1
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2024; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Lee W, Lee SM, Jung ST. Unlocking the Power of Complement-Dependent Cytotoxicity: Engineering Strategies for the Development of Potent Therapeutic Antibodies for Cancer Treatments. BioDrugs 2023; 37:637-648. [PMID: 37486566 DOI: 10.1007/s40259-023-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The complement system is a crucial part of the innate immune response, providing defense against invading pathogens and cancer cells. Recently, it has become evident that the complement system plays a significant role in anticancer activities, particularly through complement-dependent cytotoxicity (CDC), alongside antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP). With the discovery of new roles for serum complement molecules in the human immune system, various approaches are being pursued to develop CDC-enhanced antibody therapeutics. In this review, we focus on successful antibody engineering strategies for enhancing CDC, analyzing the lessons learned and the limitations of each approach. Furthermore, we outline potential pathways for the development of antibody therapeutics specifically aimed at enhancing CDC for superior therapeutic efficacy in the future.
Collapse
Affiliation(s)
- Wonju Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Center, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Fan Y, Liao J, Wang Y, Wang Z, Zheng H, Wang Y. miR-132-3p regulates antibody-mediated complement-dependent cytotoxicity in colon cancer cells by directly targeting CD55. Clin Exp Immunol 2023; 211:57-67. [PMID: 36571232 PMCID: PMC9993456 DOI: 10.1093/cei/uxac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.
Collapse
Affiliation(s)
- Yu Fan
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liao
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zheng
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Wang
- Correspondence: Yanping Wang, 5# Gongxing Street, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Shrestha P, Astter Y, Davis DA, Zhou T, Yuan CM, Ramaswami R, Wang HW, Lurain K, Yarchoan R. Daratumumab induces cell-mediated cytotoxicity of primary effusion lymphoma and is active against refractory disease. Oncoimmunology 2023; 12:2163784. [PMID: 36632565 PMCID: PMC9828731 DOI: 10.1080/2162402x.2022.2163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Primary effusion lymphoma (PEL), an aggressive non-Hodgkin lymphoma caused by Kaposi sarcoma-associated herpesvirus (KSHV), lacks standard therapy and has a median survival of 10-22 months with combination chemotherapy. PEL is a tumor of plasmablast-like B cells generally expressing CD38, the target of daratumumab (Dara). Initially, we assessed PEL cells from eight patients and established that each expressed high levels of CD38 by flow cytometry. PEL cell lines were also evaluated and most had high CD38 expression. We then assessed Dara's effects on complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of PEL cell lines as well as its clinical benefits on two patients with PEL. Despite high CD38 expression, Dara did not induce CDC of PEL cell lines, due in part to high levels of the complement-inhibitory proteins, CD55 and CD59. However, Dara induced significant and dose-dependent increases in ADCC, particularly in those lines with high CD38 levels. Two FDA-approved drugs, all trans-retinoic acid (ATRA) and pomalidomide (Pom), significantly increased surface CD38 levels in low-CD38 expressing PEL cell lines, resulting in increased Dara-induced ADCC. Two patients with refractory PEL were treated with Dara alone or in combination with Pom. One patient with leptomeningeal PEL had a complete response to Dara and Pom combination treatment. Others had improvement in performance status and resolution of malignant ascites with Dara alone. Together, these data support the use of Dara monotherapy or in combination with ATRA or Pom as a potential therapeutic option for PEL.
Collapse
Affiliation(s)
- Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yana Astter
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ting Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Constance M. Yuan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,CONTACT Robert Yarchoan National Institutes of Health, Building 10, Rm. 6N106, 10 Center Drive, Bethesda, MD20892-1868, USA
| |
Collapse
|
6
|
NANOG confers resistance to complement-dependent cytotoxicity in immune-edited tumor cells through up-regulating CD59. Sci Rep 2022; 12:8652. [PMID: 35606403 PMCID: PMC9126891 DOI: 10.1038/s41598-022-12692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer immunoediting drives the adaptation of tumor cells to host immune surveillance. Previously, we have demonstrated that immunoediting driven by cytotoxic T lymphocytes (CTLs) enriches NANOG+ tumor cells with immune-refractory properties. Here, we found that CTL-mediated immune pressure triggered cross-resistance of tumor cells to the complement system, a part of the innate immune system. In this process, NANOG upregulated the membrane-bound complement regulatory protein (mCRP) CD59 through promoter occupancy, thereby contributing to the resistance of tumor cells against complement-dependent cytotoxicity (CDC). Notably, targeting of NANOG sensitized the immune-refractory tumor cells to trastuzumab-mediated CDC. Collectively, our results revealed a possible mechanism through which selection imposed by T-cell based immunotherapy triggered complement-resistant phenotypes in the tumor microenvironment (TME), by establishing a firm molecular link between NANOG and CD59 in immune-edited tumor cells. We believe these results hold important implications for the clinical application of CDC-mediated therapeutic antibody.
Collapse
|
7
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
8
|
In Silico Designed Gain-of-Function Variants of Complement C2 Support Cytocidal Activity of Anticancer Monoclonal Antibodies. Cancers (Basel) 2022; 14:cancers14051270. [PMID: 35267578 PMCID: PMC8909654 DOI: 10.3390/cancers14051270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular target for the classical complement pathway (CP) is defined by surface-bound immunoglobulins. Therefore, numerous anticancer monoclonal antibodies (mAbs) exploit the CP as their effector mechanism. Conversely, the alternative complement pathway (AP) is spontaneously induced on the host and microbial surfaces, but complement inhibitors on host cells prevent its downstream processing. Gain-of-function (GoF) mutations in the AP components that oppose physiological regulation directly predispose carriers to autoimmune/inflammatory diseases. Based on the homology between AP and CP components, we modified the CP component C2 so that it emulates the known pathogenic mutations in the AP component, factor B. By using tumor cell lines and patient-derived leukemic cells along with a set of clinically approved immunotherapeutics, we showed that the supplementation of serum with recombinant GoF C2 variants not only enhances the cytocidal effect of type I anti-CD20 mAbs rituximab and ofatumumab, but also lowers the threshold of mAbs necessary for the efficient lysis of tumor cells and efficiently exploits the leftovers of the drug accumulated in patients' sera after the previous infusion. Moreover, we demonstrate that GoF C2 acts in concert with other therapeutic mAbs, such as type II anti-CD20, anti-CD22, and anti-CD38 specimens, for overcoming cancer cells resistance to complement attack.
Collapse
|
9
|
Tsao LC, Crosby EJ, Trotter TN, Wei J, Wang T, Yang X, Summers AN, Lei G, Rabiola CA, Chodosh LA, Muller WJ, Lyerly HK, Hartman ZC. Trastuzumab/Pertuzumab combination therapy stimulates anti-tumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight 2022; 7:155636. [PMID: 35167491 PMCID: PMC8986081 DOI: 10.1172/jci.insight.155636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care treatment for advanced HER2+ breast cancers (BC) is comprised of two HER2-specific monoclonal antibodies (mAb), Trastuzumab (T) and Pertuzumab (P) with chemotherapy. While this combination (T+P) is highly effective, its synergistic mechanism of action (MOA) is not completely known. Initial studies had demonstrated that Pertuzumab suppressed HER2 hetero-dimerization as the potential therapeutic MOA, thus the improved outcome associated with the T+P combination MOA compared to Trastuzumab alone has been widely reported as being due to Pertuzumab-mediated suppression of HER2 signaling in combination with Trastuzumab-mediated induction of anti-tumor immunity. Unraveling this MOA may be critical to extend this combination strategy to other antigens or other cancers, as well as improving this current treatment modality. Using novel murine and human versions of Pertuzumab, we found it induced both Antibody-Dependent-Cellular-Phagocytosis (ADCP) by tumor-associated macrophages and suppression of HER2 oncogenic signaling. Most significantly, we identified that only T+P combination therapy, but not when either antibody used in isolation, allows for the activation of the classical complement pathway, resulting in both direct complement-dependent cytotoxicity (CDC) as well as complement-dependent cellular phagocytosis (CDCP) of HER2+ BC cells. Notably, we show that tumor expression of C1q was positively associated with survival outcome in HER2+ BC patients, whereas expression of complement regulators CD55 and CD59 were inversely correlated, suggesting the importance of complement activity in clinical outcomes. Accordingly, inhibition of C1 activity in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant anti-tumor MOA for T+P therapy that may be functionally enhanced to augment therapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, United States of America
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, United States of America
| | - Timothy N Trotter
- Department of Surgery, Duke University, Durham, United States of America
| | - Junping Wei
- Department of Surgery, Duke University, Durham, United States of America
| | - Tao Wang
- Department of Surgery, Duke University, Durham, United States of America
| | - Xiao Yang
- Department of Surgery, Duke University, Durham, United States of America
| | - Amanda N Summers
- Department of Surgery, Duke University, Durham, United States of America
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, United States of America
| | | | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States of America
| | | | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, United States of America
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, United States of America
| |
Collapse
|
10
|
Rituximab induces rapid blood repopulation by CLL cells mediated through their release from immune niches and complement exhaustion. Leuk Res 2021; 111:106684. [PMID: 34438120 DOI: 10.1016/j.leukres.2021.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
The in vivo rituximab effects in B cell malignancies are only partially understood. Here we analyzed in a large chronic lymphocytic leukemia (CLL) cohort (n = 80) the inter-patient variability in CLL cell count reduction within the first 24 h of rituximab administration in vivo, and a phenomenon of blood repopulation by malignant cells after anti-CD20 antibody therapy. Larger CLL cell elimination after rituximab infusion was associated with lower pre-therapy CLL cell counts, higher CD20 levels, and the non-exhausted capacity of complement-dependent cytotoxicity (CDC). The absolute amount of cell-surface CD20 molecules (CD20 density x CLL lymphocytosis) was a predictor for complement exhaustion during therapy. We also describe that a highly variable decrease in CLL cell counts at 5 h (88 %-2%) following rituximab infusion is accompanied in most patients by peripheral blood repopulation with CLL cells at 24 h, and in ∼20 % of patients, this resulted in CLL counts higher than before therapy. We provide evidence that CLL cells recrudescence is linked with i) CDC exhaustion, which leads to the formation of an insufficient amount of membrane attack complexes, likely resulting in temporary retention of surviving rituximab-opsonized cells by the mononuclear-phagocyte system (followed by their release back to blood), and ii) CLL cells regression from immune niches (CXCR4dimCD5bright intraclonal subpopulation). Patients with major peripheral blood CLL cell repopulation exhibited a longer time-to-progression after chemoimmunotherapy compared to patients with lower or no repopulation, suggesting chemotherapy vulnerability of CLL cells that repopulate the blood.
Collapse
|
11
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
12
|
Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, Lin Y, Huang R, Yang Z, Zhang Y, Hu Y. Integrative Analysis of Complement System to Prognosis and Immune Infiltrating in Colon Cancer and Gastric Cancer. Front Oncol 2021; 10:553297. [PMID: 33614473 PMCID: PMC7886994 DOI: 10.3389/fonc.2020.553297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background The complement system acts as an integral part of the innate immune response, which acts primarily to remove pathogens and injured cells. Emerging evidence has shown the activation of the immune regulatory function of complements in the tumor microenvironment (TME). We revealed the expression levels of various complements in human cancers and their role in tumor prognosis and immune infiltration. Methods The differential expression of complements was explored via the Tumor Immune Estimation Resource (TIMER) site and the Oncomine database. To investigate whether these differentially expressed complements have correlation with the prognosis of gastric cancer (GC) and colon cancer, their impact on survival was assessed using the PrognoScan database and Kaplan-Meier plotter. The correlations between complements and tumor immune-infiltrating levels and immune gene markers were statistically explored in TIMER based on Spearman's correlation coefficients and p-values. Results In two colon cancer cohorts, an increased expression level of DAF (CD55) has statistically significant correlation with poor disease-free survival (DFS). High C3, CR4, and C5aR1 expression levels were significantly related with poor prognosis in GC patients. In addition, C3, CR4, and C5aR1 expression was positively related to the tumor purity and infiltration levels of multiple immune cells in stomach adenocarcinoma (STAD). Moreover, the expression levels of C3, CR4, and C5aR1 were also strongly correlated with various immune marker sets, such as those of tumor-associated macrophages (TAMs), M1 and M2 macrophages, T cell exhaustion, Tregs, and DCs, in STAD. Additionally, CD55 has positive correlation with few immune cell infiltration levels in colon adenocarcinoma (COAD), but its correlation with immune marker sets was not statistically significant. Conclusion These findings confirm the relationship between various complements and tumor prognosis and immune infiltration in colon cancer and GC. CD55 may serve as an indicator on the survival prognosis of patients with colon cancer. Furthermore, as biomarkers for poor prognosis in GC, complements C3, CR4, and C5aR1 may provide potential biological targets for GC immunotherapy.
Collapse
Affiliation(s)
- Dandan Bao
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Chenghao Zhang
- Emergency department, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Longlong Li
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Sichuan, China
| | - Haihong Wang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiuyan Li
- Department of Oncology, Wenzhou Medical University, Wenzhou, China
| | - Leilei Ni
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yinfeng Lin
- Department of Oncology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Rong Huang
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Zhangwei Yang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yan Zhang
- Department of Gastroenterology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yiren Hu
- Department of General Surgery, Medical College of Soochow University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
13
|
The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies (Basel) 2020; 9:antib9040058. [PMID: 33126570 PMCID: PMC7709112 DOI: 10.3390/antib9040058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Unconjugated anti-cancer IgG1 monoclonal antibodies (mAbs) activate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells and antibody-dependent cellular phagocytosis (ADCP) by macrophages, and these activities are thought to be important mechanisms of action for many of these mAbs in vivo. Several mAbs also activate the classical complement pathway and promote complement-dependent cytotoxicity (CDC), although with very different levels of efficacy, depending on the mAb, the target antigen, and the tumor type. Recent studies have unraveled the various structural factors that define why some IgG1 mAbs are strong mediators of CDC, whereas others are not. The role of complement activation and membrane inhibitors expressed by tumor cells, most notably CD55 and CD59, has also been quite extensively studied, but how much these affect the resistance of tumors in vivo to IgG1 therapeutic mAbs still remains incompletely understood. Recent studies have demonstrated that complement activation has multiple effects beyond target cell lysis, affecting both innate and adaptive immunity mediated by soluble complement fragments, such as C3a and C5a, and by stimulating complement receptors expressed by immune cells, including NK cells, neutrophils, macrophages, T cells, and dendritic cells. Complement activation can enhance ADCC and ADCP and may contribute to the vaccine effect of mAbs. These different aspects of complement are also briefly reviewed in the specific context of FDA-approved therapeutic anti-cancer IgG1 mAbs.
Collapse
|
14
|
Zou L, Song G, Gu S, Kong L, Sun S, Yang L, Cho WC. Mechanism and Treatment of Rituximab Resistance in Diffuse Large Bcell Lymphoma. Curr Cancer Drug Targets 2020; 19:681-687. [PMID: 31142246 DOI: 10.2174/1568009619666190126125251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype B non-Hodgkin lymphoma in adults. After rituximab being introduced to treat DLBCL, the current first-line treatment is R-CHOP regimen. This regimen greatly improves patient's prognosis, however, relapsed or refractory cases are commonly seen, mainly due to the resistance to rituximab. Although a large number of experiments have been conducted to investigate rituximab resistance, the exac mechanisms and solutions are still unclear. This review mainly explores the possible mechanisms oft rituximab resistance and current new effective treatments for rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Gu
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Kong
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Shiqi Sun
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Li Yang
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
15
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Lebegge E, Arnouk SM, Bardet PMR, Kiss M, Raes G, Van Ginderachter JA. Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Front Immunol 2020; 11:1395. [PMID: 32733461 PMCID: PMC7363805 DOI: 10.3389/fimmu.2020.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decade, cancer immunotherapy has been steering immune responses toward cancer cell eradication. However, these immunotherapeutic approaches are hampered by the tumor-promoting nature of myeloid cells, including monocytes, macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly, the most primordial defense responses employed by myeloid cells against pathogens, such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis, actually seem to favor cancer progression. In this review, we discuss how rudimentary defense mechanisms deployed by myeloid cells can promote tumor progression.
Collapse
Affiliation(s)
- Els Lebegge
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M Arnouk
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Pauline M R Bardet
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
17
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
18
|
Vlaicu SI, Tatomir A, Rus V, Rus H. Role of C5b-9 and RGC-32 in Cancer. Front Immunol 2019; 10:1054. [PMID: 31156630 PMCID: PMC6530392 DOI: 10.3389/fimmu.2019.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alexandru Tatomir
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
19
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
20
|
Felberg A, Urban A, Borowska A, Stasiłojć G, Taszner M, Hellmann A, Blom AM, Okrój M. Mutations resulting in the formation of hyperactive complement convertases support cytocidal effect of anti-CD20 immunotherapeutics. Cancer Immunol Immunother 2019; 68:587-598. [PMID: 30725204 PMCID: PMC6447516 DOI: 10.1007/s00262-019-02304-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
Anti-CD20 monoclonal antibodies (mAbs) rituximab and ofatumumab are potent activators of the classical complement pathway, and have been approved for the treatment of B-cell malignancies. However, complement exhaustion and overexpression of complement inhibitors by cancer cells diminish their therapeutic potential. The strategies of targeting membrane complement inhibitors by function-blocking antibodies and the supplementation with fresh frozen plasma have been proposed to overcome tumour cell resistance. We present a novel approach, which utilizes gain-of-function variants of complement factor B (FB), a component of alternative C3/C5 convertases, which augment mAb-activated reactions through a positive feedback mechanism called an amplification loop. If complement concentration is limited, an addition of quadruple gain-of-function FB mutant p.D279G p.F286L p.K323E p.Y363A (or selected single mutants) results in significantly increased complement-mediated lysis of ofatumumab-resistant tumour cells, as well as the complete lysis of moderately sensitive cells. Importantly, this effect cannot be achieved by further increasing ofatumumab concentration. Potentiation of cytotoxic effect towards moderately sensitive cells was less apparent at physiological serum concentration. However, an addition of hyperactive FB could compensate the loss of cytotoxic potential of serum collected from the NHL and CLL patients after infusion of rituximab. Residual levels of rituximab in such sera, in combination with added FB, were able to efficiently lyse tumour cells. We suggest that the administration of gain-of-function variants of FB can restore cytotoxic potential of complement-exhausted serum and maximize the therapeutic effect of circulating anti-CD20 mAbs.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Aleksandra Urban
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Anna Borowska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Michał Taszner
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Maria Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland.
| |
Collapse
|
21
|
Okrój M, Potempa J. Complement Activation as a Helping Hand for Inflammophilic Pathogens and Cancer. Front Immunol 2019; 9:3125. [PMID: 30687327 PMCID: PMC6335266 DOI: 10.3389/fimmu.2018.03125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The complement system, an evolutionarily ancient component of innate immunity, is capable of protecting hosts from invading pathogens, either directly, by lysis of target cells, or indirectly, by mobilization of host immune mechanisms. However, this potentially cytotoxic cascade must be tightly regulated, since improperly controlled complement can damage healthy cells and tissues. The practical importance of this axis is highlighted when impairment of complement regulators or bacterial mechanisms of complement evasion result in pathogenic conditions. Recognition of complement as a "double-edged sword" is widely acknowledged, but another, currently underappreciated aspect of complement function has emerged as an important player in homeostatic balance-the dual outcome of complement-mediated inflammation. In most cases, the proinflammatory properties of complement are beneficial to the host. However, certain pathogens have developed the ability to utilize local inflammation as a source of nutrients and as a way to establish a niche for further colonization. Such a strategy can be illustrated in the example of periodontitis. Interestingly, certain tumors also seem to benefit from complement activation products, which promote a proangiogenic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
22
|
Shah AK, Hartel G, Brown I, Winterford C, Na R, Cao KAL, Spicer BA, Dunstone MA, Phillips WA, Lord RV, Barbour AP, Watson DI, Joshi V, Whiteman DC, Hill MM. Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus. Mol Cell Proteomics 2018; 17:2324-2334. [PMID: 30097534 DOI: 10.1074/mcp.ra118.000734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is thought to develop from asymptomatic Barrett's esophagus (BE) with a low annual rate of conversion. Current endoscopy surveillance of BE patients is probably not cost-effective. Previously, we discovered serum glycoprotein biomarker candidates which could discriminate BE patients from EAC. Here, we aimed to validate candidate serum glycoprotein biomarkers in independent cohorts, and to develop a biomarker candidate panel for BE surveillance. Serum glycoprotein biomarker candidates were measured in 301 serum samples collected from Australia (4 states) and the United States (1 clinic) using previously established lectin magnetic bead array (LeMBA) coupled multiple reaction monitoring mass spectrometry (MRM-MS) tier 3 assay. The area under receiver operating characteristic curve (AUROC) was calculated as a measure of discrimination, and multivariate recursive partitioning was used to formulate a multi-marker panel for BE surveillance. Complement C9 (C9), gelsolin (GSN), serum paraoxonase/arylesterase 1 (PON1) and serum paraoxonase/lactonase 3 (PON3) were validated as diagnostic glycoprotein biomarkers in lectin pull-down samples for EAC across both cohorts. A panel of 10 serum glycoprotein biomarker candidates discriminated BE patients not requiring intervention (BE± low grade dysplasia) from those requiring intervention (BE with high grade dysplasia (BE-HGD) or EAC) with an AUROC value of 0.93. Tissue expression of C9 was found to be induced in BE, dysplastic BE and EAC. In longitudinal samples from subjects that have progressed toward EAC, levels of serum C9 were significantly (p < 0.05) increased with disease progression in EPHA (erythroagglutinin from Phaseolus vulgaris) and NPL (Narcissus pseudonarcissus lectin) pull-down samples. The results confirm alteration of complement pathway glycoproteins during BE-EAC pathogenesis. Further prospective clinical validation of the confirmed biomarker candidates in a large cohort is warranted, prior to development of a first-line BE surveillance blood test.
Collapse
Affiliation(s)
- Alok K Shah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian Brown
- Envoi Pathology, Brisbane, Queensland, Australia
| | - Clay Winterford
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Renhua Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Melbourne Integrative Genomics and School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Reginald V Lord
- St Vincent's Centre for Applied Medical Research and University of Notre Dame School of Medicine, Sydney, Australia
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David I Watson
- Discipline of Surgery, Flinders University, Adelaide, South Australia, Australia
| | - Virendra Joshi
- Ochsner Health System, Gastroenterology, New Orleans, LA
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Bordron A, Bagacean C, Mohr A, Tempescul A, Bendaoud B, Deshayes S, Dalbies F, Buors C, Saad H, Berthou C, Pers JO, Renaudineau Y. Resistance to complement activation, cell membrane hypersialylation and relapses in chronic lymphocytic leukemia patients treated with rituximab and chemotherapy. Oncotarget 2018; 9:31590-31605. [PMID: 30167081 PMCID: PMC6114972 DOI: 10.18632/oncotarget.25657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/04/2018] [Indexed: 01/27/2023] Open
Abstract
The anti-CD20-specific monoclonal antibody rituximab (RTX), in combination with chemotherapy, is commonly used for primary treatment in chronic lymphocytic leukemia (CLL). However, relapses remain important and activation of the complement pathway is one of the mechanisms by which RTX generates the destruction of B cells directly by complement-dependent cytotoxicity (CDC), or indirectly by antibody-dependent cellular phagocytosis. In this study, the RTX capacity to induce CDC was established in 69 untreated CLL patients, this cohort including 34 patients tested before the initiation of RTX-chemotherapy. In vitro CDC-resistance to RTX predicts lower response rates to RTX-chemotherapy and shorter treatment free survival. Furthermore, the predictive value of CDC-resistance was independent from the clinical, cytogenetic and FcγR3A V158F polymorphism status. In contrast, CLL cell resistance to CDC predominates in IGHV unmutated patients and was related to an important α2-6 sialyl transferase activity, which in turn increases cell surface α2-6 hypersialylation. Suspected factors associated with resistance to CDC (CD20, CD55, CD59, factor H, GM1, and sphingomyelin) were not differentially expressed or recruited between the two CLL groups. Altogether, results provide evidence that testing RTX capacity to induce CDC in vitro represents an independent predictive factor of therapeutic effects of RTX, and that α2-6 hypersialylation in CLL cells controls RTX response through the control of the complement pathway. At a time when CLL therapy is moving towards chemo-free treatments, further experiments are required to determine whether performing an initial in vitro assay to appreciate CLL CDC resistance might be useful to select patients.
Collapse
Affiliation(s)
- Anne Bordron
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Cristina Bagacean
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| | - Audrey Mohr
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Adrian Tempescul
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Boutahar Bendaoud
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| | - Stéphanie Deshayes
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Florence Dalbies
- Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Caroline Buors
- Laboratory of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Hussam Saad
- Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Christian Berthou
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Jacques-Olivier Pers
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Yves Renaudineau
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| |
Collapse
|
24
|
Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology 2017; 6:e1358335. [PMID: 29147620 DOI: 10.1080/2162402x.2017.1358335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
25
|
Winkler MT, Bushey RT, Gottlin EB, Campa MJ, Guadalupe ES, Volkheimer AD, Weinberg JB, Patz EF. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody. PLoS One 2017; 12:e0179841. [PMID: 28658265 PMCID: PMC5489178 DOI: 10.1371/journal.pone.0179841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Collapse
Affiliation(s)
- Mark T. Winkler
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ryan T. Bushey
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael J. Campa
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eross S. Guadalupe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alicia D. Volkheimer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
| | - J. Brice Weinberg
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Edward F. Patz
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Loeff FC, van Egmond HME, Nijmeijer BA, Falkenburg JHF, Halkes CJ, Jedema I. Complement-dependent cytotoxicity induced by therapeutic antibodies in B-cell acute lymphoblastic leukemia is dictated by target antigen expression levels and augmented by loss of membrane-bound complement inhibitors. Leuk Lymphoma 2017; 58:1-14. [DOI: 10.1080/10428194.2017.1281411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Floris C. Loeff
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bart A. Nijmeijer
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Regulation of B cell functions by Toll-like receptors and complement. Immunol Lett 2016; 178:37-44. [DOI: 10.1016/j.imlet.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
|
28
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
29
|
Laverdière I, Boileau M, Herold T, Rak J, Berdel WE, Wörmann B, Hiddemann W, Spiekermann K, Bohlander SK, Eppert K. Complement cascade gene expression defines novel prognostic subgroups of acute myeloid leukemia. Exp Hematol 2016; 44:1039-1043.e10. [PMID: 27473565 DOI: 10.1016/j.exphem.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
The involvement of the complement pathway in cancer is supported by a growing body of evidence, and yet its role in acute myeloid leukemia (AML) has not been extensively studied. We examined the expression of 87 genes in the complement, coagulation, and fibrinolysis-proteolytic pathways in 374 cytogenetically normal AML samples and observed that these samples can be divided into subgroups on the basis of complement gene expression. Three complement regulatory genes were linked to poor outcome as individual factors in a multivariate analysis (CFH, CFD, and SERPING1) in multiple cohorts. The combined expression of these genes was significantly associated with poorer overall survival in two cohorts of patients <60 years of age, independent of other factors (p ≤ 0.0004). For patients with an intermediate molecular risk, this three-gene risk marker enabled stratification of patients into prognostic subgroups with survival ranging from 17.4% to 44.1%. Thus, the expression of complement pathway genes is linked to outcome in AML, and a three-gene risk marker may improve the risk assessment of patients.
Collapse
Affiliation(s)
- Isabelle Laverdière
- Research Institute of the McGill University Health Centre and McGill University, Montreal, Canada
| | - Meaghan Boileau
- Research Institute of the McGill University Health Centre and McGill University, Montreal, Canada
| | - Tobias Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Janusz Rak
- Research Institute of the McGill University Health Centre and McGill University, Montreal, Canada
| | - Wolfgang E Berdel
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | - Bernhard Wörmann
- Department of Medicine, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre and McGill University, Montreal, Canada.
| |
Collapse
|
30
|
Cimmino F, Avitabile M, Pezone L, Scalia G, Montanaro D, Andreozzi M, Terracciano L, Iolascon A, Capasso M. CD55 is a HIF-2α marker with anti-adhesive and pro-invading properties in neuroblastoma. Oncogenesis 2016; 5:e212. [PMID: 27043658 PMCID: PMC4848835 DOI: 10.1038/oncsis.2016.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 02/08/2023] Open
Abstract
CD55 has been revealed to have an important role in tumor genesis, and presence of small populations of cells with strong CD55 expression would be sufficient to predict poor prognosis of several tumors. In our study we revealed that CD55 is a novel target of hypoxia-inducible factor HIF-2α in neuroblastoma (NB) cells. We show that HIF-2α expression is sufficient to sustain stem-like features of NB cells, whereas CD55 protein upon HIF-2α expression contributes to growth of colonies and to invasion of cells, but not to stemness features. Interestingly, in NB tissues, CD55 expression is limited to quite a small population of cells that are HIF-2α positive, and the gene expression of CD55 in the NB data set reveals that the presence of CD55(high) affects prognosis of NB patients. The functional characterization of CD55-positive populations within heterogeneous NB monoclonal cell lines shows that CD55 has pro-invading and anti-adhesive properties that might provide the basis for the ability of solid tumors to survive as microscopic residual disease. The easy accessibility to CD55 membrane antigen will offer the possibility of a novel antibody approach in the treatment of recurrent tumors and will provide a ready target for antibody-based visualization in NB diagnosis and prognosis.
Collapse
Affiliation(s)
- F Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - L Pezone
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Dipartimento di Medicina, Scuola di Medicina e Chirurgia, Università degli Studi di Verona, Verona, Italy
| | - G Scalia
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - D Montanaro
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Andreozzi
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - L Terracciano
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - A Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
31
|
Stasiłojć G, Österborg A, Blom AM, Okrój M. New perspectives on complement mediated immunotherapy. Cancer Treat Rev 2016; 45:68-75. [DOI: 10.1016/j.ctrv.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
|
32
|
Devarapu SK, Mamidi S, Plöger F, Dill O, Blixt O, Kirschfink M, Schwartz-Albiez R. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors. Int J Cancer 2016; 138:2963-73. [PMID: 26830059 DOI: 10.1002/ijc.30025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 12/21/2022]
Abstract
A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies.
Collapse
Affiliation(s)
| | - Srinivas Mamidi
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Ola Blixt
- Center for Glycomics, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Mamidi S, Höne S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology 2015; 222:45-54. [PMID: 26686908 DOI: 10.1016/j.imbio.2015.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Constituting a part of the innate immune system, the complement system consists of over 50 proteins either acting as part of a 3-branch activation cascade, a well-differentiated regulatory system in fluid phase or on each tissue, or as receptors translating the activation signal to multiple cellular effector functions. Complement serves as first line of defence against infections from bacteria, viruses and parasites by orchestrating the immune response through opsonisation, recruitment of immune cells to the site of infection and direct cell lysis. Complement is generally recognised as a protective mechanism against the formation of tumours in humans, but is often limited by various resistance mechanisms interfering with its cytotoxic action, now considered as a great barrier of successful antibody-based immunotherapy. However, recent studies also indicate a pro-tumourigenic potential of complement in certain cancers and under certain conditions. In this review, we present recent findings on the possible dual role of complement in destroying cancer, especially if resistance mechanisms are blocked, but also under certain inflammatory conditions-promoting tumour development.
Collapse
Affiliation(s)
| | - Simon Höne
- Institute for Immunology, University of Heidelberg, Germany
| | | |
Collapse
|
34
|
Korycka-Wołowiec A, Wołowiec D, Robak T. Ofatumumab for treating chronic lymphocytic leukemia: a safety profile. Expert Opin Drug Saf 2015; 14:1945-59. [DOI: 10.1517/14740338.2015.1113253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|