1
|
Li C, Li M, Jin Y, An Q, Dang H, Gong W. Investigating the therapeutic effects of a Japanese sake yeast supplement on a zebrafish model of Parkinson's disease: Antioxidant and inflammatory responses. Exp Gerontol 2024; 194:112509. [PMID: 38964429 DOI: 10.1016/j.exger.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1β, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1β (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.
Collapse
Affiliation(s)
- Chang Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China; Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Jin
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qing An
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wei Gong
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S, Li F. Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res 2024; 19:998-1005. [PMID: 37862201 PMCID: PMC10749592 DOI: 10.4103/1673-5374.385281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuqing Yan
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Anni Yu
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuefang Zhang
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyi Li
- Neurosurgery Department, Kunming Yenan Hospital, Kunming, Yunnan Province, China
| | - Qianlong Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
4
|
Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. Front Pharmacol 2022; 13:835827. [PMID: 35370740 PMCID: PMC8965100 DOI: 10.3389/fphar.2022.835827] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Recent reviews have summarized the currently available zebrafish models of Parkinson’s Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson’s Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages. We examine gene-based models, including ones linked to Early-Onset Parkinson’s Disease: PARKIN, PINK1, DJ-1, and SNCA; but we also examine LRRK2, which is linked to Late-Onset Parkinson’s Disease. We evaluate chemically induced models like MPTP, 6-OHDA, rotenone and paraquat, as well as chemogenetic ablation models like metronidazole-nitroreductase. The article also reviews the unique advantages of zebrafish, including the abundance of behavioural assays available to researchers and the efficiency of high-throughput screens. This offers a rare opportunity for assessing the potential therapeutic efficacy of pharmacological interventions. Zebrafish also are very amenable to genetic manipulation using a wide variety of techniques, which can be combined with an array of advanced microscopic imaging methods to enable in vivo visualization of cells and tissue. Taken together, these factors place zebrafish on the forefront of research as a versatile model for investigating disease states. The end goal of this review is to determine the benefits of using zebrafish in comparison to utilising other animals and to consider the limitations of zebrafish for investigating human disease.
Collapse
Affiliation(s)
- Jillian M Doyle
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
6
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
7
|
Pant DC, Nazarko TY. Selective autophagy: the rise of the zebrafish model. Autophagy 2021; 17:3297-3305. [PMID: 33228439 PMCID: PMC8632090 DOI: 10.1080/15548627.2020.1853382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.
Collapse
Affiliation(s)
- Devesh C. Pant
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Tesseraud S, Avril P, Bonnet M, Bonnieu A, Cassar-Malek I, Chabi B, Dessauge F, Gabillard JC, Perruchot MH, Seiliez I. Autophagy in farm animals: current knowledge and future challenges. Autophagy 2021; 17:1809-1827. [PMID: 32686564 PMCID: PMC8386602 DOI: 10.1080/15548627.2020.1798064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.Abbreviations: AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ASC: adipose-derived stem cells; ATG: autophagy-related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BVDV: bovine viral diarrhea virus; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DAP: Death-Associated Protein; ER: endoplasmic reticulum; GFP: green fluorescent protein; Gln: Glutamine; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IF: immunofluorescence; IVP: in vitro produced; LAMP2A: lysosomal associated membrane protein 2A; LMS: lysosomal membrane stability; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MDBK: Madin-Darby bovine kidney; MSC: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NDV: Newcastle disease virus; NECTIN4: nectin cell adhesion molecule 4; NOD1: nucleotide-binding oligomerization domain 1; OCD: osteochondritis dissecans; OEC: oviduct epithelial cells; OPTN: optineurin; PI3K: phosphoinositide-3-kinase; PPRV: peste des petits ruminants virus; RHDV: rabbit hemorrhagic disease virus; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
| | - Pascale Avril
- INRAE, UAR1247 Aquapôle, Saint Pée Sur Nivelle, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Anne Bonnieu
- DMEM, Univ Montpellier, INRAE, Montpellier, France
| | - Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | | | - Frédéric Dessauge
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | | | - Marie-Hélène Perruchot
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | - Iban Seiliez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
9
|
Yang Z, Lin P, Chen B, Zhang X, Xiao W, Wu S, Huang C, Feng D, Zhang W, Zhang J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 2020; 17:3048-3067. [PMID: 33280500 DOI: 10.1080/15548627.2020.1851897] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB integrity remains unclear. Here we report that in BMECs of patients suffering stroke, CLDN5 (claudin 5) abnormally aggregates in the cytosol accompanied by autophagy activation. In vivo zebrafish and in vitro cell studies reveal that BBB breakdown is partially caused by CAV1 (caveolin 1)-mediated redistribution of membranous CLDN5 into the cytosol under hypoxia. Meanwhile, autophagy is activated and contributes mainly to the degradation of CAV1 and aggregated CLDN5 in the cytosol of BMECs, therefore alleviating BBB breakdown. Blockage of autophagy by genetic methods or chemicals aggravates cytosolic aggregation of CLDN5, resulting in severer BBB impairment. These data demonstrate that autophagy functions in the protection of BBB integrity by regulating CLDN5 redistribution and provide a potential therapeutic strategy for BBB disorder-related cerebrovascular disease.Abbreviations: BBB: blood-brain barrier; BECN1: beclin 1; BMEC: brain microvascular endothelial cell; CAV1: caveolin 1; CCA: common carotid artery; CLDN5: claudin 5; CNS: central nervous system; CQ: chloroquine; HIF1A: hypoxia inducible factor 1 subunit alpha; MCAO: middle cerebral artery occlusion-reperfusion; OCLN: occludin; ROS: reactive oxygen species; STED: stimulated emission depletion; TEER: trans-endothelial electrical resistance; TEM: transmission electron microscopy; TJ: tight junction; TJP1: tight junction protein 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Zhenguo Yang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Panpan Lin
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqi Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Chunnian Huang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Du Feng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenqing Zhang
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Garabadu D, Agrawal N, Sharma A, Sharma S. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav Pharmacol 2020; 30:642-652. [PMID: 31625975 DOI: 10.1097/fbp.0000000000000505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disorders have been considered as a growing health concern for decades. Increasing risk of neurodegenerative disorders creates a socioeconomic burden to both patients and care givers. Mitochondria are organelle that are involved in both neuroinflammation and neurodegeneration. There are few reports on the effect of mitochondrial metabolism on the progress of neurodegeneration and neuroinflammation. Therefore, the present review summarizes the potential contribution of mitochondrial metabolic pathways in the pathogenesis of neuroinflammation and neurodegeneration. Mitochondrial pyruvate metabolism plays a critical role in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. However, there its potential contribution in other neurodegenerative disorders is as yet unproven. The mitochondrial pyruvate carrier and pyruvate dehydrogenase can modulate mitochondrial pyruvate metabolism to attenuate neuroinflammation and neurodegeneration. Further, it has been observed that the mitochondrial citric acid cycle can regulate the pathogenesis of neuroinflammation and neurodegeneration. Additional research should be undertaken to target tricarboxylic acid cycle enzymes to minimize the progress of neuroinflammation and neurodegeneration. It has also been observed that the mitochondrial urea cycle can potentially contribute to the progression of neurodegenerative disorders. Therefore, targeting this pathway may control the mitochondrial dysfunction-induced neuroinflammation and neurodegeneration. Furthermore, the mitochondrial malate-aspartate shuttle could be another target to control mitochondrial dysfunction-induced neuroinflammation and neurodegeneration in neurodegenerative disorders.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | | |
Collapse
|
11
|
Chen Q, Shao X, Hao M, Fang H, Guan R, Tian Z, Li M, Wang C, Ji L, Chao H, Guan JL, Diao J. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials 2020; 250:120059. [PMID: 32339858 DOI: 10.1016/j.biomaterials.2020.120059] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Super-resolution optical microscopy has extended the spatial resolution of cell biology from the cellular level to the nanoscale, enabling the observation of the interactive behavior of single mitochondria and lysosomes. Quantitative parametrization of interactions between mitochondria and lysosomes under super-resolution optical microscopy, however, is currently unavailable, which has severely limited our understanding of the molecular machinery underlying mitochondrial functionality. Here, we introduce an M-value to quantitatively investigate mitochondria and lysosome contact (MLC) and mitophagy under structured illumination microscopy. We found that the M-value for an MLC is typically less than 0.4, whereas in mitophagy it ranges from 0.5 to 1.0. This system permits further investigation of the detailed molecular mechanism governing the interactive behavior of mitochondria and lysosomes.
Collapse
Affiliation(s)
- Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xintian Shao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Hongbao Fang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
12
|
Chen Y, Lin J, Chen J, Huang C, Zhang Z, Wang J, Wang K, Wang X. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation. Osteoarthritis Cartilage 2020; 28:363-374. [PMID: 31926268 DOI: 10.1016/j.joca.2019.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore whether Mitofusin 2 (Mfn2) is implicated in the pathogenesis of intervertebral disc degeneration (IVDD). METHODS We detected the protein content of Mfn2 in degenerated human nucleus pulposus (NP) tissues and investigated the effects of Mfn2 knockdown and Mfn2 overexpression on rat nucleus pulposus cells (NPCs) under oxidative stress by using a range of biological techniques. Afterwards, we confirmed the effects of Mfn2 overexpression on NPCs in vivo and further evaluated the therapeutic action of adenovirus (AV)-Mfn2 injection in a rodent IVDD model. RESULTS Mfn2 expression was decreased in human NP tissues during IVDD. Mfn2 knockdown aggravated the impairment of autophagic flux, mitochondrial dysfunction and cellular apoptosis in rat NPCs after Tert-Butyl hydroperoxide (TBHP) treatment, while Mfn2 overexpression significantly reversed these alterations. Besides, Mfn2 overexpression promoted an ROS (reactive oxygen species)-dependent mitophagy via PINK1 (PTEN-induced putative kinase 1)/Parkin pathway in TBHP-treated NPCs. Inhibition of autophagy with chloroquine (CQ) disordered the protective effects of Mfn2 overexpression on NPCs. Furthermore, Mfn2 overexpression in discs by AV-Mfn2 injection ameliorated the development of IVDD in rats. CONCLUSION Mfn2 repression is deeply involved in the pathogenesis of IVDD with its impairment on autophagy, leading to the aggravation of mitochondrial dysfunction and apoptotic cell death, which ought to be a promising therapeutic target for IVDD.
Collapse
Affiliation(s)
- Y Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - C Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Z Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - K Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - X Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
13
|
Heparan Sulfate Structure Affects Autophagy, Lifespan, Responses to Oxidative Stress, and Cell Degeneration in Drosophila parkin Mutants. G3-GENES GENOMES GENETICS 2020; 10:129-141. [PMID: 31672849 PMCID: PMC6945019 DOI: 10.1534/g3.119.400730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic process that provides cells with energy and molecular building blocks during nutritional stress. Autophagy also removes misfolded proteins and damaged organelles, a critical mechanism for cellular repair. Earlier work demonstrated that heparan sulfate proteoglycans, an abundant class of carbohydrate-modified proteins found on cell surfaces and in the extracellular matrix, suppress basal levels of autophagy in several cell types during development in Drosophila melanogaster. In studies reported here, we examined the capacity of heparan sulfate synthesis to influence events affected by autophagy, including lifespan, resistance to reactive oxygen species (ROS) stress, and accumulation of ubiquitin-modified proteins in the brain. Compromising heparan sulfate synthesis increased autophagy-dependent processes, evident by extended lifespan, increased resistance to ROS, and reduced accumulation of ubiquitin-modified proteins in the brains of ROS exposed adults. The capacity of altering heparan sulfate biosynthesis to protect cells from injury was also evaluated in two different models of neurodegeneration, overexpression of Presenilin and parkin mutants. Presenilin overexpression in the retina produces cell loss, and compromising heparan sulfate biosynthesis rescued retinal patterning and size abnormalities in these animals. parkin is the fly homolog of human PARK2, one of the genes responsible for juvenile onset Parkinson’s Disease. Parkin is involved in mitochondrial surveillance and compromising parkin function results in degeneration of both flight muscle and dopaminergic neurons in Drosophila. Altering heparan sulfate biosynthesis suppressed flight muscle degeneration and mitochondrial dysmorphology, indicating that activation of autophagy-mediated removal of mitochondria (mitophagy) is potentiated in these animals. These findings provide in vivo evidence that altering the levels of heparan sulfate synthesis activates autophagy and can provide protection from a variety of cellular stressors.
Collapse
|
14
|
Abstract
In healthy cells, dysfunctional mitochondria are removed by selective autophagy (mitophagy), impairment of which causes disease. In this issue of Developmental Cell, Princely Abudu et al. (2019) delineate the function of NIPSNAP1 and NIPSNAP2 in recruiting mitophagy receptors to depolarized mitochondria, highlighting their importance in the zebrafish brain.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Jurkute N, Leu C, Pogoda HM, Arno G, Robson AG, Nürnberg G, Altmüller J, Thiele H, Motameny S, Toliat MR, Powell K, Höhne W, Michaelides M, Webster AR, Moore AT, Hammerschmidt M, Nürnberg P, Yu-Wai-Man P, Votruba M. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration. Ann Neurol 2019; 86:368-383. [PMID: 31298765 PMCID: PMC8855788 DOI: 10.1002/ana.25550] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Costin Leu
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, US
- Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, US
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hans-Martin Pogoda
- Institute for Zoology, Developmental Biology Unit, University of Cologne, D-50674 Cologne, Germany
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony G. Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Mohammad Reza Toliat
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Kate Powell
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony T. Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology Unit, University of Cologne, D-50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Eye Unit, University Hospital Wales, Cardiff, UK
| |
Collapse
|
16
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
17
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Soutar MPM, Kempthorne L, Miyakawa S, Annuario E, Melandri D, Harley J, O'Sullivan GA, Wray S, Hancock DC, Cookson MR, Downward J, Carlton M, Plun-Favreau H. AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci Rep 2018; 8:8855. [PMID: 29891871 PMCID: PMC5995958 DOI: 10.1038/s41598-018-26949-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
The discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy. Conversely, we show that upon stimulation of AKT signalling via insulin, the mitophagy pathway is increased in SHSY5Y cells. These data suggest that AKT signalling is an upstream regulator of PINK1 accumulation on damaged mitochondria. Importantly, we show that the AKT pathway also regulates endogenous PINK1-dependent mitophagy in human iPSC-derived neurons.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Liam Kempthorne
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Shuichi Miyakawa
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emily Annuario
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Daniela Melandri
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jasmine Harley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David C Hancock
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, NIH, Building 35, Room 1A116, 35 Convent Drive, Bethesda, MD, 20814, USA
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark Carlton
- CereVance Ltd. 418 Science Park, Milton Rd, Cambridge, CB4 0PZ, UK
| | - Hélène Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
19
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
20
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
21
|
Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet 2017; 13:e1006892. [PMID: 28692648 PMCID: PMC5524415 DOI: 10.1371/journal.pgen.1006892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/24/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022] Open
Abstract
Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC. Impaired function of the manganese transporter SLC30A10 has been implicated in HMDPC (hypermanganesemia with dystonia, polycythemia, and cirrhosis), an early-onset metabolic disorder clinically characterized by increased systemic Mn levels, neurological impairment, polycythemia, and hepatic injury. No specific treatment is currently available for HMDPC. Moreover, the mechanisms that underlie Mn metabolism are poorly understood, thereby hindering the development of effective treatments. To investigate the physiological processes underlying Mn metabolism and to develop new disease models of HMDPC, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system and found that these mutants develop clinical deficits typically associated with HMDPC. Furthermore, we identified a putative compensatory role for ATP2C1 in the absence of SLC30A10 with respect to modulating Mn metabolism. These findings provide a valuable tool for investigating the role of manganese dysregulation in neurological degenerative diseases and which can be used to develop new pharmacological approaches for managing Mn accumulation.
Collapse
|
22
|
Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017; 6:E21. [PMID: 28698482 PMCID: PMC5617967 DOI: 10.3390/cells6030021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process which allows lysosomal degradation of complex cytoplasmic components into basic biomolecules that are recycled for further cellular use. Autophagy is critical for cellular homeostasis and for degradation of misfolded proteins and damaged organelles as well as intracellular pathogens. The role of autophagy in protection against age-related diseases and a plethora of other diseases is now coming to light; assisted by several divergent eukaryotic model systems ranging from yeast to mice. We here give an overview of different methods used to analyse autophagy in zebrafish-a relatively new model for studying autophagy-and briefly discuss what has been done so far and possible future directions.
Collapse
Affiliation(s)
- Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| |
Collapse
|
23
|
Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF. Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci 2017; 40:151-166. [PMID: 28190529 PMCID: PMC5341618 DOI: 10.1016/j.tins.2017.01.002] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
Abstract
Neurons affected in Alzheimer's disease (AD) experience mitochondrial dysfunction and a bioenergetic deficit that occurs early and promotes the disease-defining amyloid beta peptide (Aβ) and Tau pathologies. Emerging findings suggest that the autophagy/lysosome pathway that removes damaged mitochondria (mitophagy) is also compromised in AD, resulting in the accumulation of dysfunctional mitochondria. Results in animal and cellular models of AD and in patients with sporadic late-onset AD suggest that impaired mitophagy contributes to synaptic dysfunction and cognitive deficits by triggering Aβ and Tau accumulation through increases in oxidative damage and cellular energy deficits; these, in turn, impair mitophagy. Interventions that bolster mitochondrial health and/or stimulate mitophagy may therefore forestall the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Jesse S Kerr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Bryan A Adriaanse
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
24
|
Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res 2017; 367:125-140. [PMID: 27449929 PMCID: PMC5203858 DOI: 10.1007/s00441-016-2463-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
25
|
Fodor E, Sigmond T, Ari E, Lengyel K, Takács-Vellai K, Varga M, Vellai T. Methods to Study Autophagy in Zebrafish. Methods Enzymol 2017; 588:467-496. [DOI: 10.1016/bs.mie.2016.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Chen H, Chan YL, Nguyen LT, Mao Y, de Rosa A, Beh IT, Chee C, Oliver B, Herok G, Saad S, Gorrie C. Moderate traumatic brain injury is linked to acute behaviour deficits and long term mitochondrial alterations. Clin Exp Pharmacol Physiol 2016; 43:1107-1114. [DOI: 10.1111/1440-1681.12650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Chen
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Yik Lung Chan
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Long The Nguyen
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Yilin Mao
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Alicia de Rosa
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Ing Tsyr Beh
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- School of Chemical Life Sciences; Singapore Polytechnic; Singapore
| | - Candice Chee
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- School of Chemical Life Sciences; Singapore Polytechnic; Singapore
| | - Brian Oliver
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - George Herok
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Sonia Saad
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Catherine Gorrie
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
27
|
Wager K, Zdebik AA, Fu S, Cooper JD, Harvey RJ, Russell C. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease). PLoS One 2016; 11:e0157365. [PMID: 27327661 PMCID: PMC4915684 DOI: 10.1371/journal.pone.0157365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery.
Collapse
Affiliation(s)
- Kim Wager
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anselm A. Zdebik
- Department of Neuroscience, Physiology and Pharmacology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, United Kingdom
- Department of Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, United Kingdom
- * E-mail: (CR); (AAZ)
| | - Sonia Fu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 5 Cutcombe Road, London, SE5 9RX, United Kingdom
| | - Robert J. Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
- * E-mail: (CR); (AAZ)
| |
Collapse
|
28
|
Abstract
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|
29
|
Characterization of the three zebrafish orthologs of the mitochondrial GTPase Miro/Rhot. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:126-34. [DOI: 10.1016/j.cbpb.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 01/02/2023]
|
30
|
The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor. NEUROSCIENCE JOURNAL 2015; 2015:543758. [PMID: 26779531 PMCID: PMC4686711 DOI: 10.1155/2015/543758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/29/2022]
Abstract
Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.
Collapse
|
31
|
Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain. Mol Neurobiol 2015; 53:2518-28. [PMID: 26081145 DOI: 10.1007/s12035-015-9270-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
Abstract
Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.
Collapse
|
32
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
34
|
Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods 2015; 75:172-80. [DOI: 10.1016/j.ymeth.2014.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
|
35
|
Tsai SYA, Pokrass MJ, Klauer NR, De Credico NE, Su TP. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 2014; 18:1461-76. [PMID: 25331742 PMCID: PMC5518923 DOI: 10.1517/14728222.2014.972939] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sigma-1 receptors (Sig-1Rs) are molecular chaperones that reside mainly in the endoplasmic reticulum (ER) but exist also in the proximity of the plasma membrane. Sig-1Rs are highly expressed in the CNS and are involved in many cellular processes including cell differentiation, neuritogenesis, microglia activation, protein quality control, calcium-mediated ER stress and ion channel modulation. Disturbance in any of the above cellular processes can accelerate the progression of many neurological disorders; therefore, the Sig-1R has been implicated in several neurological diseases. AREAS COVERED This review broadly covers the functions of Sig-1Rs including several neurodegenerative disorders in humans and drug addiction-associated neurological disturbance in the case of HIV infection. We discuss how several Sig-1R ligands could be utilized in therapeutic approaches to treat those disorders. EXPERT OPINION Emerging understanding of the cellular functions of this unique transmembrane chaperone may lead to the use of new agents or broaden the use of certain available ligands as therapeutic targets in those neurological disorders.
Collapse
Affiliation(s)
- Shang-Yi A Tsai
- National Institute on Drug Abuse, National Institutes of Health, Cellular Pathobiology Section, Integral Neuroscience Branch , Baltimore, MD 21224 , USA ;
| | | | | | | | | |
Collapse
|
36
|
Santoro MM. Zebrafish as a model to explore cell metabolism. Trends Endocrinol Metab 2014; 25:546-54. [PMID: 24997878 DOI: 10.1016/j.tem.2014.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Cell metabolism plays a key role in many essential biological processes. The recent availability of novel technologies and organisms to model cell metabolism in vivo is expanding current knowledge of cell metabolism. In this context, the zebrafish (Danio rerio) is emerging as a valuable model system to learn about the metabolic routes critical for cellular homeostasis. Here, the most recent methods and studies on cell metabolism are summarized, which support the overall value for the zebrafish model system not only to study metabolism but also metabolic disease states. It is envisioned that this small vertebrate system will help in the understanding of pathogenesis for numerous metabolic-related disorders in humans and in the identification of their therapeutic treatments.
Collapse
Affiliation(s)
- Massimo M Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, B-3000, Belgium; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, Leuven, B-3000, Belgium.
| |
Collapse
|
37
|
Bugel SM, Tanguay RL, Planchart A. Zebrafish: A marvel of high-throughput biology for 21 st century toxicology. Curr Environ Health Rep 2014; 1:341-352. [PMID: 25678986 DOI: 10.1007/s40572-014-0029-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
38
|
Hosseini R, Lamers GE, Hodzic Z, Meijer AH, Schaaf MJ, Spaink HP. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy 2014; 10:1844-57. [PMID: 25126731 PMCID: PMC4198367 DOI: 10.4161/auto.29992] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High-resolution imaging of autophagy has been used intensively in cell culture studies, but so far it has been difficult to visualize this process in detail in whole animal models. In this study we present a versatile method for high-resolution imaging of microbial infection in zebrafish larvae by injecting pathogens into the tail fin. This allows visualization of autophagic compartments by light and electron microscopy, which makes it possible to correlate images acquired by the 2 techniques. Using this method we have studied the autophagy response against Mycobacterium marinum infection. We show that mycobacteria during the progress of infection are frequently associated with GFP-Lc3-positive vesicles, and that 2 types of GFP-Lc3-positive vesicles were observed. The majority of these vesicles were approximately 1 μm in size and in close vicinity of bacteria, and a smaller number of GFP-Lc3-positive vesicles was larger in size and were observed to contain bacteria. Quantitative data showed that these larger vesicles occurred significantly more in leukocytes than in other cell types, and that approximately 70% of these vesicles were positive for a lysosomal marker. Using electron microscopy, it was found that approximately 5% of intracellular bacteria were present in autophagic vacuoles and that the remaining intracellular bacteria were present in phagosomes, lysosomes, free inside the cytoplasm or occurred as large aggregates. Based on correlation of light and electron microscopy images, it was shown that GFP-Lc3-positive vesicles displayed autophagic morphology. This study provides a new approach for injection of pathogens into the tail fin, which allows combined light and electron microscopy imaging in vivo and opens new research directions for studying autophagy process related to infectious diseases.
Collapse
Affiliation(s)
- Rohola Hosseini
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Gerda Em Lamers
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Zlatan Hodzic
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | | | - Marcel Jm Schaaf
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology; Leiden University; Leiden, The Netherlands
| |
Collapse
|
39
|
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2014; 51:89-104. [PMID: 24990317 DOI: 10.1007/s12035-014-8787-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Collapse
Affiliation(s)
- H Zhang
- Center of Parkinson's Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
40
|
Wager K, Mahmood F, Russell C. Modelling inborn errors of metabolism in zebrafish. J Inherit Metab Dis 2014; 37:483-95. [PMID: 24797558 DOI: 10.1007/s10545-014-9696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
The majority of human inborn errors of metabolism are fatal multisystem disorders that lack proper treatment and have a poorly understood mechanistic basis. Novel technologies are required to address this issue, and the use of zebrafish to model these diseases is an emerging field. Here we present the published zebrafish models of inborn metabolic diseases, discuss their validity, and review the novel mechanistic insights that they have provided. We also review the available methods for creating and studying zebrafish disease models, advantages and disadvantages of using this model organism, and successful examples of the use of zebrafish for drug discovery and development. Using a zebrafish to model inborn errors of metabolism in vivo, although still in its infancy, shows promise for a deeper understanding of disease pathomechanisms, onset, and progression, and also for the development of specific therapies.
Collapse
Affiliation(s)
- Kim Wager
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|