1
|
Chen Y, Jiang Y, Sarvanantharajah N, Apirakkan O, Yang M, Milcova A, Topinka J, Abbate V, Arlt VM, Stürzenbaum SR. Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research. ENVIRONMENT INTERNATIONAL 2024; 194:109187. [PMID: 39671827 DOI: 10.1016/j.envint.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[a]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode Caenorhabditis elegans is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T > G (A > C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical 32P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yang Jiang
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, Netherlands
| | - Nirujah Sarvanantharajah
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Orapan Apirakkan
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mengqi Yang
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alena Milcova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Toxicology Department, GAB Consulting GmbH, 69126 Heidelberg, Germany
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
Horowitz LB, Shaham S. Apoptotic and Nonapoptotic Cell Death in Caenorhabditis elegans Development. Annu Rev Genet 2024; 58:113-134. [PMID: 38955209 DOI: 10.1146/annurev-genet-111523-102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode Caenorhabditis elegans, a powerful model system for PCD research. Recent studies in C. elegans also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during C. elegans development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
3
|
Wang E, Jiang Y, Zhao C. Structural and physiological functions of Caenorhabditis elegans epidermis. Heliyon 2024; 10:e38680. [PMID: 39397934 PMCID: PMC11471208 DOI: 10.1016/j.heliyon.2024.e38680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Research on the skin is continuously evolving, and it is imperative to select a streamlined and efficient research model. Caenorhabditis elegans is a free-leaving nematode whose epidermis serves as the primary barrier epithelium, composed of a collagen matrix. Differentiation of the epidermis begins in the middle of embryonic development, including polarization of the cytoskeleton and formation of cell junctions. Cuticle secretion is one of the main developmental and physiological features of the epidermis. Mutations in the collagen genes of individual worms lead to cuticle defects, thereby changing the shape of the animals. The complete genome sequence of C. elegans indicates that more than 170 different collagen genes may be related to this structure. Collagen is a structural protein that plays an important role in the development of extracellular matrix. Different collagen genes are expressed at different stages of matrix synthesis, which may help form specific interactions between different collagens. The differentiated epidermis also plays a key role in the transmission of hormonal signals, fat storage, and ion homeostasis and is closely related to the development and function of the nervous system. The epidermis also provides passive and active defenses against pathogens that penetrate the skin and can repair wounds. In addition, age-dependent epidermal degeneration is a prominent feature of aging and may affect aging and lifespan. This review we highlight recent findings of the structure and related physiological functions of the cuticle of C. elegans. In contrast to previous studies, we offer novel insights into the utilization of C. elegans as valuable models for skin-related investigations. It also encourages the use of C. elegans as a skin model, and its high-throughput screening properties facilitate the acceleration of fundamental research in skin-related diseases.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| |
Collapse
|
4
|
Restrepo LJ, Baehrecke EH. Regulation and Functions of Autophagy During Animal Development. J Mol Biol 2024; 436:168473. [PMID: 38311234 PMCID: PMC11260256 DOI: 10.1016/j.jmb.2024.168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Autophagy is used to degrade cytoplasmic materials, and is critical to maintain cell and organismal health in diverse animals. Here we discuss the regulation, utilization and impact of autophagy on development, including roles in oogenesis, spermatogenesis and embryogenesis in animals. We also describe how autophagy influences postembryonic development in the context of neuronal and cardiac development, wound healing, and tissue regeneration. We describe recent studies of selective autophagy during development, including mitochondria-selective autophagy and endoplasmic reticulum (ER)-selective autophagy. Studies of developing model systems have also been used to discover novel regulators of autophagy, and we explain how studies of autophagy in these physiologically relevant systems are advancing our understanding of this important catabolic process.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA.
| |
Collapse
|
5
|
Mo A, Liang Y, Cao X, Jiang J, Liu Y, Cao X, Qiu Y, He D. Polymer chain extenders induce significant toxicity through DAF-16 and SKN-1 pathways in Caenorhabditis elegans: A comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134730. [PMID: 38797076 DOI: 10.1016/j.jhazmat.2024.134730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Polymer chain extenders, commonly used in plastic production, have garnered increasing attention due to their potential environmental impacts. However, a comprehensive understanding of their ecological risks remains largely unknown. In this study, we employed the model organism Caenorhabditis elegans to investigate toxicological profiles of ten commonly-used chain extenders. Exposure to environmentally relevant concentrations of these chain extenders (ranging from 0.1 µg L-1 to 10 mg L-1) caused significant variations in toxicity. Lethality assays demonstrated the LC50 values ranged from 92.42 µg L-1 to 1553.65 mg L-1, indicating marked differences in acute toxicity. Sublethal exposures could inhibit nematodes' growth, shorten lifespan, and induce locomotor deficits, neuronal damage, and reproductive toxicity. Molecular analyses further elucidated the involvement of the DAF-16 and SKN-1 signaling pathways, as evidenced by upregulated expression of genes including ctl-1,2,3, sod-3, gcs-1, and gst-4. It implicates these pathways in mediating oxidative stress and toxicities induced by chain extenders. Particularly, hexamethylene diisocyanate and diallyl maleate exhibited markedly high toxicity among the chain extenders, as revealed through a comparative analysis of multiple endpoints. These findings demonstrate the potential ecotoxicological risks of polymer chain extenders, and suggest the need for more rigorous environmental safety assessments.
Collapse
Affiliation(s)
- Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
6
|
Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Semin Cell Dev Biol 2024; 154:14-22. [PMID: 36792437 DOI: 10.1016/j.semcdb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Collapse
Affiliation(s)
| | | | | | - Piya Ghose
- The University of Texas at Arlington, USA.
| |
Collapse
|
7
|
Sánchez-Martín P, Kriegenburg F, Alves L, Adam J, Elsaesser J, Babic R, Mancilla H, Licheva M, Tascher G, Münch C, Eimer S, Kraft C. ULK1-mediated phosphorylation regulates the conserved role of YKT6 in autophagy. J Cell Sci 2023; 136:jcs260546. [PMID: 36644903 PMCID: PMC10022743 DOI: 10.1242/jcs.260546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ludovico Alves
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Julius Adam
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
An Z, Chiang WC, Fernández ÁF, Franco LH, He C, Huang SY, Lee E, Liu Y, Sebti S, Shoji-Kawata S, Sirasanagandla S, Wang RC, Wei Y, Zhao Y, Vega-Rubin-de-Celis S. Beth Levine’s Legacy: From the Discovery of BECN1 to Therapies. A Mentees’ Perspective. Front Cell Dev Biol 2022; 10:891332. [PMID: 35832792 PMCID: PMC9273008 DOI: 10.3389/fcell.2022.891332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.
Collapse
Affiliation(s)
- Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Álvaro F. Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis H. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - CongCong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Eunmyong Lee
- InnoCure Therapeutics Inc., Gyeonggi-do, South Korea
| | - Yang Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Salwa Sebti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Richard C. Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Silvia Vega-Rubin-de-Celis
- Institute for Cell Biology (Cancer Research), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, ,
| |
Collapse
|
9
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Peña-Ramos O, Chiao L, Liu X, Yu X, Yao T, He H, Zhou Z. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Caenorhabditis elegans. eLife 2022; 11:72466. [PMID: 34982028 PMCID: PMC8769646 DOI: 10.7554/elife.72466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported to facilitate phagocytosis in mammals, it is the canonical double-membrane autophagosomes that facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.
Collapse
Affiliation(s)
- Omar Peña-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xiaomeng Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Tianyou Yao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Henry He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Fan L, Wang L, Guo H, Zou J. The pivotal protein profile between the conjoined twins and normal mosquitofish Gambusia affinis based on iTRAQ proteomic analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:939-950. [PMID: 33864177 DOI: 10.1007/s10695-021-00951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The fish abnormal embryonic development has attracted public attention in the recent few years. In this study, an iTRAQ proteomic analysis of mosquitofish between conjoined twins and normal fishes is applied for the first time by using the genome database of mosquitofish. Three thousand four hundred ninety proteins were identified with 304 differentially expressed proteins (DEPs). One hundred six differentially upregulated proteins (DUPs) and 198 differentially downregulated proteins (DDPs) were identified between the conjoined twins and normal mosquitofish groups. Notably, the proteins related to lipid and proteolysis were the important GO terms for the DUPs while response to light stimulus and response to radiation were the most enriched GO terms for the DDPs. The proteins related to lysosome, apoptosis, autophagy, and phagosome were the functional KEGG pathway for the DUPs while most of the pathways were related to cardiovascular for the DDPs. This study expatiated a pivotal protein profile between the conjoined twins and normal mosquitofish which can provide a conference for fish embryonic development.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Lei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Ghose P, Wehman AM. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Curr Top Dev Biol 2020; 144:409-432. [PMID: 33992160 DOI: 10.1016/bs.ctdb.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis is an essential process by which cellular debris and pathogens are cleared from the environment. Cells extend their plasma membrane to engulf objects and contain them within a limiting membrane for isolation from the cytosol or for intracellular degradation in phagolysosomes. The basic mechanisms of phagocytosis and intracellular clearance are well conserved between animals. Indeed, much of our understanding is derived from studies on the nematode worm, Caenorhabditis elegans. Here, we review the latest progress in understanding the mechanisms and functions of phagocytic clearance from C. elegans studies. In particular, we highlight new insights into phagocytic signaling pathways, phagosome formation and phagolysosome resolution, as well as the challenges in studying these cyclic processes.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, University of Texas, Arlington, TX, United States.
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| |
Collapse
|
13
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
14
|
Gao H, Khawar MB, Li W. Essential role of autophagy in resource allocation during sexual reproduction. Autophagy 2019; 16:18-27. [PMID: 31203720 DOI: 10.1080/15548627.2019.1628543] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sexual reproduction is the most common form of reproduction among eukaryotes, which is characterized by a series of massive cellular or tissue renovations. Recent studies have revealed novel functions of autophagy during sexual reproductive processes, ranging from yeast to mammals. In mammals, autophagy is indispensable for spermatogenesis and oogenesis, and it participates in early embryonic development and maternal-fetus crosstalk to ensure the development of embryos or fetuses. Thus, autophagy provides the molecular basis for resource allocation among parents and their offspring, providing an important way to benefit the next generation.Abbreviations: ATG: autophagy-related; Becn1: beclin 1, autophagy related; CMA: chaperone-mediated autophagy; epg: ectopic PGL granules; ES: ectoplasmic specialization; EVTs: extravillous trophoblasts; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PCD: programmed cell death; PTB: preterm birth; STB: syncytiotrophoblast.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
16
|
Abstract
Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.
Collapse
|
17
|
Jenzer C, Simionato E, Largeau C, Scarcelli V, Lefebvre C, Legouis R. Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy 2018; 15:228-241. [PMID: 30160610 DOI: 10.1080/15548627.2018.1512452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis and macroautophagy/autophagy are 2 processes involved in lysosome-mediated clearance of extracellular and intracellular components, respectively. Recent studies have identified the recruitment of the autophagic protein LC3 during phagocytosis of apoptotic corpses in what is now called LC3-associated phagocytosis (LAP). LAP is a distinct process from autophagy but it relies on some members of the autophagy pathway to allow efficient degradation of the phagocytosed cargo. We investigated whether both LC3/LGG-2 and GABARAP/LGG-1 are involved in phagocytosis of apoptotic corpses during embryonic development of Caenorhabditis elegans. We discovered that both LGG-1 and LGG-2 are involved in the correct elimination of apoptotic corpses, but that they have different functions. lgg-1 and lgg-2 mutants present a delay in phagocytosis of apoptotic cells but genetic analyses indicate that LGG-1 and LGG-2 act upstream and downstream of the engulfment pathways, respectively. Moreover, LGG-1 and LGG-2 display different cellular localizations with enrichment in apoptotic corpses and phagocytic cells, respectively. For both LGG-1 and LGG-2, subcellular localization is vesicular and dependent on UNC-51/ULK1, BEC-1/BECN1 and the lipidation machinery, indicating that their functions during phagocytosis of apoptotic corpses mainly rely on autophagy. Finally, we show that LGG-1 is involved in the exposure of the 'eat-me signal' phosphatidylserine at the surface of the apoptotic cell to allow its recognition by the phagocytic cell, whereas LGG-2 is involved in later steps of phagocytosis to allow efficient cell corpse clearance by mediating the maturation/degradation of the phagosome.
Collapse
Affiliation(s)
- Céline Jenzer
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Elena Simionato
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Céline Largeau
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Vincent Scarcelli
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Christophe Lefebvre
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Renaud Legouis
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| |
Collapse
|
18
|
Billes V, Kovács T, Manzéger A, Lőrincz P, Szincsák S, Regős Á, Kulcsár PI, Korcsmáros T, Lukácsovich T, Hoffmann G, Erdélyi M, Mihály J, Takács-Vellai K, Sass M, Vellai T. Developmentally regulated autophagy is required for eye formation in Drosophila. Autophagy 2018; 14:1499-1519. [PMID: 29940806 PMCID: PMC6135572 DOI: 10.1080/15548627.2018.1454569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
The compound eye of the fruit fly Drosophila melanogaster is one of the most intensively studied and best understood model organs in the field of developmental genetics. Herein we demonstrate that autophagy, an evolutionarily conserved selfdegradation process of eukaryotic cells, is essential for eye development in this organism. Autophagic structures accumulate in a specific pattern in the developing eye disc, predominantly in the morphogenetic furrow (MF) and differentiation zone. Silencing of several autophagy genes (Atg) in the eye primordium severely affects the morphology of the adult eye through triggering ectopic cell death. In Atg mutant genetic backgrounds however genetic compensatory mechanisms largely rescue autophagic activity in, and thereby normal morphogenesis of, this organ. We also show that in the eye disc the expression of a key autophagy gene, Atg8a, is controlled in a complex manner by the anterior Hox paralog Lab (Labial), a master regulator of early development. Atg8a transcription is repressed in front of, while activated along, the MF by Lab. The amount of autophagic structures then remains elevated behind the moving MF. These results indicate that eye development in Drosophila depends on the cell death-suppressing and differentiating effects of the autophagic process. This novel, developmentally regulated function of autophagy in the morphogenesis of the compound eye may shed light on a more fundamental role for cellular self-digestion in differentiation and organ formation than previously thought. ABBREVIATIONS αTub84B, α-Tubulin at 84B; Act5C, Actin5C; AO, acridine orange; Atg, autophagy-related; Ato, Atonal; CASP3, caspase 3; Dcr-2; Dicer-2; Dfd, Deformed; DZ, differentiation zone; eGFP, enhanced green fluorescent protein; EM, electron microscopy; exd, extradenticle; ey, eyeless; FLP, flippase recombinase; FRT, FLP recognition target; Gal4, gene encoding the yeast transcription activator protein GAL4; GFP, green fluorescent protein; GMR, Glass multimer reporter; Hox, homeobox; hth, homothorax; lab, labial; L3F, L3 feeding larval stage; L3W, L3 wandering larval stage; lf, loss-of-function; MAP1LC3, microtubule-associated protein 1 light chain 3; MF, morphogenetic furrow; PE, phosphatidylethanolamine; PBS, phosphate-buffered saline; PI3K/PtdIns3K, class III phosphatidylinositol 3-kinase; PZ, proliferation zone; Ref(2)P, refractory to sigma P, RFP, red fluorescent protein; RNAi, RNA interference; RpL32, Ribosomal protein L32; RT-PCR, reverse transcription-coupled polymerase chain reaction; S.D., standard deviation; SQSTM1, Sequestosome-1, Tor, Target of rapamycin; TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay; UAS, upstream activation sequence; qPCR, quantitative real-time polymerase chain reaction; w, white.
Collapse
Affiliation(s)
- Viktor Billes
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Anna Manzéger
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Sára Szincsák
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Regős
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Gyula Hoffmann
- Department of Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | | | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0704-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Boya P, Codogno P, Rodriguez-Muela N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development 2018; 145:145/4/dev146506. [PMID: 29483129 DOI: 10.1242/dev.146506] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a catabolic pathway by which cellular components are delivered to the lysosome for degradation and recycling. Autophagy serves as a crucial intracellular quality control and repair mechanism but is also involved in cell remodelling during development and cell differentiation. In addition, mitophagy, the process by which damaged mitochondria undergo autophagy, has emerged as key regulator of cell metabolism. In recent years, a number of studies have revealed roles for autophagy and mitophagy in the regulation of stem cells, which represent the origin for all tissues during embryonic and postnatal development, and contribute to tissue homeostasis and repair throughout adult life. Here, we review these studies, focussing on the latest evidence that supports the quality control, remodelling and metabolic functions of autophagy during the activation, self-renewal and differentiation of embryonic, adult and cancer stem cells.
Collapse
Affiliation(s)
- Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Natalia Rodriguez-Muela
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
21
|
Martin E, Bonnamour G, Jenna S. AMPK and autophagy control embryonic elongation as part of a RhoA-like morphogenic program in nematode. Small GTPases 2017; 11:186-193. [PMID: 29172954 DOI: 10.1080/21541248.2017.1372868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Autophagy is the process where cytosolic components are digested by the cell. This process is required for cell survival in stressful conditions. It was also shown to control cell division and more recently, cell morphology and migration. We characterized signalling pathways enabling embryonic epidermal cells of the nematode Caenorhabditis elegans to elongate along their antero-posterior axis. Previous studies revealed that epidermal cells can adopt either a RhoA-like or a Rac1-like morphogenic program. We show here that the AMP-activated protein kinase (AMPK) and genes controlling autophagy are required for proper elongation of epidermal cells following the RhoA-like program and are dispensable for other cells. This suggests that AMPK-autophagy is used by the embryo to fuel the most energy-demanding morphogenic processes promoting early elongation.
Collapse
Affiliation(s)
- Emmanuel Martin
- Integrative Genomics and cell signaling laboratory, Chemistry-Biochemistry Department, Université du Québec à Montréal (UQAM), Montreal, Canada
| | - Grégoire Bonnamour
- Integrative Genomics and cell signaling laboratory, Chemistry-Biochemistry Department, Université du Québec à Montréal (UQAM), Montreal, Canada
| | - Sarah Jenna
- Integrative Genomics and cell signaling laboratory, Chemistry-Biochemistry Department, Université du Québec à Montréal (UQAM), Montreal, Canada
| |
Collapse
|
22
|
Fazeli G, Wehman AM. Safely removing cell debris with LC3-associated phagocytosis. Biol Cell 2017; 109:355-363. [PMID: 28755428 DOI: 10.1111/boc.201700028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3-associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3-associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre-initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post-mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97080, Germany
| | - Ann Marie Wehman
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
23
|
Minnerly J, Zhang J, Parker T, Kaul T, Jia K. The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan. PLoS Genet 2017; 13:e1006764. [PMID: 28557996 PMCID: PMC5469504 DOI: 10.1371/journal.pgen.1006764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/13/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Dietary restriction (DR) and reduced insulin growth factor (IGF) signaling extend lifespan in Caenorhabditis elegans and other eukaryotic organisms. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has emerged as a central pathway regulated by various longevity signals including DR and IGF signaling in promoting longevity in a variety of eukaryotic organisms. However, the mechanism remains unclear. Here we show that the autophagy protein ATG-18 acts cell non-autonomously in neuronal and intestinal tissues to maintain C. elegans wildtype lifespan and to respond to DR and IGF-mediated longevity signaling. Moreover, ATG-18 activity in chemosensory neurons that are involved in food detection sufficiently mediates the effect of these longevity pathways. Additionally, ATG-18-mediated cell non-autonomous signaling depends on the release of neurotransmitters and neuropeptides. Interestingly, our data suggest that neuronal and intestinal ATG-18 acts in parallel and converges on unidentified neurons that secrete neuropeptides to regulate C. elegans lifespan through the transcription factor DAF-16/FOXO in response to reduced IGF signaling.
Collapse
Affiliation(s)
- Justin Minnerly
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Jiuli Zhang
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Thomas Parker
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Tiffany Kaul
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
- * E-mail:
| |
Collapse
|
24
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
25
|
Abstract
Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Many studies that used model organisms, showed that autophagy plays an important role in multiple developmental processes like degradation of mitochondria of spermatozoids after fertilization, fetal growth or resistance to nutrient starvation. It is also essential to programmed cell death. The involvement of autophagy in these processes may be related to the production of energy resources in conditions of stress or autophagy can selectively degrade specific proteins during development.
Collapse
Affiliation(s)
- Céline Jenzer
- Institut de biologie intégrative de la cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Renaud Legouis
- Institut de biologie intégrative de la cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
26
|
Ames K, Da Cunha DS, Gonzalez B, Konta M, Lin F, Shechter G, Starikov L, Wong S, Bülow HE, Meléndez A. A Non-Cell-Autonomous Role of BEC-1/BECN1/Beclin1 in Coordinating Cell-Cycle Progression and Stem Cell Proliferation during Germline Development. Curr Biol 2017; 27:905-913. [PMID: 28285998 DOI: 10.1016/j.cub.2017.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 12/30/2016] [Accepted: 02/07/2017] [Indexed: 01/07/2023]
Abstract
The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell proliferation remains poorly understood. Here, we describe a function for autophagy in germline stem cell proliferation. We found that autophagy genes such as bec-1/BECN1/Beclin1, atg-16.2/ATG16L, atg-18/WIPI1/2, and atg-7/ATG7 are required for the late larval expansion of germline stem cell progenitors in the C. elegans gonad. We further show that BEC-1/BECN1/Beclin1 acts independently of the GLP-1/Notch or DAF-7/TGF-β pathways but together with the DAF-2/insulin IGF-1 receptor (IIR) signaling pathway to promote germline stem cell proliferation. Similar to DAF-2/IIR, BEC-1/BECN1/Beclin1, ATG-18/WIPI1/2, and ATG-16.2/ATG16L all promote cell-cycle progression and are negatively regulated by the phosphatase and tensin homolog DAF-18/PTEN. However, whereas BEC-1/BECN1/Beclin1 acts through the transcriptional regulator SKN-1/Nrf1, ATG-18/WIPI1/2 and ATG-16.2/ATG16L exert their function through the DAF-16/FOXO transcription factor. In contrast, ATG-7 functions in concert with the DAF-7/TGF-β pathway to promote germline proliferation and is not required for cell-cycle progression. Finally, we report that BEC-1/BECN1/Beclin1 functions non-cell-autonomously to facilitate cell-cycle progression and stem cell proliferation. Our findings demonstrate a novel non-autonomous role for BEC-1/BECN1/Beclin1 in the control of stem cell proliferation and cell-cycle progression, which may have implications for the understanding and development of therapies against malignant cell growth in the future.
Collapse
Affiliation(s)
- Kristina Ames
- Queens College, The City University of New York, Flushing, NY 11367, USA; The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Dayse S Da Cunha
- The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brenda Gonzalez
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Marina Konta
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Feng Lin
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Gabriel Shechter
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Lev Starikov
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Sara Wong
- Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alicia Meléndez
- Queens College, The City University of New York, Flushing, NY 11367, USA; The Graduate Center of the City University of New York, New York, NY 10016, USA.
| |
Collapse
|
27
|
Abstract
Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.
Collapse
Affiliation(s)
- Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
28
|
Zhou P, Tan YZ, Wang HJ, Li T, He T, Yu Y, Zhang J, Zhang D. Cytoprotective effect of autophagy on phagocytosis of apoptotic cells by macrophages. Exp Cell Res 2016; 348:165-176. [PMID: 27658567 DOI: 10.1016/j.yexcr.2016.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/18/2016] [Indexed: 12/29/2022]
Abstract
Clearance of the apoptotic cells by phagocytes plays pivotal roles in maintenance of tissue homeostasis, promotion of immunological tolerance and anti-inflammatory response. Recent studies show that autophagy is involved in phagocytosis of the apoptotic cells. However, contribution of autophagy to phagocytosis of the apoptotic cells by macrophages is not clearly defined. Here, we assessed cytoprotective effect of autophagy on clearance of the apoptotic cells. Apoptosis of murine splenic lymphocytes and human T-cell leukemia cells was induced with cyclophosphamide. After engulfment of the apoptotic cells, expression of Belin-1 and LC3 in macrophages was upregulated, the number of MDC-positive vesicles, LC3-positive autophagosomes and autophagic ultrastructures increased significantly. Autophagosome was fused with phagosome containing fragments of the nuclei or other debris of the apoptotic cells to form amphisome. Some cells in macrophages phagocytosing the apoptotic cells became apoptotic. After autophagy of macrophages was inhibited with 3-MA, viability and survival of macrophages reduced, phagocytosis of the apoptotic cells by macrophages deceased significantly. These results demonstrate that autophagy plays an important role in promoting clearance of the apoptotic cells by protecting macrophages from apoptosis during phagocytosis as well as degrading the contents of phagosomes via amphisome formation.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China.
| | - Ting Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Tao He
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Fazeli G, Trinkwalder M, Irmisch L, Wehman AM. C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Sci 2016; 129:3721-3731. [PMID: 27562069 PMCID: PMC5087666 DOI: 10.1242/jcs.190223] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023] Open
Abstract
In animals, the midbody coordinates the end of cytokinesis when daughter cells separate through abscission. The midbody was thought to be sequestered by macroautophagy, but recent evidence suggests that midbodies are primarily released and phagocytosed. It was unknown, however, whether autophagy proteins play a role in midbody phagosome degradation. Using a protein degradation assay, we show that midbodies are released in Caenorhabditiselegans. Released midbodies are known to be internalized by actin-driven phagocytosis, which we show requires the RAB-5 GTPase to localize the class III phosphoinositide 3-kinase (PI3K) complex at the cortex. Autophagy-associated proteins, including the Beclin 1 homolog BEC-1 and the Atg8/LC3-family members LGG-1 and LGG-2, localize around the midbody phagosome and are required for midbody degradation. In contrast, proteins required specifically for macroautophagy, such as UNC-51 and EPG-8 (homologous to ULK1/Atg1 and Atg14, respectively) are not required for midbody degradation. These data suggest that the C. elegans midbody is degraded by LC3-associated phagocytosis (LAP), not macroautophagy. Our findings reconcile the two prevailing models on the role of phagocytic and autophagy proteins, establishing a new non-canonical role for autophagy proteins in midbody degradation. Summary: Autophagy proteins are required for the degradation of midbodies. In C. elegans, Atg8/LC3-family proteins act during phagosome maturation rather than during macroautophagy.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Michaela Trinkwalder
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Linda Irmisch
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Ann Marie Wehman
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
30
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
31
|
Gomes LC, Odedra D, Dikic I, Pohl C. Autophagy and modular restructuring of metabolism control germline tumor differentiation and proliferation in C. elegans. Autophagy 2016; 12:529-46. [PMID: 26759963 PMCID: PMC4835962 DOI: 10.1080/15548627.2015.1136771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autophagy can act either as a tumor suppressor or as a survival mechanism for established tumors. To understand how autophagy plays this dual role in cancer, in vivo models are required. By using a highly heterogeneous C. elegans germline tumor, we show that autophagy-related proteins are expressed in a specific subset of tumor cells, neurons. Inhibition of autophagy impairs neuronal differentiation and increases tumor cell number, resulting in a shorter life span of animals with tumors, while induction of autophagy extends their life span by impairing tumor proliferation. Fasting of animals with fully developed tumors leads to a doubling of their life span, which depends on modular changes in transcription including switches in transcription factor networks and mitochondrial metabolism. Hence, our results suggest that metabolic restructuring, cell-type specific regulation of autophagy and neuronal differentiation constitute central pathways preventing growth of heterogeneous tumors.
Collapse
Affiliation(s)
- Ligia C Gomes
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| | - Devang Odedra
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| | - Ivan Dikic
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany.,c Department of Immunology and Medical Genetics , University of Split, School of Medicine , Split , Croatia
| | - Christian Pohl
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| |
Collapse
|
32
|
Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovács AL, Kumsta C, Lapierre LR, Legouis R, Lin L, Lu Q, Meléndez A, O'Rourke EJ, Sato K, Sato M, Wang X, Wu F. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 2015; 11:9-27. [PMID: 25569839 PMCID: PMC4502811 DOI: 10.1080/15548627.2014.1003478] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.
Collapse
Key Words
- ASEL, ASE left
- ASER, ASE right
- ATG, autophagy-related
- C. elegans
- ER, endoplasmic reticulum
- GFP, green fluorescent protein
- LC3
- MO, membranous organelle
- PGL, P-granule abnormality
- RER, rough endoplasmic reticulum
- SQST, SeQueSTosome related protein
- SQSTM1
- TEM, transmission electron microscopy
- autophagy
- development
- epg, ectopic PGL granules
- lgg-1, LC3, GABARAP and GATE-16 family
Collapse
Affiliation(s)
- Hong Zhang
- a State Key Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Levine B, Liu R, Dong X, Zhong Q. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol 2015; 25:533-44. [PMID: 26071895 PMCID: PMC4554927 DOI: 10.1016/j.tcb.2015.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022]
Abstract
Beclin orthologs are crucial regulators of autophagy and related membrane-trafficking pathways. Multiple signaling pathways converge on Beclin 1 to regulate cellular stress responses, membrane trafficking, and physiology.
The Beclin family, including yeast Atg6 (autophagy related gene 6), its orthologs in higher eukaryotic species, and the more recently characterized mammalian-specific Beclin 2, are essential molecules in autophagy and other membrane-trafficking events. Extensive studies of Beclin orthologs have provided considerable insights into the regulation of autophagy, the diverse roles of autophagy in physiology and disease, and potential new strategies to modulate autophagy in a variety of clinical diseases. In this review we discuss the functions of Beclin orthologs, the regulation of such functions by diverse cellular signaling pathways, and the effects of such regulation on downstream cellular processes including tumor suppression and metabolism. These findings suggest that Beclin orthologs serve as crucial molecules that integrate diverse environmental signals with membrane trafficking events to ensure optimal responses of the cell to stressful stimuli.
Collapse
Affiliation(s)
- Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rong Liu
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaonan Dong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol 2015; 25:376-87. [PMID: 25862458 DOI: 10.1016/j.tcb.2015.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
Autophagy delivers cytoplasmic material to lysosomes for degradation. First identified in yeast, the core genes that control this process are conserved in higher organisms. Studies of mammalian cell cultures have expanded our understanding of the core autophagy pathway, but cannot reveal the unique animal-specific mechanisms for the regulation and function of autophagy. Multicellular organisms have different types of cells that possess distinct composition, morphology, and organization of intracellular organelles. In addition, the autophagic machinery integrates signals from other cells and environmental conditions to maintain cell, tissue and organism homeostasis. Here, we highlight how studies of autophagy in flies and worms have identified novel core autophagy genes and mechanisms, and provided insight into the context-specific regulation and function of autophagy.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Eric H Baehrecke
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Autophagy plays a crucial role in intracellular defense against various pathogens. Xenophagy is a form of selective autophagy that targets intracellular pathogens for degradation. In addition, several related, yet distinct, intracellular defense responses depend on autophagy-related genes. This review gives an overview of these processes, pathogen strategies to subvert them, and their crosstalk with various cell death programs. RECENT FINDINGS The recruitment of autophagy-related proteins plays a key role in multiple intracellular defense programs, specifically xenophagy, microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis, and the interferon gamma-mediated elimination of pathogens, such as Toxoplasma gondii and murine norovirus. Recent progress has revealed methods employed by pathogens to resist these intracellular defense mechanisms and/or persist in spite of them. The intracellular pathogen load can tip the balance between cell survival and cell death. Further, it was recently observed that LC3-associated phagocytosis is indispensable for the efficient clearance of dying cells. SUMMARY Autophagy-dependent and autophagy-related gene-dependent pathways are essential in intracellular defense against a broad range of pathogens.
Collapse
|
36
|
Jenzer C, Simionato E, Legouis R. Tools and methods to analyze autophagy in C. elegans. Methods 2014; 75:162-71. [PMID: 25484340 DOI: 10.1016/j.ymeth.2014.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/27/2022] Open
Abstract
For a long time, autophagy has been mainly studied in yeast or mammalian cell lines, and assays for analyzing autophagy in these models have been well described. More recently, the involvement of autophagy in various physiological functions has been investigated in multicellular organisms. Modification of autophagy flux is involved in developmental processes, resistance to stress conditions, aging, cell death and multiple pathologies. So, the use of animal models is essential to understand these processes in the context of different cell types and during the whole life. For ten years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. In this article, we present some of the established approaches and the emerging tools available to monitor and manipulate autophagy in C. elegans, and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Céline Jenzer
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Elena Simionato
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Renaud Legouis
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
37
|
Wang H, Lu Q, Cheng S, Wang X, Zhang H. Autophagy activity contributes to programmed cell death inCaenorhabditis elegans. Autophagy 2014; 9:1975-82. [DOI: 10.4161/auto.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Guo B, Huang J, Wu W, Feng D, Wang X, Chen Y, Zhang H. The nascent polypeptide-associated complex is essential for autophagic flux. Autophagy 2014; 10:1738-48. [PMID: 25126725 DOI: 10.4161/auto.29638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ribosome-associated nascent polypeptide-associated complex (NAC) is involved in multiple cotranslational processes, including protein transport into the ER and mitochondria, and also acts as a chaperone to assist protein folding. Here we demonstrated that NAC is also essential for autophagic degradation of a variety of protein aggregates in C. elegans. Loss of function of NAC impairs lysosome function, resulting in accumulation of autophagic substrates in enlarged autolysosomes. Knockdown of mammalian NAC also causes accumulation of nondegradative autolysosomes. Our study revealed that NAC plays an evolutionarily conserved role in the autophagy pathway and thus in maintaining protein homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Bin Guo
- State Key Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Jie Huang
- Key Laboratory of Medical Immunology; Ministry of Health; Peking University Health Science Center; Beijing, China; State Key Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Wenxian Wu
- Institute of Neurology; Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province; Affiliated Hospital of Guangdong Medical College; Zhanjiang, China
| | - Du Feng
- Institute of Neurology; Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province; Affiliated Hospital of Guangdong Medical College; Zhanjiang, China
| | - Xiaochen Wang
- National Institute of Biological Sciences; Beijing, China
| | - Yingyu Chen
- Key Laboratory of Medical Immunology; Ministry of Health; Peking University Health Science Center; Beijing, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
39
|
Hoffman S, Martin D, Meléndez A, Bargonetti J. C. elegans CEP-1/p53 and BEC-1 are involved in DNA repair. PLoS One 2014; 9:e88828. [PMID: 24586407 PMCID: PMC3930633 DOI: 10.1371/journal.pone.0088828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/10/2014] [Indexed: 12/24/2022] Open
Abstract
p53 is a transcription factor that regulates the response to cellular stress. Mammalian p53 functions as a tumor suppressor. The C. elegans p53, cep-1, regulates DNA-damage induced germline cell death by activating the transcription of egl-1 and ced-13. We used the C. elegans model to investigate how, in the whole animal, different forms of DNA damage can induce p53-dependent versus p53-independent cell death and DNA repair. DNA damage was induced by ultraviolet type C (UVC) radiation, or 10-decarbamoyl mitomycin C (DMC, an agent known to induce mammalian p53-independent cell death). Wild-type or cep-1 loss-of-function mutant animals were assayed for germline cell death and DNA lesions. Wild-type animals displayed greater removal of UVC-lesions over time, whereas cep-1 mutant animals displayed increased UVC-lesion retention. The cep-1 mutation increased UVC-lesion retention directly correlated with a reduction of progeny viability. Consistent with DMC inducing p53-independent cell death in mammalian cells DMC induced a C. elegans p53-independent germline cell death pathway. To examine the influence of wild-type CEP-1 and DNA damage on C. elegans tumors we used glp-1(ar202gf)/Notch germline tumor mutants. UVC treatment of glp-1 mutant animals activated the CEP-1 target gene egl-1 and reduced tumor size. In cep-1(gk138);glp-1(ar202gf) animals, UVC treatment resulted in increased susceptibility to lesions and larger tumorous germlines. Interestingly, the partial knockdown of bec-1 in adults resulted in a CEP-1-dependent increase in germline cell death and an increase in DNA damage. These results strongly support cross-talk between BEC-1 and CEP-1 to protect the C. elegans genome.
Collapse
Affiliation(s)
- Sandy Hoffman
- Department of Biological Sciences, Hunter College, City University of New York, New York City, New York, United States of America
- The Graduate Center Departments of Biology and Biochemistry, City University of New York, New York City, New York, United States of America
| | - Daniel Martin
- Department of Biological Sciences, Hunter College, City University of New York, New York City, New York, United States of America
| | - Alicia Meléndez
- Department of Biological Sciences Queens College, City University of New York, Queens, New York, United States of America
- The Graduate Center Departments of Biology and Biochemistry, City University of New York, New York City, New York, United States of America
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York City, New York, United States of America
- The Graduate Center Departments of Biology and Biochemistry, City University of New York, New York City, New York, United States of America
| |
Collapse
|
40
|
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 2014; 10:572-87. [PMID: 24441423 DOI: 10.4161/auto.27649] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- Eunmyong Lee
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Yeon Koo
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Aylwin Ng
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Yongjie Wei
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kate Luby-Phelps
- Department of Cell Biology; UT Southwestern Medical Center; Dallas, TX USA
| | - Amy Juraszek
- Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ramnik J Xavier
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Ondine Cleaver
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Beth Levine
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Microbiology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - James F Amatruda
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
41
|
Yang P, Zhang H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 2014; 24:80-91. [PMID: 24296782 PMCID: PMC3879703 DOI: 10.1038/cr.2013.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of embryonic apoptotic cell corpses by promoting phagosome maturation. During larval development, autophagy modulates miRNA-mediated gene silencing by selectively degrading AIN-1, a component of miRNA-induced silencing complex, and thus participates in the specification of multiple cell fates controlled by miRNAs. During development of the hermaphrodite germline, autophagy acts coordinately with the core apoptotic machinery to execute genotoxic stress-induced germline cell death and also cell death when caspase activity is partially compromised. Autophagy is also involved in the utilization of lipid droplets in the aging process in adult animals. Studies in C. elegans provide valuable insights into the physiological functions of autophagy in the development of multicellular organisms.
Collapse
Affiliation(s)
- Peiguo Yang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
42
|
Beclin 1 deficiency correlated with lymph node metastasis, predicts a distinct outcome in intrahepatic and extrahepatic cholangiocarcinoma. PLoS One 2013; 8:e80317. [PMID: 24303007 PMCID: PMC3841169 DOI: 10.1371/journal.pone.0080317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022] Open
Abstract
Autophagy can be tumor suppressive as well as promotive in regulation of tumorigenesis and disease progression. Accordingly, the prognostic significance of autophagy key regulator Beclin 1 was varied among different tumors. Here, we detected the clinicopathological and prognostic effect of Beclin 1 in the subtypes of intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (ECC). Beclin 1 expression level was detected by immunohistochemistry staining in 106 ICC and 74 ECC patients. We found that Beclin 1 was lowly expressed in 126 (70%) cholangiocarcinoma patients, consist of 72 ICC and 54 ECC. Moreover, the cholangiocarcinoma patients with lymph node metastasis (N1) had a lower Beclin 1 level than that of N0 subgroup (P=0.012). However, we did not detect any correlations between Beclin 1 and other clinicopathological features, including tumor subtypes, vascular invasion, HBV infection, liver cirrhosis, cholecystolithiasis and TNM stage. Survival analysis showed that, compared with the high expression subset, Beclin 1 low expression was correlated with a poorer 3-year progression-free survival (PFS, 69.1% VS 46.8%, P=041) for cholangiocarcinoma. Importantly, our stratified univariate and multivariate analysis confirmed that Beclin 1 lowly expressed ICC had an inferior PFS as well as overall survival than ECC, particularly than that of Beclin 1 highly expressed ECC patients. Thus, our study demonstrated that Beclin 1low expression, correlated with lymph node metastasis, and might be a negative prognostic biomarker for cholangiocarcinoma. Combined Beclin 1 level with the anatomical location might lead to refined prognosis for the subtypes of ICC and ECC.
Collapse
|
43
|
Cheng S, Wu Y, Lu Q, Yan J, Zhang H, Wang X. Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 2013; 9:2022-32. [PMID: 24165672 DOI: 10.4161/auto.26323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phagocytosis and autophagy are two lysosome-mediated cellular degradation pathways designed to eliminate extracellular and intracellular constituents, respectively. Recent studies suggest that these two processes intersect. Several autophagy proteins have been shown to participate in clearance of apoptotic cells, but whether and how the autophagy pathway is involved is unclear. Here we showed that loss of function mutations in 19 genes acting at overlapping or distinct stages of autophagy caused increased numbers of cell corpses in C. elegans embryos. In contrast, genes that mediate specific clearance of P granules or protein aggregates through autophagy are dispensable for cell corpse removal. We showed that defective autophagy impairs phagosome maturation and that autophagy genes act in parallel to the class II phosphoinositide (PI)/phosphatidylinositol (PtdIns) 3-kinase PIKI-1 to regulate phagosomal PtdIns3P in a similar manner as VPS-34. Our data indicate that autophagy may coordinate with PIKI-1 to promote phagosome maturation, thus ensuring efficient clearance of apoptotic cells.
Collapse
Affiliation(s)
- Shiya Cheng
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China; National Institute of Biological Sciences; Beijing, China
| | | | | | | | | | | |
Collapse
|
44
|
Sato M, Sato K. Dynamic regulation of autophagy and endocytosis for cell remodeling during early development. Traffic 2013; 14:479-86. [PMID: 23356349 DOI: 10.1111/tra.12050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/27/2022]
Abstract
Fertilization triggers cell remodeling from each gamete to a totipotent zygote. Using Caenorhabditis elegans as a model system, it has been revealed that lysosomal degradation pathways play important roles in cellular remodeling during this developmental transition. Endocytosis and autophagy, two pathways leading to the lysosomes, are highly upregulated during this period. A subset of maternal membrane proteins is selectively endocytosed and degraded in the lysosomes before the first mitotic cell division. Autophagy is also induced shortly after fertilization and executes the degradation of paternally inherited embryonic organelles, e.g. mitochondria and membranous organelles. This mechanism underlies the maternal inheritance of the mitochondrial genome. Autophagy is also required for the removal of extra P-granule (germ granules in C. elegans) components in somatic cells of early embryos and thereby for the specific distribution of P-granules to germ cells. This review focuses on recent advances in the study of the physiological roles and mechanisms of lysosomal pathways during early development in C. elegans.
Collapse
Affiliation(s)
- Miyuki Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | | |
Collapse
|