spectr 2023; 11:e0496822. [PMID: 36912651 PMCID: PMC10100886 DOI: 10.1128/spectrum.04968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/29/2023] [Indexed: 03/14/2023] Open
Abstract
Buruli ulcer disease is a neglected tropical disease caused by the environmental pathogen Mycobacterium ulcerans. The M. ulcerans major virulence factor is mycolactone, a lipid cytotoxic compound whose genes are carried on a plasmid. Although an exact reservoir and mode(s) of transmission are unknown, data provide evidence of both. First, Buruli ulcer incidence and M. ulcerans presence have been linked to slow-moving water with low oxygen. M. ulcerans has also been suggested to be sensitive to UV due to termination in crtI, encoding a phytoene dehydrogenase, required for carotenoid production. Further, M. ulcerans has been shown to cause disease following puncture but not when introduced to open abrasion sites, suggesting that puncture is necessary for transmission and pathology. Despite these findings, the function and modulation of mycolactone and other genes in response to dynamic abiotic conditions such as UV, temperature, and oxygen have not been shown. In this study, we investigated modulation of mycolactone and other genes on exposure to changing UV and oxygen microenvironmental conditions. Mycolactone expression was downregulated on exposure to the single stress high temperature and did not change significantly with exposure to UV; however, it was upregulated when exposed to microaerophilic conditions. Mycolactone expression was downregulated under combined stresses of high temperature and low oxygen, but there was upregulation of several stress response genes. Taken together, results suggest that temperature shapes M. ulcerans metabolic response more so than UV exposure or oxygen requirements. These data help to define the environmental niche of M. ulcerans and metabolic responses during initial human infection. IMPORTANCE Buruli ulcer is a debilitating skin disease caused by the environmental pathogen Mycobacterium ulcerans. M. ulcerans produces a toxic compound, mycolactone, which leads to tissue necrosis and ulceration. Barriers to preventing Buruli ulcer include an incomplete understanding of M. ulcerans reservoirs, how the pathogen is transmitted, and under what circumstances mycolactone and other M. ulcerans genes are expressed and produced in its natural environment and in the host. We conducted a study to investigate M. ulcerans gene expression under several individual or combined abiotic conditions. Our data showed that mycolactone expression was downregulated under combined stresses of high temperature and low oxygen but there was upregulation of several stress response genes. These data are among only a few studies measuring modulation of mycolactone and other M. ulcerans genes that could be involved in pathogen fitness in its natural environment and virulence while within the host.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Raisa Bonner
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Meagan Cook
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Duncan Henson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Trent Moulder
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - M. Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- AgBioResearch, Michigan State University, East Lansing, Michigan, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
16
|
Abstract
The ability of bacteria to respond to changes in their environment is critical to their survival, allowing them to withstand stress, form complex communities, and induce virulence responses during host infection. A remarkable feature of many of these bacterial responses is that they are often variable across individual cells, despite occurring in an isogenic population exposed to a homogeneous environmental change, a phenomenon known as phenotypic heterogeneity. Phenotypic heterogeneity can enable bet-hedging or division of labor strategies that allow bacteria to survive fluctuating conditions. Investigating the significance of phenotypic heterogeneity in environmental transitions requires dynamic, single-cell data. Technical advances in quantitative single-cell measurements, imaging, and microfluidics have led to a surge of publications on this topic. Here, we review recent discoveries on single-cell bacterial responses to environmental transitions of various origins and complexities, from simple diauxic shifts to community behaviors in biofilm formation to virulence regulation during infection. We describe how these studies firmly establish that this form of heterogeneity is prevalent and a conserved mechanism by which bacteria cope with fluctuating conditions. We end with an outline of current challenges and future directions for the field. While it remains challenging to predict how an individual bacterium will respond to a given environmental input, we anticipate that capturing the dynamics of the process will begin to resolve this and facilitate rational perturbation of environmental responses for therapeutic and bioengineering purposes.
Collapse
|
17
|
Azizan A, Alfaro AC, Jaramillo D, Venter L, Young T, Frost E, Lee K, Van Nguyen T, Kitundu E, Archer SDJ, Ericson JA, Foxwell J, Quinn O, Ragg NLC. Pathogenicity and virulence of bacterial strains associated with summer mortality in marine mussels (Perna canaliculus). FEMS Microbiol Ecol 2022; 98:6855225. [PMID: 36449667 DOI: 10.1093/femsec/fiac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The occurrence of pathogenic bacteria has emerged as a plausible key component of summer mortalities in mussels. In the current research, four bacterial isolates retrieved from moribund Greenshell࣪ mussels, Perna canaliculus, from a previous summer mortality event, were tentatively identified as Vibrio and Photobacterium species using morpho-biochemical characterization and MALDI-TOF MS and confirmed as V. celticus, P. swingsii, P. rosenbergii, and P. proteolyticum using whole genome sequencing. These isolates were utilized in a laboratory challenge where mussels were injected with cell concentrations ranging from 105 to 109 CFU/mussel. Of the investigated isolates, P. swingsii induced the highest mortality. Additionally, results from quantitative polymerase chain reaction analysis, focusing on known virulence genes were detected in all isolates grown under laboratory conditions. Photobacterium rosenbergii and P. swingsii showed the highest expression levels of these virulence determinants. These results indicate that Photobacterium spp. could be a significant pathogen of P. canaliculus, with possible importance during summer mortality events. By implementing screening methods to detect and monitor Photobacterium concentrations in farmed mussel populations, a better understanding of the host-pathogen relationship can be obtained, aiding the development of a resilient industry in a changing environment.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Diana Jaramillo
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Emily Frost
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Kevin Lee
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao Van Nguyen
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Eileen Kitundu
- Department of Food Sciences and Microbiology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Stephen D J Archer
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Jessica A Ericson
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Oliver Quinn
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Norman L C Ragg
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
18
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
19
|
Fromm K, Boegli A, Ortelli M, Wagner A, Bohn E, Malmsheimer S, Wagner S, Dehio C. Bartonella taylorii: A Model Organism for Studying Bartonella Infection in vitro and in vivo. Front Microbiol 2022; 13:913434. [PMID: 35910598 PMCID: PMC9336547 DOI: 10.3389/fmicb.2022.913434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate Bartonella effector proteins (Beps) into host cells via their VirB/VirD4 type 4 secretion system (T4SS) in order to subvert host cellular functions, thereby leading to the downregulation of innate immune responses. Most studies on the functional analysis of the VirB/VirD4 T4SS and the Beps were performed with the major zoonotic pathogen Bartonella henselae for which efficient in vitro infection protocols have been established. However, its natural host, the cat, is unsuitable as an experimental infection model. In vivo studies were mostly confined to rodent models using rodent-specific Bartonella species, while the in vitro infection protocols devised for B. henselae are not transferable for those pathogens. The disparities of in vitro and in vivo studies in different species have hampered progress in our understanding of Bartonella pathogenesis. Here we describe the murine-specific strain Bartonella taylorii IBS296 as a new model organism facilitating the study of bacterial pathogenesis both in vitro in cell cultures and in vivo in laboratory mice. We implemented the split NanoLuc luciferase-based translocation assay to study BepD translocation through the VirB/VirD4 T4SS. We found increased effector-translocation into host cells if the bacteria were grown on tryptic soy agar (TSA) plates and experienced a temperature shift immediately before infection. The improved infectivity in vitro was correlating to an upregulation of the VirB/VirD4 T4SS. Using our adapted infection protocols, we showed BepD-dependent immunomodulatory phenotypes in vitro. In mice, the implemented growth conditions enabled infection by a massively reduced inoculum without having an impact on the course of the intra-erythrocytic bacteremia. The established model opens new avenues to study the role of the VirB/VirD4 T4SS and the translocated Bep effectors in vitro and in vivo.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexandra Boegli
- Department of Biochemistry, Faculty of Biology and Medicine, Université de Lausanne, Epalinges, Switzerland
| | | | | | - Erwin Bohn
- Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Silke Malmsheimer
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
- Excellence Cluster “Controlling Microbes to Fight Infections” (CMFI), Tübingen, Germany
- Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Dehio,
| |
Collapse
|
20
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
21
|
Borghi S, Antunes A, Haag AF, Spinsanti M, Brignoli T, Ndoni E, Scarlato V, Delany I. Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms 2022; 10:microorganisms10040834. [PMID: 35456883 PMCID: PMC9031163 DOI: 10.3390/microorganisms10040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx of humans, and pathogenic strains can disseminate into the bloodstream, causing septicemia and meningitis. NHBA is a surface-exposed lipoprotein expressed by all N. meningitidis strains in different isoforms. Diverse roles have been reported for NHBA in heparin-mediated serum resistance, biofilm formation, and adherence to host tissues. We determined that temperature controls the expression of NHBA in all strains tested, with increased levels at 30−32 °C compared to 37 °C. Higher NHBA expression at lower temperatures was measurable both at mRNA and protein levels, resulting in higher surface exposure. Detailed molecular analysis indicated that multiple molecular mechanisms are responsible for the thermoregulated NHBA expression. The comparison of mRNA steady-state levels and half-lives at 30 °C and 37 °C demonstrated an increased mRNA stability/translatability at lower temperatures. Protein stability was also impacted, resulting in higher NHBA stability at lower temperatures. Ultimately, increased NHBA expression resulted in higher susceptibility to complement-mediated killing. We propose that NHBA regulation in response to temperature downshift might be physiologically relevant during transmission and the initial step(s) of interaction within the host nasopharynx. Together these data describe the importance of NHBA both as a virulence factor and as a vaccine antigen during neisserial colonization and invasion.
Collapse
Affiliation(s)
- Sara Borghi
- Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Ana Antunes
- MabDesign, 69007 Lyon, France;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, North-Haugh, St Andrews KY16 9TF, UK;
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | | | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Enea Ndoni
- Lonza Group AG, 4057 Basel, Switzerland;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Isabel Delany
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
- Correspondence:
| |
Collapse
|
22
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
23
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
24
|
Briaud P, Frey A, Marino EC, Bastock RA, Zielinski RE, Wiemels RE, Keogh RA, Murphy ER, Shaw LN, Carroll RK. Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. mSphere 2021; 6:e0067621. [PMID: 34612674 PMCID: PMC8510519 DOI: 10.1128/msphere.00676-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.
Collapse
Affiliation(s)
- Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Andrew Frey
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily C. Marino
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Raeven A. Bastock
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | | | | | - Rebecca A. Keogh
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Erin R. Murphy
- Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
25
|
A Shift to Human Body Temperature (37°C) Rapidly Reprograms Multiple Adaptive Responses in Escherichia coli That Would Facilitate Niche Survival and Colonization. J Bacteriol 2021; 203:e0036321. [PMID: 34516284 PMCID: PMC8544407 DOI: 10.1128/jb.00363-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.
Collapse
|
26
|
Minnullina L, Kostennikova Z, Evtugin V, Akosah Y, Sharipova M, Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int Microbiol 2021; 25:111-122. [PMID: 34363151 DOI: 10.1007/s10123-021-00197-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.
Collapse
Affiliation(s)
- Leyla Minnullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia.
| | - Zarina Kostennikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Vladimir Evtugin
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga region) Federal University, Kazan, Russia
| | - Yaw Akosah
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
27
|
Li S, Weng Y, Li X, Yue Z, Chai Z, Zhang X, Gong X, Pan X, Jin Y, Bai F, Cheng Z, Wu W. Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation of exsA in Pseudomonas aeruginosa. Nucleic Acids Res 2021; 49:6756-6770. [PMID: 34139014 PMCID: PMC8266623 DOI: 10.1093/nar/gkab506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The ability to fine tune global gene expression in response to host environment is critical for the virulence of pathogenic bacteria. The host temperature is exploited by the bacteria as a cue for triggering virulence gene expression. However, little is known about the mechanism employed by Pseudomonas aeruginosa to response to host body temperature. CspA family proteins are RNA chaperones that modulate gene expression. Here we explored the functions of P. aeruginosa CspA family proteins and found that CspC (PA0456) controls the bacterial virulence. Combining transcriptomic analyses, RNA-immunoprecipitation and high-throughput sequencing (RIP-Seq), we demonstrated that CspC represses the type III secretion system (T3SS) by binding to the 5' untranslated region of the mRNA of exsA, which encodes the T3SS master regulatory protein. We further demonstrated that acetylation at K41 of the CspC reduces its affinity to nucleic acids. Shifting the culture temperature from 25°C to 37°C or infection of mouse lung increased the CspC acetylation, which derepressed the expression of the T3SS genes, resulting in elevated virulence. Overall, our results identified the regulatory targets of CspC and revealed a regulatory mechanism of the T3SS in response to temperature shift and host in vivo environment.
Collapse
Affiliation(s)
- Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhouyi Chai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuetao Gong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen. Anim Health Res Rev 2021; 22:120-135. [PMID: 34275511 DOI: 10.1017/s1466252321000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.
Collapse
|
29
|
Patil PP, Kumar S, Kaur A, Midha S, Bansal K, Patil PB. Global transcriptome analysis of Stenotrophomonas maltophilia in response to growth at human body temperature. Microb Genom 2021; 7. [PMID: 34252021 PMCID: PMC8477401 DOI: 10.1099/mgen.0.000600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stenotrophomonas maltophilia is a typical example of an environmental originated opportunistic human pathogen, which can thrive at different habitats including the human body and can cause a wide range of infections. It must cope with heat stress during transition from the environment to the human body as the physiological temperature of the human body (37 °C) is higher than environmental niches (22–30 °C). Interestingly, S. rhizophila a phylogenetic neighbour of S. maltophilia within genus Stenotrophomonas is unable to grow at 37 °C. Thus, it is crucial to understand how S. maltophilia is adapted to human body temperature, which could suggest its evolution as an opportunistic human pathogen. In this study, we have performed comparative transcriptome analysis of S. maltophilia grown at 28 and 37 °C as temperature representative for environmental niches and the human body, respectively. RNA-Seq analysis revealed several interesting findings showing alterations in gene-expression levels at 28 and 37 °C, which can play an important role during infection. We have observed downregulation of genes involved in cellular motility, energy production and metabolism, replication and repair whereas upregulation of VirB/D4 type IV secretion system, aerotaxis, cation diffusion facilitator family transporter and LacI family transcriptional regulators at 37 °C. Microscopy and plate assays corroborated altered expression of genes involved in motility. The results obtained enhance our understanding of the strategies employed by S. maltophilia during adaptation towards the human body.
Collapse
Affiliation(s)
- Prashant P Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Samriti Midha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Present address: Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
30
|
Catalan-Moreno A, Cela M, Menendez-Gil P, Irurzun N, Caballero CJ, Caldelari I, Toledo-Arana A. RNA thermoswitches modulate Staphylococcus aureus adaptation to ambient temperatures. Nucleic Acids Res 2021; 49:3409-3426. [PMID: 33660769 PMCID: PMC8034633 DOI: 10.1093/nar/gkab117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5′UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.
Collapse
Affiliation(s)
- Arancha Catalan-Moreno
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Marta Cela
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Pilar Menendez-Gil
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, UPR 9002, F-67000 Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
31
|
Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofuels from micro-organisms represents a possible response to the carbon dioxide mitigation. One open problem is to improve their productivity, in terms of biofuels production. To do so, an improvement of the present model of growth and production is required. However, this implies an understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic approach is developed in order to highlight the fundamental role of the electrochemical potential in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The results link together the electrochemical potential, the membrane electric potential, the pH gradient through the membrane, and the temperature, with the result of improving the thermodynamic approaches, usually introduced in this topic of research.
Collapse
|
32
|
LaVere AA, Hamlin HJ, Lowers RH, Parrott BB, Ezenwa VO. Associations between testosterone and immune activity in alligators depend on bacteria species and temperature. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Russell H. Lowers
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract Kennedy Space Center FL USA
| | - Benjamin B. Parrott
- Odum School of Ecology University of Georgia Athens GA USA
- Savannah River Ecology Laboratory University of Georgia Aiken SC USA
| | - Vanessa O. Ezenwa
- Odum School of Ecology University of Georgia Athens GA USA
- Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens GA USA
| |
Collapse
|
33
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
34
|
Pereira MF, Rossi CC. Overview of rearing and testing conditions and a guide for optimizing Galleria mellonella breeding and use in the laboratory for scientific purposes. APMIS 2020; 128:607-620. [PMID: 32970339 DOI: 10.1111/apm.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The greater wax moth Galleria mellonella is an increasingly popular and consolidated alternative infection model to assess microbial virulence and the effectiveness of antimicrobial compounds. The lack of G. mellonella suppliers aiming at scientific purposes and a lack of well-established protocols for raising and testing these animals may impact results and reproducibility between different laboratories. In this review, we discuss the state of the art of rearing the larvae in situ, providing an overview of breeding and testing conditions commonly used and their influence on larval health and experiments results, from setting up the environment, providing the ideal diet, understanding the effects of pretreatments, choosing the best testing conditions, to exploring the most from the results obtained. Meanwhile, we guide the reader through the most practical ways of dealing with G. mellonella to achieve successful experiments.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Proteomic analysis reveals the temperature-dependent presence of extracytoplasmic peptidases in the biofilm exoproteome of Listeria monocytogenes EGD-e. J Microbiol 2020; 58:761-771. [PMID: 32719941 DOI: 10.1007/s12275-020-9522-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023]
Abstract
The foodborne pathogen Listeria monocytogenes resists environmental stresses by forming biofilms. Because this pathogen transmits between the environment and the host, it must adapt to temperature as an environmental stress. In this study, we aimed to identify which proteins were present depending on the temperature in the biofilms of L. monocytogenes EGD-e. Proteins in the supernatants of biofilms formed at 25°C and 37°C were compared using two-dimensional gel electrophoresis and liquid chromatography with tandem mass spectrometry. The larger number of extracytoplasmic proteins associated with cell wall/membrane/envelop biogenesis was identified from the supernatant of biofilms formed at 25°C (7) than those at 37°C (0). Among the 16 extracytoplasmic proteins detected only at 25°C, three were peptidases, namely Spl, Cwh, and Lmo0186. Moreover, mRNA expression of the three peptidases was higher at 25°C than at 37°C. Interestingly, this adaptation of gene expression to temperature was present in sessile cells but not in dispersed cells. After inhibiting the activity of extracytoplasmic peptidases with a protease inhibitor, we noted that the levels of biofilm biomass increased with higher concentrations of the protease inhibitor only when L. monocytogenes grew biofilms at 25°C and not at 37°C. Overall, our data suggest an effect of temperature on the presence of peptidases in L. monocytogenes biofilms. Additionally, increasing the levels of extracytoplasmic peptidases in biofilms is likely a unique feature for sessile L. monocytogenes that causes a naturally occurring breakdown of biofilms and facilitates the pathogen exiting biofilms and disseminating into the environment.
Collapse
|
36
|
Twittenhoff C, Heroven AK, Mühlen S, Dersch P, Narberhaus F. An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathog 2020; 16:e1008184. [PMID: 31951643 PMCID: PMC6992388 DOI: 10.1371/journal.ppat.1008184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/30/2020] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host’s innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5’-untranslated region (5’-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5’-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens. Bacterial pathogens closely survey the ambient conditions and induce virulence genes only at appropriate conditions. Upon host contact, many pathogens secrete toxins in order to subvert host defense systems. We find that such a secreted toxin in enteropathogenic Yersinia pseudotuberculosis is produced only at host body temperature. This regulation depends on a temperature-responsive RNA structure, an RNA thermometer, in the 5’-untranslated region of the toxin mRNA, which prevents translation at low temperatures when the bacterium is outside the host. Preventing melting of the RNA structure at 37°C by nucleotide substitutions that stabilize base pairing resulted in avirulent Yersinia strains unable to infect mice. Given that similar RNA thermometer-like structures exist upstream of related toxin genes in various bacterial pathogens, we propose that RNA thermometer-mediated toxin production is an evolutionary conserved mechanism. Interfering with opening of such regulatory structures might thus be a promising strategy targeting a broad spectrum of bacterial pathogens.
Collapse
Affiliation(s)
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
37
|
Nimnoi P, Pongsilp N. Distribution and expression of virulence genes in potentially pathogenic bacteria isolated from seafood in Thailand. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1842502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pongrawee Nimnoi
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand
| | - Neelawan Pongsilp
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
38
|
Khan MS, Shahzad N, Arshad S, Shariff AH. Seasonal Variation in Acute Cholecystitis: An Analysis of Cholecystectomies Spanning Three Decades. J Surg Res 2019; 246:78-82. [PMID: 31562989 DOI: 10.1016/j.jss.2019.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Seasonal variation in the occurrence of medical illnesses reflects the effect of the environment, provides insight into pathogenesis, and can assist health care administrators in allocating resources accordingly. Seasonal variation has been reported in various infectious and surgical diseases, but has been rarely studied in acute cholecystitis. Our objective was to study seasonal variation in acute cholecystitis at our institution. METHODS We performed a retrospective analysis of patients who underwent cholecystectomy for acute cholecystitis from January 1988 to December 2018. Chi-square goodness-of-fit test was used to analyze seasonality of acute cholecystitis adjusting for variation in number of days between seasons. The number of days for seasons were taken as 92, 92, 91, and 90.25 for spring, summer, fall, and winter, respectively. RESULTS Overall, 3924 patients underwent cholecystectomy for acute cholecystitis during the study period. The frequency of cholecystectomies performed varied between months (minimum February n = 259, maximum July n = 372, P < 0.001) and seasons (minimum winter n = 789, maximum summer n = 1101 P < 0.001). Age and gender distribution across months and seasons was similar (P > 0.05). CONCLUSIONS Our findings confirm seasonal variation in occurrence of acute cholecystitis with summer season witnessing the most and the winter season encountering the least patients with acute cholecystitis. Validation of our findings through prospectively collected data at national level is the way forward.
Collapse
Affiliation(s)
| | - Noman Shahzad
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Sumaiyya Arshad
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | |
Collapse
|
39
|
Zhang X, Gao R, Liu Y, Cong Y, Zhang D, Zhang Y, Yang X, Lu C, Shen Y. Anti-virulence activities of biflavonoids from Mesua ferrea L. flower. Drug Discov Ther 2019; 13:222-227. [PMID: 31534074 DOI: 10.5582/ddt.2019.01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Based on the anti-virulence activity on Salmonella, the ethyl acetate extract (EAE) of Mesua ferrea flower was investigated for its chemical constituents. Ten purified compounds were identified and assayed for their inhibitory activity against Type III secretion system (T3SS) by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots experiments. We found the biflavonoids, rhusflavanone and mesuaferrone B, exhibited inhibitory effects on the secretion of Salmonella pathogenicity island 1 (SPI-1) effector proteins (SipA, B, C and D) without effecting the bacterial growth. In addition, 5, 6, 6'-trihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid (6) is a new natural product from M. ferrea flower.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Rongrong Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yuhe Cong
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Yu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
40
|
Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K, Deborggraeve S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis 2019; 13:e0007416. [PMID: 31125353 PMCID: PMC6553789 DOI: 10.1371/journal.pntd.0007416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. Methodology/Principle findings We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering different geographical origins) and one reference strain were grown in vitro to the exponential phase. Levels of orthologous proteins quantified in all four serovars and within the typhoidal and non-typhoidal groups were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Conclusions/Significance Our comparative proteome analysis indicated differences in the expression of surface proteins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins between Salmonella Typhimurium and Enteritidis. Our findings may guide future development of novel diagnostics and vaccines, as well as understanding of disease progression. With an estimated 20 million typhoid cases and an even higher number of non-typhoid cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the bacterial species Salmonella enterica and over 2500 different serovars exist, of which four are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella infections. The proteome is the entire set of proteins that is expressed by a genome and the core proteome are all orthologous proteins detected in a given sample set. In this study we have investigated differential expression of the core proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating molecules. Our comparative proteome analysis indicated differences in the expression of surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expression may guide the development of novel diagnostics and vaccines for Salmonella, as well as understanding of disease.
Collapse
Affiliation(s)
- Sara Saleh
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
41
|
Rudenko I, Ni B, Glatter T, Sourjik V. Inefficient Secretion of Anti-sigma Factor FlgM Inhibits Bacterial Motility at High Temperature. iScience 2019; 16:145-154. [PMID: 31170626 PMCID: PMC6551532 DOI: 10.1016/j.isci.2019.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
Temperature is one of the key cues that enable microorganisms to adjust their physiology in response to environmental changes. Here we show that motility is the major cellular function of Escherichia coli that is differentially regulated between growth at normal host temperature of 37°C and the febrile temperature of 42°C. Expression of both class II and class III flagellar genes is reduced at 42°C because of lowered level of the upstream activator FlhD. Class III genes are additionally repressed because of the destabilization and malfunction of secretion apparatus at high temperature, which prevents secretion of the anti-sigma factor FlgM. This mechanism of repression apparently accelerates loss of motility at 42°C. We hypothesize that E. coli perceives high temperature as a sign of inflammation, downregulating flagella to escape detection by the immune system of the host. Secretion-dependent coupling of gene expression to the environmental temperature is likely common among many bacteria. E. coli motility is tightly turned off at febrile temperature (42°C) Repression of motility is achieved at two levels of hierarchical gene regulation Lowered FlhD level reduces expression of all flagellar genes Impaired FlgM secretion tightens repression of class III genes
Collapse
Affiliation(s)
- Iaroslav Rudenko
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Bin Ni
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany.
| |
Collapse
|
42
|
An unconventional RNA-based thermosensor within the 5' UTR of Staphylococcus aureus cidA. PLoS One 2019; 14:e0214521. [PMID: 30933991 PMCID: PMC6443170 DOI: 10.1371/journal.pone.0214521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5’ UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.
Collapse
|
43
|
Prezioso SM, Duong DM, Kuiper EG, Deng Q, Albertí S, Conn GL, Goldberg JB. Trimethylation of Elongation Factor-Tu by the Dual Thermoregulated Methyltransferase EftM Does Not Impact Its Canonical Function in Translation. Sci Rep 2019; 9:3553. [PMID: 30837495 PMCID: PMC6401129 DOI: 10.1038/s41598-019-39331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
The Pseudomonas aeruginosa methyltransferase EftM trimethylates elongation factor-Tu (EF-Tu) on lysine 5 to form a post-translational modification important for initial bacterial adherence to host epithelial cells. EftM methyltransferase activity is directly temperature regulated. The protein stability of EftM is tuned with a melting temperature (Tm) around 37 °C such that the enzyme is stable and active at 25 °C, but is completely inactivated by protein unfolding at higher temperatures. This leads to higher observable levels of EF-Tu trimethylation at the lower temperature. Here we report an additional layer of thermoregulation resulting in lower eftM mRNA transcript level at 37 °C compared to 25 °C and show that this regulation occurs at the level of transcription initiation. To begin to define the impact of this system on P. aeruginosa physiology, we demonstrate that EF-Tu is the only observable substrate for EftM. Further, we interrogated the proteome of three different wild-type P. aeruginosa strains, their eftM mutants, and these mutants complemented with eftM and conclude that trimethylation of EF-Tu by EftM does not impact EF-Tu’s canonical function in translation. In addition to furthering our knowledge of this Pseudomonas virulence factor, this study provides an intriguing example of a protein with multiple layers of thermoregulation.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Kuiper
- Biochemistry, Cell and Developmental Biology (BCDB) Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Qiudong Deng
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, 30322, USA
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Emory Antibiotic Resistance Center, Atlanta, GA, 30322, USA. .,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, GA, 30322, USA.
| |
Collapse
|
44
|
Huang L, Liu W, Jiang Q, Zuo Y, Su Y, Zhao L, Qin Y, Yan Q. Integration of Transcriptomic and Proteomic Approaches Reveals the Temperature-Dependent Virulence of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2018; 8:207. [PMID: 29977868 PMCID: PMC6021524 DOI: 10.3389/fcimb.2018.00207] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative pathogen that is associated with diseases of multiple fish, mainly at 15–20°C. Although fish disease caused by P. plecoglossicida has led to significant economic losses, the mechanisms of the temperature-dependent virulence are unclear. Here, we identify potential pathogenicity mechanisms and demonstrate the direct regulation of several virulence factors by temperature with transcriptomic and proteomic analyses, quantitative real-time PCR (qRT-PCR), RNAi, pyoverdine (PVD) quantification, the chrome azurol S (CAS) assay, growth curve measurements, a biofilm assay, and artificial infection. The principal component analysis, the heat map generation and hierarchical clustering, together with the functional annotations of the differentially expressed genes (DEGs) demonstrated that, under different growth temperatures, the animation and focus of P. plecoglossicida are quite different, which may be the key to pathogenicity. Genes involved in PVD synthesis and in the type VI secretion system (T6SS) are specifically upregulated at the virulent temperature of 18°C. Silencing of the PVD-synthesis-related genes reduces the iron acquisition, growth, biofilm formation, distribution in host organs and virulence of the bacteria. Silencing of the T6SS genes also leads to the reduction of biofilm formation, distribution in host organs and virulence. These findings reveal that temperature regulates multiple virulence mechanisms in P. plecoglossicida, especially through iron acquisition and T6SS secretion. Meanwhile, integration of transcriptomic and proteomic data provide us with a new perspective into the pathogenesis of P. plecoglossicida, which would not have been easy to catch at either the protein or mRNA differential analyses alone, thus illustrating the power of multi-omics analyses in microbiology.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenjia Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
45
|
Geographic variation in pneumococcal vaccine efficacy estimated from dynamic modeling of epidemiological data post-PCV7. Sci Rep 2017; 7:3049. [PMID: 28607461 PMCID: PMC5468270 DOI: 10.1038/s41598-017-02955-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
Although mean efficacy of multivalent pneumococcus vaccines has been intensively studied, variance in vaccine efficacy (VE) has been overlooked. Different net individual protection across settings can be driven by environmental conditions, local serotype and clonal composition, as well as by socio-demographic and genetic host factors. Understanding efficacy variation has implications for population-level effectiveness and other eco-evolutionary feedbacks. Here I show that realized VE can vary across epidemiological settings, by applying a multi-site-one-model approach to data post-vaccination. I analyse serotype prevalence dynamics following PCV7, in asymptomatic carriage in children attending day care in Portugal, Norway, France, Greece, Hungary and Hong-Kong. Model fitting to each dataset provides site-specific estimates for vaccine efficacy against acquisition, and pneumococcal transmission parameters. According to this model, variable serotype replacement across sites can be explained through variable PCV7 efficacy, ranging from 40% in Norway to 10% in Hong-Kong. While the details of how this effect is achieved remain to be determined, here I report three factors negatively associated with the VE readout, including initial prevalence of serotype 19F, daily mean temperature, and the Gini index. The study warrants more attention on local modulators of vaccine performance and calls for predictive frameworks within and across populations.
Collapse
|
46
|
Vargas S, Millán-Chiu BE, Arvizu-Medrano SM, Loske AM, Rodríguez R. Dynamic light scattering: A fast and reliable method to analyze bacterial growth during the lag phase. J Microbiol Methods 2017; 137:34-39. [DOI: 10.1016/j.mimet.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/08/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
|
47
|
Seydlova G, Beranova J, Bibova I, Dienstbier A, Drzmisek J, Masin J, Fiser R, Konopasek I, Vecerek B. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches. J Biol Chem 2017; 292:8048-8058. [PMID: 28348085 DOI: 10.1074/jbc.m117.781559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.
Collapse
Affiliation(s)
- Gabriela Seydlova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Jana Beranova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ilona Bibova
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Ana Dienstbier
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jakub Drzmisek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jiri Masin
- Molecular Biology of Bacterial Pathogens, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | - Radovan Fiser
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ivo Konopasek
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Branislav Vecerek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| |
Collapse
|
48
|
Larsonneur F, Martin FA, Mallet A, Martinez-Gil M, Semetey V, Ghigo JM, Beloin C. Functional analysis of Escherichia coli Yad fimbriae reveals their potential role in environmental persistence. Environ Microbiol 2016; 18:5228-5248. [PMID: 27696649 DOI: 10.1111/1462-2920.13559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces. Functional characterisation of Yad fimbriae were undertook, and YadN was identified as the most abundant and potential major pilin, and YadC as the potential tip-protein of Yad fimbriae. It was showed that Yad production participates to binding of E. coli K-12 to human eukaryotic cells (Caco-2) and inhibits macrophage phagocytosis, but also enhances E. coli K-12 binding to xylose, a major component of the plant cell wall, through its tip-lectin YadC. Consistently, it was demonstrated that Yad production provides E. coli with a competitive advantage in colonising corn seed rhizospheres. The latter phenotype is correlated with induction of Yad expression at temperatures below 37°C, and under anaerobic conditions, through a complex regulatory network. Taken together, these results suggest that Yad fimbriae are versatile adhesins that beyond potential capacities to modulate host-pathogen interactions might contribute to E. coli environmental persistence.
Collapse
Affiliation(s)
- Fanny Larsonneur
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France.,Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC), Université Paris Diderot, Cellule Pasteur, rue du Dr. Roux 75724, Paris cedex, France
| | - Fernando A Martin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Adeline Mallet
- Institut Pasteur, Ultrapole, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Vincent Semetey
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, Paris, 75005, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| |
Collapse
|
49
|
González Plaza JJ, Hulak N, Zhumadilov Z, Akilzhanova A. Fever as an important resource for infectious diseases research. Intractable Rare Dis Res 2016; 5:97-102. [PMID: 27195192 PMCID: PMC4869589 DOI: 10.5582/irdr.2016.01009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
Fever or pyrexia is a process where normal body temperature is raised over homeostasis conditions. Although many effects of fever over the immune system have been known for a long time, it has not been until recent studies when these effects have been evaluated in several infection processes. Results have been promising, as they have reported new ways of regulation, especially in RNA molecules. In light of these new studies, it seems important to start to evaluate the effects of pyrexia in current research efforts in host-pathogen interactions. Viruses and bacteria are responsible for different types of infectious diseases, and while it is of paramount importance to understand the mechanisms of infection, potential effects of fever on this process may have been overlooked. This is especially relevant because during the course of many infectious diseases the organism develops fever. Due to the lack of specific treatments for many of those afflictions, experimental evaluation in fever-like conditions can potentially bring new insights into the infection process and can ultimately help to develop treatments. The aim of this review is to present evidence that the temperature increase during fever affects the way the infection takes place, for both the pathogen and the host.
Collapse
Affiliation(s)
- Juan José González Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Zagreb, Croatia
| | - Nataša Hulak
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Zhaxybay Zhumadilov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| |
Collapse
|
50
|
Owings JP, Kuiper EG, Prezioso SM, Meisner J, Varga JJ, Zelinskaya N, Dammer EB, Duong DM, Seyfried NT, Albertí S, Conn GL, Goldberg JB. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase. J Biol Chem 2015; 291:3280-90. [PMID: 26677219 DOI: 10.1074/jbc.m115.706853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa.
Collapse
Affiliation(s)
- Joshua P Owings
- From the Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep and the Emory-Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Emily G Kuiper
- the Department of Biochemistry and the Biochemistry, Cell, and Developmental Biology Program and
| | - Samantha M Prezioso
- From the Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep and the Emory-Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Jeffrey Meisner
- From the Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep and the Emory-Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| | - John J Varga
- From the Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep and the Emory-Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | | | | | | | | | - Sebastián Albertí
- the Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Palma de Mallorca, 07122 Spain
| | | | - Joanna B Goldberg
- From the Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep and the Emory-Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908,
| |
Collapse
|