1
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
2
|
Carlsson G. Effect-based environmental monitoring for thyroid disruption in Swedish amphibian tadpoles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:454. [PMID: 31222463 PMCID: PMC6586702 DOI: 10.1007/s10661-019-7590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
It is well-known that the metamorphosis process in amphibians is dependent on thyroid hormones. Laboratory studies have shown that several environmental contaminants can affect the function of thyroid hormones leading to alterations in the amphibian metamorphosis. The basic idea of the present study was to elucidate if the amphibian metamorphosis might be a useful tool as biomarker for effect-based environmental monitoring, examining wild tadpoles for potential thyroid hormone disruption. A laboratory test was performed to identify the responses from exposure to 6-propylthiouracil (PTU), which has a well-known mechanism on the thyroid system, on Swedish tadpoles from the Rana genus. This was followed by an environmental monitoring study where tadpoles of Rana arvalis, R. temporaria, and Bufo bufo were sampled from various sites in Sweden. Morphological data such as body weight, histopathological measurements of the thyroid glands, and environmental parameters were recorded. The results revealed that Rana tadpoles respond similar as other amphibians to PTU exposure, with interrupted development and increased size relative to the developmental stage. Data on some wild tadpoles showed similar features as the PTU exposed, such as high body weight, thus suggesting potential thyroid disrupting effects. However, histological evaluation of thyroid glands and pesticide analyses of the water revealed no clear evidence of chemical interactions. To a minor degree, the changes in body weight may be explained by natural circumstances such as pH, forest cover, and temperature. The present study cannot fully explain whether the high body weights recorded in some tadpoles have natural or chemical explanations. However, the study reveals that it is clearly achievable to catch tadpoles in suitable stages for the use in this type of biomonitoring and that the use of these biomarkers for assessment of thyroid disruption seems to be highly relevant.
Collapse
Affiliation(s)
- Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
3
|
Huff M, da Silveira W, Starr Hazard E, Courtney SM, Renaud L, Hardiman G. Systems analysis of the liver transcriptome in adult male zebrafish exposed to the non-ionic surfactant nonylphenol. Gen Comp Endocrinol 2019; 271:1-14. [PMID: 30563618 DOI: 10.1016/j.ygcen.2018.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Nonylphenol (NP) arises from the environmental degradation of nonylphenol ethoxylates. It is a ubiquitous environmental contaminant and has been detected at levels up to 167 nM in rivers in the United States. NP is an endocrine disruptor (ED) that can act as an agonist for estrogen receptors. The Adverse Outcome Pathway (AOP) framework defines an adverse outcome as the causal result of a series of molecular initiating events (MIEs) and key events (KEs) that lead to altered phenotypes. This study examined the liver transcriptome after a 21 day exposure to NP and 17β-estradiol (E2) by exploiting the zebrafish (Danio rerio) as a systems toxicology model. The goal of this study was to tease out non-estrogenic genomic signatures associated with NP exposure using DNA microarray and RNA sequencing. Our experimental design included E2 as a positive and potent estrogenic control in order to effectively compare and contrast the 2 compounds. This approach allowed us to identify hepatic transcriptomic perturbations that could serve as MIEs for adverse health outcomes in response to NP. Our results revealed that exposure to NP was associated with differential expression (DE) of genes associated with the development of steatosis, disruption of metabolism, altered immune response, and metabolism of reactive oxygen species, further highlighting NP as a chemical of emerging concern (CEC).
Collapse
Affiliation(s)
- Matthew Huff
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC 29415, United States; MS in Biomedical Sciences Program, Medical University of South Carolina, United States
| | - Willian da Silveira
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC 29415, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, United States
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC 29415, United States
| | - Sean M Courtney
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC 29415, United States
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, United States
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC 29415, United States; Department of Medicine, Medical University of South Carolina, United States; Department of Medicine, University of California San Diego, United States; Department of Public Health Sciences, Medical University of South Carolina, United States; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, United States; Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
4
|
Renaud L, Agarwal N, Richards DJ, Falcinelli S, Hazard ES, Carnevali O, Hyde J, Hardiman G. Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:926-937. [PMID: 30469287 DOI: 10.1016/j.envpol.2018.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | | | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC, USA
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA; Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA; MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC, USA; School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
5
|
Andrzejczyk N, Sakamoto K, Armstrong J, Schlenk D. Examining the role of estrogenic activity and ocean temperature on declines of a coastal demersal flatfish population near the municipal wastewater outfall of Orange County, California, USA. MARINE POLLUTION BULLETIN 2018; 137:129-136. [PMID: 30503419 DOI: 10.1016/j.marpolbul.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plant effluent introduces a mixture of pollutants into marine environments; however, the impacts of chronic sublethal exposures on populations are often unclear. Presence of estrogenic agents in sediments and uptake of these compounds by demersal flatfishes has been reported at the Orange County Sanitation District (OCSD) wastewater outfall. Furthermore, estrogenic activity has been identified in male flatfish in the area, potentially contributing to observed population declines in the OCSD region. Rising ocean temperatures may further contribute to flatfish declines as relationships between temperature and abundance have been reported in the Southern California Bight. To investigate declines, sex ratios, condition factor, organ health indices, hormones, and vitellogenin were quantified in flatfish collected at OCSD outfall and reference sites. Additionally, historical temperature data was examined for trends with population abundances. Rather than being linked to estrogenic activity, results indicated that population declines were more correlated to increases in ocean temperature.
Collapse
Affiliation(s)
- Nicolette Andrzejczyk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Ken Sakamoto
- Orange County Sanitation District, Fountain Valley, CA 92708, USA
| | - Jeff Armstrong
- Orange County Sanitation District, Fountain Valley, CA 92708, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Carlsson G, Tydén E. Development and evaluation of gene expression biomarkers for chemical pollution in common frog (Rana temporaria) tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33131-33139. [PMID: 30251045 PMCID: PMC6245027 DOI: 10.1007/s11356-018-3260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Pollutants have been proposed as one factor in the worldwide declines of amphibian species and populations. Applying gene expression analysis of liver RNA in tadpoles would be a possible approach for biomarker measurements to increase knowledge of ecological health in amphibian populations. The major aim of this study was to explore the relevance of applying gene expression analyses of cytochrome p450 (cyp1a), metallothionein (mt), and vitellogenin (vtg) in Rana temporaria tadpoles. Therefore, tadpoles were exposed for 1 week to β-naphthoflavone (BNF), cadmium chloride (CdCl2), and ethinylestradiol (EE2). Primers were developed for RT-qPCR to analyze gene expression in livers. The result showed that the methods for gene expression analyses of cyp1a, mt, and vtg as well as the reference gene β-actin (bact) were successful not only in R. temporaria but also in another amphibian, Rana arvalis. The gene expression of cyp1a was induced by BNF and the gene expression of mt was induced by CdCl2 but no significant induction was recorded in vtg expression after exposure to EE2. Gene expressions varied throughout the tadpole metamorphosis development, in particular for vtg. Overall, the use of gene expression of cyp1a and mt as biomarkers in wild tadpoles seems promising while the use of vtg seems less relevant due to high natural variation and low background expression. The study shows that variations in gene expressions between tadpoles of different genetic origin are important to consider when evaluating the data. The present study has thus increased the background knowledge about gene expression applicability as biomarker for tadpoles.
Collapse
Affiliation(s)
- Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 7028, SE-750 07, Uppsala, Sweden.
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
7
|
Richards DJ, Renaud L, Agarwal N, Starr Hazard E, Hyde J, Hardiman G. De Novo Hepatic Transcriptome Assembly and Systems Level Analysis of Three Species of Dietary Fish, Sardinops sagax, Scomber japonicus, and Pleuronichthys verticalis. Genes (Basel) 2018; 9:genes9110521. [PMID: 30366465 PMCID: PMC6266404 DOI: 10.3390/genes9110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The monitoring of marine species as sentinels for ecosystem health has long been a valuable tool worldwide, providing insight into how both anthropogenic pollution and naturally occurring phenomena (i.e., harmful algal blooms) may lead to human and animal dietary concerns. The marine environments contain many contaminants of anthropogenic origin that have sufficient similarities to steroid and thyroid hormones, to potentially disrupt normal endocrine physiology in humans, fish, and other animals. An appropriate understanding of the effects of these endocrine disrupting chemicals (EDCs) on forage fish (e.g., sardine, anchovy, mackerel) can lead to significant insight into how these contaminants may affect local ecosystems in addition to their potential impacts on human health. With advancements in molecular tools (e.g., high-throughput sequencing, HTS), a genomics approach offers a robust toolkit to discover putative genetic biomarkers in fish exposed to these chemicals. However, the lack of available sequence information for non-model species has limited the development of these genomic toolkits. Using HTS and de novo assembly technology, the present study aimed to establish, for the first time for Sardinops sagax (Pacific sardine), Scomber japonicas (Pacific chub mackerel) and Pleuronichthys verticalis (hornyhead turbot), a de novo global transcriptome database of the liver, the primary organ involved in detoxification. The assembled transcriptomes provide a foundation for further downstream validation, comparative genomic analysis and biomarker development for future applications in ecotoxicogenomic studies, as well as environmental evaluation (e.g., climate change) and public health safety (e.g., dietary screening).
Collapse
Affiliation(s)
- Dylan J Richards
- Bioengineering Department, Clemson University, Charleston, SC 29425, USA.
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA 92182, USA.
| | - E Starr Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
- Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA 92037, USA.
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA 92182, USA.
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
8
|
Miccoli A, Maradonna F, De Felice A, Caputo Barucchi V, Estonba A, Genangeli M, Vittori S, Leonori I, Carnevali O. Detection of endocrine disrupting chemicals and evidence of their effects on the HPG axis of the European anchovy Engraulis encrasicolus. MARINE ENVIRONMENTAL RESEARCH 2017; 127:137-147. [PMID: 28411869 DOI: 10.1016/j.marenvres.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Natural/synthetic Endocrine Disrupting Chemicals (EDCs) may display estrogenic activity and a lower potency than 17β-estradiol. Nonetheless, their concentrations and additive effects can affect the endocrine system and reproductive processes related to the Hypothalamic-Pituitary-Gonadal (HPG) axis. Because of their persistence in both the environment and biological systems, they ultimately target multi-level predators, including humans. We detected presence and effects of xenobiotics on wild anchovy Engraulis encrasicolus in the Western Adriatic Sea. Twenty-one PCBs and five organochlorines were detected on the order of ng g-1; vitellogenin, vitellogenin receptor and genes encoding for the zona radiata proteins were evaluated in gonad and/or liver and found transcribed in male specimens; in addition, intersex was histologically identified in the 13% of testis. Our results have developed the understanding of the European anchovy's reproductive toxicological risk and our approach could assist the comprehension of the complex dynamics of commercially relevant Teleost species.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy; CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Andrea De Felice
- CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Vincenzo Caputo Barucchi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.
| | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Iole Leonori
- CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|