1
|
Cheng T, Mao M, Liu Y, Xie L, Shi F, Liu H, Li X. The potential therapeutic effect of human umbilical cord mesenchymal stem cell-derived exosomes in bronchopulmonary dysplasia. Life Sci 2024; 357:123047. [PMID: 39260518 DOI: 10.1016/j.lfs.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, with its incidence rising due to improved survival rates of these infants. BPD results from a combination of prenatal and postnatal factors, such as mechanical ventilation, oxygen toxicity, and infections, all of which significantly impact the prognosis and growth of affected infants. Current treatment options for BPD are largely supportive and do not address the underlying pathology. Exosomes are cell-derived bilayer-enclosed membrane structures enclosing proteins, lipids, RNAs, growth factors, cytokines and metabolites. They have become recognized as crucial regulators of intercellular communication in various physiological and pathological processes. Previous studies have revealed the therapeutic potential of human umbilical cord mesenchymal stem cells-derived exosomes (HUCMSCs-Exos) in promoting tissue repair and regeneration. Therefore, HUCMSCs-Exos maybe a promising and effective therapeutic modality for BPD. In this review, we firstly provide a comprehensive overview of BPD, including its etiology and the mechanisms of lung injury. Then we detail the isolation, characterization, and contents of HUCMSCs-Exos, and discuss their potential mechanisms of HUCMSCs-Exos in BPD treatment. Additionally, we summarize current clinical trials and discuss the challenges in translating these findings from bench to bedside. This review aims to lay the groundwork for future clinical applications of HUCMSCs-Exos in treating BPD.
Collapse
Affiliation(s)
- Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yang W, Jin M, Gu Y, Zhao X, Zhu L, He S, Wang H, Ding X, Wang B, Jiang T, Xiao Y, Zhou G, Huang J, Zhang Y. Intracellular osteopontin potentiates the immunosuppressive activity of mesenchymal stromal cells. Stem Cell Res Ther 2024; 15:366. [PMID: 39407354 PMCID: PMC11475537 DOI: 10.1186/s13287-024-03979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Mesenchymal stromal cell (MSC)-based cell therapy is a promising approach for various inflammatory disorders based on their immunosuppressive capacity. Osteopontin (OPN) regulates several cellular functions including tissue repair, bone metabolism and immune reaction. However, the biological function of OPN in regulating the immunosuppressive capacity of MSCs remains elusive. OBJECTIVES This study aims to highlight the underlying mechanism of the proinflammatory cytokines affect the therapeutic ability of MSCs through OPN. METHODS MSCs in response to the proinflammatory cytokines were collected to determine the expression profile of OPN. In vitro T-cell proliferation assays and gene editing were performed to check the role and mechanisms of OPN in regulating the immunosuppressive capacity of MSCs. Inflammatory disease mouse models were established to evaluate the effect of OPN on improving MSC-based immunotherapy. RESULTS We observed that OPN, including its two isoforms iOPN and sOPN, was downregulated in MSCs upon proinflammatory cytokine stimulation. Interestingly, iOPN, but not sOPN, greatly enhanced the immunosuppressive activity of MSCs on T-cell proliferation and thus alleviated the inflammatory pathologies of hepatitis and colitis. Mechanistically, iOPN interacted with STAT1 and mediated its deubiquitination, thereby inducing the master immunosuppressive mediator inducible nitric oxide synthase (iNOS) in MSCs. In addition, iOPN expression was directly downregulated by activated STAT1, which formed a negative feedback loop to restrain MSC immunosuppressive capacity. CONCLUSION Our findings demonstrated that iOPN expression modulation in MSCs is a novel strategy to improve MSC-based immunotherapy.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jin
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Gu
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Zhao
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Shan He
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hui Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Ding
- Gusu College, Nanjing Medical University, Nanjing, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| | - Jiefang Huang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Ghareghani M, Arneaud A, Rivest S. The evolution of mesenchymal stem cell-derived neural progenitor therapy for Multiple Sclerosis: from concept to clinic. Front Cell Neurosci 2024; 18:1428652. [PMID: 39280795 PMCID: PMC11393827 DOI: 10.3389/fncel.2024.1428652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
This review delves into the generation and therapeutic applications of mesenchymal stem cell-derived neural progenitors (MSC-NPs) in Multiple Sclerosis (MS), a chronic autoimmune disease characterized by demyelination, neuroinflammation, and progressive neurological dysfunction. Most current treatment paradigms primarily aimed at regulating the immune response show little success against the neurodegenerative aspect of MS. This calls for new therapies that would play a role in neurodegeneration and functional recovery of the central nervous system (CNS). While utilizing MSC was found to be a promising approach in MS therapy, the initiation of MSC-NPs therapy is an innovation that introduces a new perspective, a dual-action plan, that targets both the immune and neurodegenerative mechanisms of MS. The first preclinical studies using animal models of the disease showed that MSC-NPs could migrate to damaged sites, support remyelination, and possess immunomodulatory properties, thus, providing a solid basis for their human application. Based on pilot feasibility studies and phase I clinical trials, this review covers the transition from preclinical to clinical phases, where intrathecally administered autologous MSC-NPs has shown great hope in treating patients with progressive MS by providing safety, tolerability, and preliminary efficacy. This review, after addressing the role of MSCs in MS and its animal model of experimental autoimmune encephalomyelitis (EAE), highlights the significance of the MSC-NP therapy by organizing its advancement processes from experimental models to clinical translation in MS treatment. It points out the continuing obstacles, which require more studies to improve therapeutic protocols, uncovers the mechanisms of action, and establishes long-term efficacy and safety in larger controlled trials.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Ayanna Arneaud
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| |
Collapse
|
5
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
6
|
Xue Y, Zhang L, Chu L, Song Z, Zhang B, Su X, Liu W, Li X. JAK2/STAT3 Pathway Inhibition by AG490 Ameliorates Experimental Autoimmune Encephalomyelitis via Regulation of Th17 Cells and Autophagy. Neuroscience 2024; 552:65-75. [PMID: 38885894 DOI: 10.1016/j.neuroscience.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lifang Chu
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhe Song
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bing Zhang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Wanhu Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China.
| |
Collapse
|
7
|
Wang F, Zhang S, Xu Y, He W, Wang X, He Z, Shang J, Zhenyu Z. Mapping the landscape: A bibliometric perspective on autophagy in spinal cord injury. Medicine (Baltimore) 2024; 103:e38954. [PMID: 39029042 PMCID: PMC11398829 DOI: 10.1097/md.0000000000038954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition that often leads to persistent damage of nerve cells and motor dysfunction. Autophagy is an intracellular system that regulates the recycling and degradation of proteins and lipids, primarily through lysosomal-dependent organelle degradation. Numerous publications have highlighted the involvement of autophagy in the secondary injury of SCI. Therefore, gaining a comprehensive understanding of autophagy research is crucial for designing effective therapies for SCI. METHODS Dates were obtained from Web of Science, including articles and article reviews published from its inception to October 2023. VOSviewer, Citespace, and SCImago were used to visualized analysis. Bibliometric analysis was conducted using the Web of Science data, focusing on various categories such as publications, authors, journals, countries, organizations, and keywords. This analysis was aimed to summarize the knowledge map of autophagy and SCI. RESULTS From 2009 to 2023, the number of annual publications in this field exhibited wave-like growth, with the highest number of publications recorded in 2020 (44 publications). Our analysis identified Mei Xifan as the most prolific author, while Kanno H emerged as the most influential author based on co-citations. Neuroscience Letters was found to have published the largest number of papers in this field. China was the most productive country, contributing 232 publications, and Wenzhou Medical University was the most active organization, publishing 39 papers. CONCLUSION We demonstrated a comprehensive overview of the relationship between autophagy and SCI utilizing bibliometric tools. This article could help to enhance the understanding of the field about autophagy and SCI, foster collaboration among researchers and organizations, and identify potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Songou Zhang
- Ningbo University, School of Medicine, Ningbo, Zhejiang Province, China
| | - Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Wei He
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Zhongwei He
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Jinxiang Shang
- Department of Orthopedic, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zhang Zhenyu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
8
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
9
|
Rojas-Rivera D, Beltrán S, Muñoz-Carvajal F, Ahumada-Montalva P, Abarzúa L, Gomez L, Hernandez F, Bergmann CA, Labrador L, Calegaro-Nassif M, Bertrand MJM, Manque PA, Woehlbier U. The autophagy protein RUBCNL/PACER represses RIPK1 kinase-dependent apoptosis and necroptosis. Autophagy 2024:1-16. [PMID: 38873940 DOI: 10.1080/15548627.2024.2367923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are used in cell therapy; nonetheless, their application is limited by their poor survival after transplantation in a proinflammatory microenvironment. Macroautophagy/autophagy activation in MSCs constitutes a stress adaptation pathway, promoting cellular homeostasis. Our proteomics data indicate that RUBCNL/PACER (RUN and cysteine rich domain containing beclin 1 interacting protein like), a positive regulator of autophagy, is also involved in cell death. Hence, we screened MSC survival upon various cell death stimuli under loss or gain of function of RUBCNL. MSCs were protected from TNF (tumor necrosis factor)-induced regulated cell death when RUBCNL was expressed. TNF promotes inflammation by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We determine that MSCs succumb to RIPK1 kinase-dependent apoptosis upon TNF sensing and necroptosis when caspases are inactivated. We show that RUBCNL is a negative regulator of both RIPK1-dependent apoptosis and necroptosis. Furthermore, RUBCNL mutants that lose the ability to regulate autophagy, retain their function in negatively regulating cell death. We also found that RUBCNL forms a complex with RIPK1, which disassembles in response to TNF. In line with this finding, RUBCNL expression limits assembly of RIPK1-TNFRSF1A/TNFR1 complex I, suggesting that complex formation between RUBCNL and RIPK1 represses TNF signaling. These results provide new insights into the crosstalk between the RIPK1-mediated cell death and autophagy machineries and suggest that RUBCNL, due to its functional duality in autophagy and apoptosis/necroptosis, could be targeted to improve the therapeutic efficacy of MSCs. Abbreviations: BAF: bafilomycin A1; CASP3: caspase 3; Caspases: cysteine-aspartic proteases; cCASP3: cleaved CASP3; CQ: chloroquine; CHX: cycloheximide; cPARP: cleaved poly (ADP-ribose) polymerase; DEPs: differential expressed proteins; ETO: etoposide; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain-like; MSC: mesenchymal stem cell; MTORC1: mechanistic target of rapamycin kinase complex 1; Nec1s: necrostatin 1s; NFKB/NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PLA: proximity ligation assay; RCD: regulated cell death; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RUBCNL/PACER: RUN and cysteine rich domain containing beclin 1 interacting protein like; siCtrl: small interfering RNA nonsense; siRNA: small interfering RNA; TdT: terminal deoxynucleotidyl transferase; Tm: tunicamycin; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a.
Collapse
Affiliation(s)
- Diego Rojas-Rivera
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
- VIB Center for Inflammation Research, Universidad Mayor, Ghent, Belgium
| | - Sebastián Beltrán
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | | | - Pablo Ahumada-Montalva
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Neurobiología, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Lorena Abarzúa
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
| | - Laura Gomez
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Fernanda Hernandez
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Cristian A Bergmann
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Luis Labrador
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Melissa Calegaro-Nassif
- Laboratorio de Autofagia y Neuroprotección, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, Universidad Mayor, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Patricio A Manque
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Centro de Oncologia de Precision (COP), Escuela de Medicina, Universidad Mayor, Santiago, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
10
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
11
|
Liang N, Zhang K. The link between autophagy and psoriasis. Acta Histochem 2024; 126:152166. [PMID: 38688157 DOI: 10.1016/j.acthis.2024.152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Autophagy is a lysosome-dependent, self-renewal mechanism that degrades and recycles cellular components in eukaryotic cells to maintain the homeostasis of the intracellular environment. Psoriasis is featured by increased inflammatory response, epidermal hyperproliferation and abnormal differentiation, infiltration of immune cells and increased expression levels of both endothelial adhesion molecules and angiogenic mediators. Evidence indicates that autophagy has important roles in many different types of cells, such as lymphocytes, keratinocytes, monocytes and mesenchymal stem cells (MSCs). This paper will review the role of autophagy in the pathogenesis of psoriasis and strategies for therapeutic modulation. Key Message Autophagy regulates the functions of cutaneous cells (MSCs, KCs, T cells and endothelial cells). Since reduced autophagy contributes in part to the pathogenesis of psoriasis, enhancement of autophagy can be an alternative approach to mitigate psoriasis.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Tao H, Lv Q, Zhang J, Chen L, Yang Y, Sun W. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int 2024; 2024:3429565. [PMID: 38390035 PMCID: PMC10883747 DOI: 10.1155/2024/3429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autophagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear (cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical basis for promoting the clinical application of MSCs.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Lv
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Jing Zhang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
13
|
Yao R, Shen J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm (Beijing) 2023; 4:e347. [PMID: 37655052 PMCID: PMC10466100 DOI: 10.1002/mco2.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway that eliminates substrate proteins through heat-shock cognate protein 70 recognition and lysosome-associated membrane protein type 2A-assisted translocation. It is distinct from macroautophagy and microautophagy. In recent years, the regulatory mechanisms of CMA have been gradually enriched, including the newly discovered NRF2 and p38-TFEB signaling, as positive and negative regulatory pathways of CMA, respectively. Normal CMA activity is involved in the regulation of metabolism, aging, immunity, cell cycle, and other physiological processes, while CMA dysfunction may be involved in the occurrence of neurodegenerative disorders, tumors, intestinal disorders, atherosclerosis, and so on, which provides potential targets for the treatment and prediction of related diseases. This article describes the general process of CMA and its role in physiological activities and summarizes the connection between CMA and macroautophagy. In addition, human diseases that concern the dysfunction or protective role of CMA are discussed. Our review deepens the understanding of the mechanisms and physiological functions of CMA and provides a summary of past CMA research and a vision of future directions.
Collapse
Affiliation(s)
- Ruchen Yao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
14
|
Schrodt MV, Behan-Bush RM, Liszewski JN, Humpal-Pash ME, Boland LK, Scroggins SM, Santillan DA, Ankrum JA. Efferocytosis of viable versus heat-inactivated MSC induces human monocytes to distinct immunosuppressive phenotypes. Stem Cell Res Ther 2023; 14:206. [PMID: 37592321 PMCID: PMC10433682 DOI: 10.1186/s13287-023-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Immunomodulation by mesenchymal stromal cells (MSCs) can occur through trophic factor mechanisms, however, intravenously infused MSCs are rapidly cleared from the body yet a potent immunotherapeutic response is still observed. Recent work suggests that monocytes contribute to the clearance of MSCs via efferocytosis, the body's natural mechanism for clearing dead and dying cells in a non-inflammatory manner. This begs the questions of how variations in MSC quality affect monocyte phenotype and if viable MSCs are even needed to elicit an immunosuppressive response. METHODS Herein, we sought to dissect MSC's trophic mechanism from their efferocytic mechanisms and determine if the viability of MSCs prior to efferocytosis influences the resultant phenotype of monocytes. We cultured viable or heat-inactivated human umbilical cord MSCs with human peripheral blood mononuclear cells for 24 h and observed changes in monocyte surface marker expression and secretion profile. To isolate the effect of efferocytosis from MSC trophic factors, we used cell separation techniques to remove non-efferocytosed MSCs before challenging monocytes to suppress T-cells or respond to inflammatory stimuli. For all experiments, viable and heat-inactivated efferocytic-licensing of monocytes were compared to non-efferocytic-licensing control. RESULTS We found that monocytes efferocytose viable and heat-inactivated MSCs equally, but only viable MSC-licensed monocytes suppress activated T-cells and suppression occurred even after depletion of residual MSCs. This provides direct evidence that monocytes that efferocytose viable MSCs are immunosuppressive. Further characterization of monocytes after efferocytosis showed that uptake of viable-but not heat inactivated-MSC resulted in monocytes secreting IL-10 and producing kynurenine. When monocytes were challenged with LPS, IL-2, and IFN-γ to simulate sepsis, monocytes that had efferocytosed viable MSC had higher levels of IDO while monocytes that efferocytosed heat inactivated-MSCs produced the lowest levels of TNF-α. CONCLUSION Collectively, these studies show that the quality of MSCs efferocytosed by monocytes polarize monocytes toward distinctive immunosuppressive phenotypes and highlights the need to tailor MSC therapies for specific indications.
Collapse
Affiliation(s)
- Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Riley M Behan-Bush
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Jesse N Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Madeleine E Humpal-Pash
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Sabrina M Scroggins
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA.
- , 103 S. Capitol St., 5621 SC, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Niu Q, Chen H, Ou Q, Yang S, Peng Y, Xie Y, Yu L, Cheng Z, Cao Y, Wang Y. Klotho enhances bone regenerative function of hPDLSCs via modulating immunoregulatory function and cell autophagy. J Orthop Surg Res 2023; 18:400. [PMID: 37264407 DOI: 10.1186/s13018-023-03849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Human periodontal ligament stem cells (hPDLSCs) have a superior ability to promote the formation of new bones and achieve tissue regeneration. However, mesenchymal stem cells (MSCs) are placed in harsh environments after transplantation, and the hostile microenvironment reduces their stemness and hinders their therapeutic effects. Klotho is an antiaging protein that participates in the regulation of stress resistance. In our previous study, we demonstrated the protective ability of Klotho in hPDLSCs. METHODS A cranial bone defect model of rats was constructed, and the hPDLSCs with or without Klotho pretreatment were transplanted into the defects. Histochemical staining and micro-computed tomography were used to detect cell survival, osteogenesis, and immunoregulatory effects of hPDLSCs after transplantation. The in vitro capacity of hPDLSCs was measured by a macrophage polarization test and the inflammatory level of macrophages. Furthermore, we explored autophagy activity in hPDLSCs, which may be affected by Klotho to regulate cell homeostasis. RESULTS Pretreatment with the recombinant human Klotho protein improved cell survival after hPDLSC transplantation and enhanced their ability to promote bone regeneration. Furthermore, Klotho pretreatment can promote stem cell immunomodulatory effects in macrophages and modulate cell autophagy activity, in vivo and in vitro. CONCLUSION These findings suggest that the Klotho protein protects hPDLSCs from stress after transplantation to maintain stem cell function via enhancing the immunomodulatory ability of hPDLSCs and inhibiting cell autophagy.
Collapse
Affiliation(s)
- Qingru Niu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Huan Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Qianmin Ou
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Shuqing Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yingying Peng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yunyi Xie
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Le Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Zhilan Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yang Cao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Yan Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
16
|
Jiang X, Song Y, Fang J, Yang X, Mu S, Zhang J. Neuroprotective effect of Vesatolimod in an experimental autoimmune encephalomyelitis mice model. Int Immunopharmacol 2023; 116:109717. [PMID: 36738672 DOI: 10.1016/j.intimp.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multiple sclerosis is a chronic demyelinating autoimmune disease accompanied by inflammation and loss of axons and neurons. Toll-like receptors play crucial roles in the innate immune system and inflammation. However, few studies have explored the specific effects of toll-like receptor 7 signaling pathway in multiple sclerosis. To explore underlying effects to develop a new therapeutic target, we use Vesatolimod, a safe and well-tolerated agonist of toll-like receptor 7, to assess the possible effects in Experimental autoimmune encephalomyelitis (EAE) animal model. METHODS EAE animal model was induced by injection of MOG35-55 and monitored daily for clinical symptoms, and the treatment group was given Vesatolimod at the onset of illness. The therapeutic effects of Vesatolimod on EAE inflammation, demyelination, CD107b cells and T cells infiltration, and microglia activation was evaluated. Autophagy within the spinal cords of EAE mice was also preliminarily assessed. RESULTS Treatment with Vesatolimod significantly alleviated clinical symptoms of EAE from day 18 post-immunization and decreased the expression levels of inflammatory cytokines, particularly Eotaxin and IL-12 (P40), in peripheral blood. It also inhibited demyelination in spinal cords. Moreover, VES treatment reduced activation of microglia, infiltration of CD3 + T cells and CD107b + cells, as well as inhibited the autophagy-related proteins expression in the spinal cords of EAE mice. CONCLUSION Our results indicate that Vesatolimod exhibits protective effects on EAE mice and is promising for treatment of MS.
Collapse
Affiliation(s)
- Xian Jiang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yifan Song
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaosheng Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Shuhua Mu
- School of Psychology, Shenzhen University, Shenzhen 518060, Guangdong, China.
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
17
|
Prakash R, Kumari N, Siddiqui AJ, Khan AQ, Khan MA, Khan R, Haque R, Robertson AA, Boltze J, Raza SS. MCC950 Regulates Stem Cells Destiny Through Modulating SIRT3-NLRP3 Inflammasome Dynamics During Oxygen Glucose Deprivation. Stem Cell Rev Rep 2023:10.1007/s12015-023-10520-6. [PMID: 36811746 DOI: 10.1007/s12015-023-10520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1β and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, 140306, Mohali, Punjab, India
| | - Rizwanul Haque
- Departmenyt of Biotechnology, Central University of South Bihar, 824236, Gaya, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India.
| |
Collapse
|
18
|
Interferon-γ-Treated Mesenchymal Stem Cells Modulate the T Cell-Related Chemokines and Chemokine Receptors in an Animal Model of Experimental Autoimmune Encephalomyelitis. Drug Res (Stuttg) 2023; 73:213-223. [PMID: 36754055 DOI: 10.1055/a-1995-6365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) modulate immune responses, and their immunomodulatory potential can be enhanced using inflammatory cytokines. Here, the modulatory effects of IFN-γ-licensed MSCs on expression of T cell-related chemokines and chemokine receptors were evaluated using an experimental autoimmune encephalomyelitis (EAE) model. MATERIAL AND METHODS EAE was induced in 3 groups of C57bl/6 mice and then treated with PBS, MSCs and IFN-γ-treated MSCs. The EAE manifestations were registered daily and finally, the brain and spinal cords were isolated for histopathological and gene expression studies. RESULTS The clinical scores were lowered in MSCs and IFN-γ-licensed MSCs groups, however, mice treated with IFN-γ-licensed MSCs exhibited lower clinical scores than MSCs-treated mice. Leukocyte infiltration into the brain was reduced after treatment with MSCs or IFN-γ-licensed MSCs compared to untreated group (P<0.05 and P<0.01, respectively). In comparison with untreated EAE mice, treatment with MSCs reduced CCL20 expression (P<0.001) and decreased CXCR3 and CCR6 expression (P<0.02 and P<0.04, respectively). In comparison with untreated EAE mice, treatment with IFN-γ-licensed MSCs reduced CXCL10, CCL17 and CCL20 expression (P<0.05, P<0.05, and P<0.001, respectively) as well as decreased CXCR3 and CCR6 expression (P<0.002 and P<0.02, respectively), whilst promoting expression of CCL22 and its receptor CCR4 (P<0.0001 and P<0.02, respectively). In comparison with MSC-treated group, mice treated with IFN-γ-licensed MSCs exhibited lower CXCL10 and CCR6 expression (P<0.002 and P<0.01, respectively), whereas greater expression of CCL22 and CCR4 (P<0.0001 and P<0.01, respectively). CONCLUSION Priming the MSC with IFN-γ can be an efficient approach to enhance the immunomodulatory potential of MSCs.
Collapse
|
19
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
21
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
22
|
Zhou W, Li L, Tao J, Ma C, Xie Y, Ding L, Hou S, Zhang Z, Xue D, Luo J, Zhu Y. Autophagy inhibition restores CD200 expression under IL-1β microenvironment in placental mesenchymal stem cells of fetal origin and improves its pulmonary fibrosis therapeutic potential. Mol Immunol 2022; 151:29-40. [PMID: 36075140 DOI: 10.1016/j.molimm.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising remedies for various inflammatory disease including pulmonary fibrosis (PF). However, the properties of MSCs in PF pathological microenvironment remain unclear. In this study, the efficacy of autophagy in placental mesenchymal stem cells of fetal origin (fPMSCs) in either IL-1β treatment or BLM induced pulmonary fibrosis mice model was examined. METHODS The characteristic of fPMSCs was identified by morphological observation, flow cytometry and differentiation potential. In vitro experiments, fPMSCs were stimulated with IL-1β, to mimic inflammatory microenvironment of pulmonary fibrosis. The immunosuppressive properties and autophagic function in fPMSCs treated with IL-1β were evaluated by both macrophage cells THP-1 activation and the expression of CD200 situation, autophagy marker and MAPK signaling pathway. The in vivo anti-fibrotic activity of fPMSCs interfering autophagy was evaluated by using BLM induced pulmonary fibrosis mice model. RESULTS fPMSCs belonged to CD73+CD90+CD105+/CD14- CD34-CD45-HLA-DR- cells, and capable differentiation to adipogenic, osteogenic and chondrogenic cells. In addition, immunoinhibitory activity of fPMSCs for macrophage was restrained by IL-1β treatment in CD200 dependent manner. Suppression of autophagy by sh-Atg5 lentivirus increased the expression of CD200 and ratio of CD200 positive fPMSCs, and enhanced fPMSCs immunosuppression for THP-1 activation. Mechanistically, IL-1β induced autophagy regulated by p38 signaling cascade. In vivo, autophagy inhibition induced by Atg5 knockdown in fPMSCs resulted in strengthening antifibrotic effects on PF mice model. CONCLUSIONS Collectively, autophagy derived from inflammatory microenvironment hampered the immunoinhibitory properties of MSCs. Based on this, adjustment of autophagy may be a valid approach to facilitate their immunomodulatory and anti-fibrotic efficacy.
Collapse
Affiliation(s)
- Wei Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Li Li
- The Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin Tao
- Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Cunxiang Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yawei Xie
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lu Ding
- Surgical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shaozhang Hou
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Zaiqi Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Di Xue
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, Ningxia 750004, China
| | - Jia Luo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, Ningxia 750004, China.
| | - Yongzhao Zhu
- Surgical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
23
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
24
|
Liang F, Qin W, Zeng Y, Wang D. Modulation of Autoimmune and Autoinflammatory Diseases by Gasdermins. Front Immunol 2022; 13:841729. [PMID: 35720396 PMCID: PMC9199384 DOI: 10.3389/fimmu.2022.841729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Autoimmune diseases and autoinflammatory diseases are two types of the immune system disorders. Pyroptosis, a highly inflammatory cell death, plays an important role in diseases of immune system. The gasdermins belong to a pore-forming protein gene family which are mainly expressed in immune cells, gastrointestinal tract, and skin. Gasdermins are regarded as an executor of pyroptosis and have been shown to possess various cellular functions and pathological effects such as pro-inflammatory, immune activation, mediation of tumor, etc. Except for infectious diseases, the vital role of gasdermins in autoimmune diseases, autoinflammatory diseases, and immune-related neoplastic diseases has been proved recently. Therefore, gasdermins have been served as a potential therapeutic target for immune disordered diseases. The review summarizes the basic molecular structure and biological function of gasdermins, mainly discusses their role in autoimmune and autoinflammatory diseases, and highlights the recent research on gasdermin family inhibitors so as to provide potential therapeutic prospects.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weixiao Qin
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Interferon-γ enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway. Mol Biol Rep 2022; 49:8337-8347. [PMID: 35690960 DOI: 10.1007/s11033-022-07648-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.
Collapse
|
26
|
Bergmann CA, Beltran S, Vega-Letter AM, Murgas P, Hernandez MF, Gomez L, Labrador L, Cortés BI, Poblete C, Quijada C, Carrion F, Woehlbier U, Manque PA. The Autophagy Protein Pacer Positively Regulates the Therapeutic Potential of Mesenchymal Stem Cells in a Mouse Model of DSS-Induced Colitis. Cells 2022; 11:cells11091503. [PMID: 35563809 PMCID: PMC9101276 DOI: 10.3390/cells11091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as a promising tool to treat inflammatory diseases, such as inflammatory bowel disease (IBD), due to their immunoregulatory properties. Frequently, IBD is modeled in mice by using dextran sulfate sodium (DSS)-induced colitis. Recently, the modulation of autophagy in MSC has been suggested as a novel strategy to improve MSC-based immunotherapy. Hence, we investigated a possible role of Pacer, a novel autophagy enhancer, in regulating the immunosuppressive function of MSC in the context of DSS-induced colitis. We found that Pacer is upregulated upon stimulation with the pro-inflammatory cytokine TNFα, the main cytokine released in the inflammatory environment of IBD. By modulating Pacer expression in MSC, we found that Pacer plays an important role in regulating the autophagy pathway in this cell type in response to TNFα stimulation, as well as in regulating the immunosuppressive ability of MSC toward T-cell proliferation. Furthermore, increased expression of Pacer in MSC enhanced their ability to ameliorate the symptoms of DSS-induced colitis in mice. Our results support previous findings that autophagy regulates the therapeutic potential of MSC and suggest that the augmentation of autophagic capacity in MSC by increasing Pacer levels may have therapeutic implications for IBD.
Collapse
Affiliation(s)
- Cristian A. Bergmann
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Sebastian Beltran
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Tecnología Médica, Universidad Mayor, Santiago 7500000, Chile
| | - Ana Maria Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile
| | - Paola Murgas
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Tecnología Médica, Universidad Mayor, Santiago 7500000, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile
| | - Maria Fernanda Hernandez
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Laura Gomez
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Luis Labrador
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Bastián I. Cortés
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Cristian Poblete
- Laboratorio de Morfofisiopatología y Citodiagnóstico, Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile;
| | - Cristobal Quijada
- Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago 8380456, Chile;
| | - Flavio Carrion
- Programa de Inmunología Translacional, Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago 7590943, Chile;
- Departamento de Investigación, Postgrado y Educación Contínua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Ute Woehlbier
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile
- Correspondence: (U.W.); (P.A.M.)
| | - Patricio A. Manque
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Center for Genomics and Bioinformatics (CGB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile
- Centro de Oncologia de Precision (COP), Escuela de Medicina, Universidad Mayor, Santiago 7500000, Chile
- Correspondence: (U.W.); (P.A.M.)
| |
Collapse
|
27
|
Wise RM, Al-Ghadban S, Harrison MAA, Sullivan BN, Monaco ER, Aleman SJ, Donato UM, Bunnell BA. Short-Term Autophagy Preconditioning Upregulates the Expression of COX2 and PGE2 and Alters the Immune Phenotype of Human Adipose-Derived Stem Cells In Vitro. Cells 2022; 11:cells11091376. [PMID: 35563682 PMCID: PMC9101706 DOI: 10.3390/cells11091376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are potent modulators of inflammation and promising candidates for the treatment of inflammatory and autoimmune diseases. Strategies to improve hASC survival and immunoregulation are active areas of investigation. Autophagy, a homeostatic and stress-induced degradative pathway, plays a crucial role in hASC paracrine signaling—a primary mechanism of therapeutic action. Therefore, induction of autophagy with rapamycin (Rapa), or inhibition with 3-methyladenine (3-MA), was examined as a preconditioning strategy to enhance therapeutic efficacy. Following preconditioning, both Rapa and 3-MA-treated hASCs demonstrated preservation of stemness, as well as upregulated transcription of cyclooxygenase-2 (COX2) and interleukin-6 (IL-6). Rapa-ASCs further upregulated TNFα-stimulated gene-6 (TSG-6) and interleukin-1 beta (IL-1β), indicating additional enhancement of immunomodulatory potential. Preconditioned cells were then stimulated with the inflammatory cytokine interferon-gamma (IFNγ) and assessed for immunomodulatory factor production. Rapa-pretreated cells, but not 3-MA-pretreated cells, further amplified COX2 and IL-6 transcripts following IFNγ exposure, and both groups upregulated secretion of prostaglandin-E2 (PGE2), the enzymatic product of COX2. These findings suggest that a 4-h Rapa preconditioning strategy may bestow the greatest improvement to hASC expression of cytokines known to promote tissue repair and regeneration and may hold promise for augmenting the therapeutic potential of hASCs for inflammation-driven pathological conditions.
Collapse
Affiliation(s)
- Rachel M. Wise
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark A. A. Harrison
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Brianne N. Sullivan
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Emily R. Monaco
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Sarah J. Aleman
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Umberto M. Donato
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Bruce A. Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
28
|
Gu Y, Zhou H, Yu H, Yang W, Wang B, Qian F, Cheng Y, He S, Zhao X, Zhu L, Zhang Y, Jin M, Lu E. miR-99a regulates CD4 + T cell differentiation and attenuates experimental autoimmune encephalomyelitis by mTOR-mediated glycolysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1173-1185. [PMID: 34820151 PMCID: PMC8598972 DOI: 10.1016/j.omtn.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Multiple microRNAs exhibit diverse functions to regulate inflammatory and autoimmune diseases. MicroRNA-99a (miR-99a) has been shown to be involved in adipose tissue inflammation and to be downregulated in the inflammatory lesions of autoimmune diseases rheumatoid arthritis and systemic lupus erythematosus. In this study, we found that miR-99a was downregulated in CD4+ T cells from experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Overexpression of miR-99a alleviated EAE development by promoting regulator T cells and inhibiting T helper type 1 (Th1) cell differentiation. Bioinformatics and functional analyses further revealed that the anti-inflammatory effects of miR-99a was attributable to its role in negatively regulating glycolysis reprogramming of CD4+ T cells by targeting the mTOR pathway. Additionally, miR-99a expression was induced by transforming growth factor β (TGF-β) to regulate CD4+ T cell glycolysis and differentiation. Taken together, our results characterize a pivotal role of miR-99a in regulating CD4+ T cell differentiation and glycolysis reprogramming during EAE development, which may indicate that miR-99a is a promising therapeutic target for the amelioration of multiple sclerosis and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Zhou
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongshuang Yu
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wanlin Yang
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bei Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fengtao Qian
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiji Cheng
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shan He
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaonan Zhao
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Linqiao Zhu
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yanyun Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
29
|
Wu MY, Wang EJ, Feng D, Li M, Ye RD, Lu JH. Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharm Sin B 2021; 11:3364-3378. [PMID: 34900523 PMCID: PMC8642426 DOI: 10.1016/j.apsb.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Er-Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510000, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| |
Collapse
|
30
|
Zhao Y, Yang X, Li S, Zhang B, Li S, Wang X, Wang Y, Jia C, Chang Y, Wei W. sTNFRII-Fc modification protects human UC-MSCs against apoptosis/autophagy induced by TNF-α and enhances their efficacy in alleviating inflammatory arthritis. Stem Cell Res Ther 2021; 12:535. [PMID: 34627365 PMCID: PMC8502322 DOI: 10.1186/s13287-021-02602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α inhibitors represented by Etanercept (a fusion protein containing soluble TNF receptor II (sTNFRII) and the Fc segment of human IgG1) play a pivotal role in Rheumatoid arthritis (RA) treatment. However, long-term use increases the risk of infection and tumors for their systemic inhibition of TNF-α, which disrupts the regular physiological function of this molecular. Mesenchymal stem cells (MSCs)-based delivery system provides new options for RA treatment with their "homing" and immune-regulation capacities, whereas inflammatory environment (especially TNF-α) is not conducive to MSCs' therapeutic effects by inducing apoptosis/autophagy. Here, we constructed a strain of sTNFRII-Fc-expressing MSCs (sTNFRII-MSC), aiming to offset the deficiency of those two interventions. METHODS Constructed sTNFRII-Fc lentiviral vector was used to infect human umbilical cord-derived MSCs, and sTNFRII-MSC stable cell line was generated by monoclonal cultivation. In vitro and vivo characteristics of sTNFRII-MSC were assessed by coculture assay and an acute inflammatory model in NOD/SCID mice. The sTNFRII-MSC were transplanted into CIA model, pathological and immunological indicators were detected to evaluate the therapeutic effects of sTNFRII-MSC. The distribution of sTNFRII-MSC was determined by immunofluorescence assay. Apoptosis and autophagy were analyzed by flow cytometry, western blot and immunofluorescence. RESULTS sTNFRII-Fc secreted by sTNFRII-MSC present biological activity both in vitro and vivo. sTNFRII-MSC transplantation effectively alleviates mice collagen-induced arthritis (CIA) via migrating to affected area, protecting articular cartilage destruction, modulating immune balance and sTNFRII-MSC showed prolonged internal retention via resisting apoptosis/autophagy induced by TNF-α. CONCLUSION sTNFRII-Fc modification protects MSCs against apoptosis/autophagy induced by TNF-α, in addition to releasing sTNFRII-Fc neutralizing TNF-α to block relevant immune-inflammation cascade, and thus exert better therapeutic effects in alleviating inflammatory arthritis.
Collapse
Affiliation(s)
- Yingjie Zhao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China.,Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xuezhi Yang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Siyu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Bingjie Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Susu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xinwei Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yueye Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Chengyan Jia
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yan Chang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
31
|
Yang G, Van Kaer L. Therapeutic Targeting of Immune Cell Autophagy in Multiple Sclerosis: Russian Roulette or Silver Bullet? Front Immunol 2021; 12:724108. [PMID: 34531871 PMCID: PMC8438236 DOI: 10.3389/fimmu.2021.724108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding nerve fibers that project from neurons. The pathological hallmark of MS is multiple areas of myelin loss accompanied by inflammation within the CNS, resulting in loss of cognitive function that ultimately leads to paralysis. Recent studies in MS have focused on autophagy, a cellular self-eating process, as a potential target for MS treatment. Here, we review the contribution of immune cell autophagy to the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS. A better understanding of the role of autophagy in different immune cells to EAE might inform the development of novel therapeutic approaches in MS and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
32
|
Zhang J, Huang J, Gu Y, Xue M, Qian F, Wang B, Yang W, Yu H, Wang Q, Guo X, Ding X, Wang J, Jin M, Zhang Y. Inflammation-induced inhibition of chaperone-mediated autophagy maintains the immunosuppressive function of murine mesenchymal stromal cells. Cell Mol Immunol 2021; 18:1476-1488. [PMID: 31900460 PMCID: PMC8167126 DOI: 10.1038/s41423-019-0345-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Guo
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Xinyuan Ding
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jina Wang
- Department of Urology and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Jiang N, He D, Ma Y, Su J, Wu X, Cui S, Li Z, Zhou Y, Yu H, Liu Y. Force-Induced Autophagy in Periodontal Ligament Stem Cells Modulates M1 Macrophage Polarization via AKT Signaling. Front Cell Dev Biol 2021; 9:666631. [PMID: 34124048 PMCID: PMC8187804 DOI: 10.3389/fcell.2021.666631] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy, a lysosomal degradation pathway, serves as a protective cellular mechanism in maintaining cell and tissue homeostasis under mechanical stimulation. As the mechanosensitive cells, periodontal ligament stem cells (PDLSCs) play an important role in the force-induced inflammatory bone remodeling and tooth movement process. However, whether and how autophagy in PDLSCs influences the inflammatory bone remodeling process under mechanical force stimuli is still unknown. In this study, we found that mechanical force stimuli increased the expression of the autophagy protein LC3, the number of M1 macrophages and osteoclasts, as well as the ratio of M1/M2 macrophages in the compression side of the periodontal ligament in vivo. These biological changes induced by mechanical force were repressed by the application of an autophagy inhibitor 3-methyladenine. Moreover, autophagy was activated in the force-loaded PDLSCs, and force-stimulated PDLSC autophagy further induced M1 macrophage polarization in vitro. The macrophage polarization could be partially blocked by the administration of autophagy inhibitor 3-methyladenine or enhanced by the administration of autophagy activator rapamycin in PDLSCs. Mechanistically, force-induced PDLSC autophagy promoted M1 macrophage polarization via the inhibition of the AKT signaling pathway. These data suggest a novel mechanism that force-stimulated PDLSC autophagy steers macrophages into the M1 phenotype via the AKT signaling pathway, which contributes to the inflammatory bone remodeling and tooth movement process.
Collapse
Affiliation(s)
- Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yushi Ma
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Junxiang Su
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, China
| | - Xiaowen Wu
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, China
| | - Shengjie Cui
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Huajie Yu
- The Fourth Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
34
|
Xu ZQ, Zhang JJ, Kong N, Zhang GY, Ke P, Han T, Su DF, Liu C. Autophagy is Involved in Neuroprotective Effect of Alpha7 Nicotinic Acetylcholine Receptor on Ischemic Stroke. Front Pharmacol 2021; 12:676589. [PMID: 33995108 PMCID: PMC8117007 DOI: 10.3389/fphar.2021.676589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 01/14/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) belongs to the superfamily of cys loop cationic ligand-gated channels, which consists of homogeneous α7 subunits. Although our lab found that activation of α7nAChR could alleviate ischemic stroke, the mechanism is still unknown. Herein, we explored whether autophagy is involved in the neuroprotective effect mediated by α7nAChR in ischemic stroke. Transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD/R) exposure were applied to in vivo and in vitro models of ischemic stroke, respectively. Neurological deficit score and infarct volume were used to evaluate outcomes of tMCAO in the in vivo study. Autophagy-related proteins were detected by Western blot, and autophagy flux was detected by using tandem fluorescent mRFP-GFP-LC3 lentivirus. At 24 h after tMCAO, α7nAChR knockout mice showed worse neurological function and larger infarct volume than wild-type mice. PNU282987, an α7nAChR agonist, protected against OGD/R-induced neuronal injury, enhanced autophagy, and promoted autophagy flux. However, the beneficial effects of PNU282987 were eliminated by 3-methyladenine (3-MA), an autophagy inhibitor. Moreover, we found that PNU282987 treatment could activate the AMPK-mTOR-p70S6K signaling pathway in the in vitro study, while the effect was attenuated by compound C, an AMPK inhibitor. Our results demonstrated that the beneficial effect on neuronal survival via activation of α7nAChR was associated with enhanced autophagy, and the AMPK-mTOR-p70S6K signaling pathway was involved in α7nAChR activation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zhe-Qi Xu
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ni Kong
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guang-Yu Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ting Han
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Apoptosis: A friend or foe in mesenchymal stem cell-based immunosuppression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090619 DOI: 10.1016/bs.apcsb.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Mesenchymal stem cells (MSC) are adult stem cells which reside in almost all postnatal tissue where, in juxtacrine and paracrine manner, regulate phenotype and function of immune cells, maintain tissue homeostasis, attenuate on-going inflammation and promote repair and regeneration of injured tissues. Due to their capacity to suppress detrimental immune response, MSC have been considered as potentially new therapeutic agents in the treatment of autoimmune and inflammatory diseases. It was recently revealed that apoptosis may increase anti-inflammatory properties of MSC by enhancing their capacity to induce generation of immunosuppressive phenotype in macrophages and dendritic cells. Upon phagocytosis, apoptotic MSC induce generation of immunosuppressive phenotype in monocytes/macrophages and promote production of anti-inflammatory cytokines and growth factors that attenuate inflammation and facilitate repair and regeneration of injured tissues. Importantly, immunomodulation mediated by apoptotic MSC was either similar or even better than immunomodulation accomplished by viable MSC. In contrast to viable MSC, which obtain either pro- or anti-inflammatory phenotype upon engraftment in different tissue microenvironments, apoptotic MSC were not subject to changes in their immunomodulatory characteristics upon diverse stimuli, indicating their potential for clinical use. In this chapter, we summarized current knowledge about beneficial effects of apoptotic MSC in the suppression of detrimental local and systemic immune response, and we emphasized their therapeutic potential in the treatment of inflammatory diseases.
Collapse
|
36
|
Xia P, Wang X, Wang Q, Wang X, Lin Q, Cheng K, Li X. Low-Intensity Pulsed Ultrasound Promotes Autophagy-Mediated Migration of Mesenchymal Stem Cells and Cartilage Repair. Cell Transplant 2021; 30:963689720986142. [PMID: 33412895 PMCID: PMC7797574 DOI: 10.1177/0963689720986142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) migration is promoted by low-intensity pulsed ultrasound (LIPUS), but its mechanism is unclear. Since autophagy is known to regulate cell migration, our study aimed to investigate if LIPUS promotes the migration of MSCs via autophagy regulation. We also aimed to investigate the effects of intra-articular injection of MSCs following LIPUS stimulation on osteoarthritis (OA) cartilage. For the in vitro study, rat bone marrow-derived MSCs were treated with an autophagy inhibitor or agonist, and then they were stimulated by LIPUS. Migration of MSCs was detected by transwell migration assays, and stromal cell-derived factor-1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR4) protein levels were quantified. For the in vivo study, a rat knee OA model was generated and treated with LIPUS after an intra-articular injection of MSCs with autophagy inhibitor added. The cartilage repair was assessed by histopathological analysis and extracellular matrix protein expression. The in vitro results suggest that LIPUS increased the expression of SDF-1 and CXCR4, and it promoted MSC migration. These effects were inhibited and enhanced by autophagy inhibitor and agonist, respectively. The in vivo results demonstrate that LIPUS significantly enhanced the cartilage repair effects of MSCs on OA, but these effects were blocked by autophagy inhibitor. Our results suggest that the migration of MSCs was enhanced by LIPUS through the activation autophagy, and LIPUS improved the protective effect of MSCs on OA cartilage via autophagy regulation.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Qi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
37
|
Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2020; 17:2991-3010. [PMID: 33206581 DOI: 10.1080/15548627.2020.1850608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC3D) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanisms by which MSC3D gain the potential for enhanced cell viability. Herein, we found that macroautophagy/autophagy was highly induced and ROS production was suppressed in MSC3D as compared to 2D-cultured MSCs (MSC2D). Interestingly, inhibition of autophagy induction caused decreased cell viability and increased apoptotic activity in MSC3D. Furthermore, modulation of ROS production was closely related to the survival and apoptosis of MSC3D. We also observed that HMOX1 (heme oxygenase 1) was significantly up-regulated in MSC3D. In addition, gene silencing of HMOX1 caused upregulation of ROS production and suppression of the genes related to autophagy. Moreover, inhibition of HIF1A (hypoxia inducible factor 1 subunit alpha) caused suppression of HMOX1 expression in MSC3D, indicating that the HIF1A-HMOX1 axis plays a crucial role in the modulation of ROS production and autophagy induction in MSC3D. Finally, the critical role of autophagy induction on improved therapeutic effects of MSC3D was further verified in dextran sulfate sodium (DSS)-induced murine colitis. Taken together, these results indicated that autophagy activation and modulation of ROS production mediated via the HIF1A-HMOX1 axis play pivotal roles in enhancing the viability of MSC3D.List of abbreviations:3D: three dimensional; 3MA: 3 methlyadenine; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CFSE: carboxyfluorescein succinimidyl ester; CoCl2: cobalt chloride; CoPP: cobalt protoporphyrin; DSS: dextran sulfate sodium; ECM: extracellular matrix; FOXO3/FOXO3A: forkhead box O3; HIF1A: hypoxia inducible factor 1 subunit alpha; HMOX1/HO-1: heme oxygenase 1; HSCs: hematopoietic stem cells; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1β: interleukin 1 beta; IL8: interleukin 8; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MSC2D: 2D-cultured MSCs; MSC3D: 3D-cultured MSCs; MSCs: mesenchymal stromal cells; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; PGE2: prostaglandin E2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; ROS: reactive oxygen species; siRNA: small interfering RNA; SIRT1: sirtuin 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-β: transforming growth factor beta.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Department of Radiology, Stanford Medicine, Palo Alto, CA, USA
| | - Pawan Kumar Raut
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| |
Collapse
|
38
|
Patschan D, Schwarze K, Tampe B, Becker JU, Hakroush S, Ritter O, Patschan S, Müller GA. Constitutive Atg5 overexpression in mouse bone marrow endothelial progenitor cells improves experimental acute kidney injury. BMC Nephrol 2020; 21:503. [PMID: 33228553 PMCID: PMC7684746 DOI: 10.1186/s12882-020-02149-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Endothelial Progenitor Cells have been shown as effective tool in experimental AKI. Several pharmacological strategies for improving EPC-mediated AKI protection were identified in recent years. Aim of the current study was to analyze consequences of constitutive Atg5 activation in murine EPCs, utilized for AKI therapy. Methods Ischemic AKI was induced in male C57/Bl6N mice. Cultured murine EPCs were systemically injected post-ischemia, either natively or after Atg5 transfection (Adenovirus-based approach). Mice were analyzed 48 h and 6 weeks later. Results Both, native and transfected EPCs (EPCsAtg5) improved persisting kidney dysfunction at week 6, such effects were more pronounced after injecting EPCsAtg5. While matrix deposition and mesenchymal transdifferentiation of endothelial cells remained unaffected by cell therapy, EPCs, particularly EPCsAtg5 completely prevented the post-ischemic loss of peritubular capillaries. The cells finally augmented the augophagocytic flux in endothelial cells. Conclusions Constitutive Atg5 activation augments AKI-protective effects of murine EPCs. The exact clinical consequences need to be determined.
Collapse
Affiliation(s)
- Daniel Patschan
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany.
| | - Katrin Schwarze
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Björn Tampe
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jan Ulrich Becker
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Universitätsklinikum Köln, Köln, Germany
| | - Samy Hakroush
- Institut für Pathologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Oliver Ritter
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany
| | - Susann Patschan
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany
| | - Gerhard Anton Müller
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Deng J, Zhong L, Zhou Z, Gu C, Huang X, Shen L, Cao S, Ren Z, Zuo Z, Deng J, Yu S. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions. Mol Cell Biochem 2020; 476:1135-1149. [PMID: 33196943 DOI: 10.1007/s11010-020-03978-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic material due to their capacities for self-renewal, multilineage differentiation, and immunomodulation and have attracted great attention in regenerative medicine. However, MSCs may lose their biological functions because of donor age or disease and environmental pressure before and after transplantation, which hinders the application of MSC-based therapy. As a major intracellular lysosome-dependent degradative process, autophagy plays a pivotal role in maintaining cellular homeostasis and withstanding environmental pressure and may become a potential therapeutic target for improving MSC functions. Recent studies have demonstrated that the regulation of autophagy is a promising approach for improving the biological properties of MSCs. More in-depth investigations about the role of autophagy in MSC biology are required to contribute to the clinical application of MSCs. In this review, we focus on the role of autophagy regulation by various physical and chemical factors on the biological functions of MSCs in vitro and in vivo, and provide some strategies for enhancing the therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zihan Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Congwei Gu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Xiaoya Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
40
|
Zhou H, Xie X, Chen Y, Lin Y, Cai Z, Ding L, Wu Y, Peng Y, Tang S, Xu H. Chaperone-mediated Autophagy Governs Progression of Papillary Thyroid Carcinoma via PPARγ-SDF1/CXCR4 Signaling. J Clin Endocrinol Metab 2020; 105:5859150. [PMID: 32556197 DOI: 10.1210/clinem/dgaa366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/14/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. Chaperone-mediated autophagy (CMA), 1 type of autophagy, is thought to promote or suppress cancer development in different cancer types. However, the effect of CMA on PTC development and the underlying mechanisms remain unknown. OBJECTIVE To determine whether CMA plays implied critical roles in the development of PTC. DESIGN We investigated the association between CMA and PTC development in PTC tissues and normal thyroid tissues by detecting the key protein of CMA, lysosome-associated membrane protein type 2A (LAMP2A), using quantitative polymerase chain reaction (PCR) and immunohistochemistry, which were further validated in the TGCA dataset. The effect of CMA on PTC development was studied by cell proliferation, migration, and apoptosis assays. The underlying mechanisms of peroxisome proliferator-activated receptor γ (PPARγ)-stromal cell-derived factor 1 (SDF1)/ C-X-C motif chemokine receptor 4 (CXCR4) signaling were clarified by western blotting, quantitative PCR, and rescue experiments. Knockdown and tamoxifen were used to analyze the effect of estrogen receptor (ER) α on CMA. RESULTS Our study confirmed that CMA, indicated by LAMP2A expression, was significantly increased in PTC tumor tissues and cell lines, and was associated with tumor size and lymph node metastasis of patients. Higher CMA in PTC promoted tumor cell proliferation and migration, thereby promoting tumor growth and metastasis. These effects of CMA on PTC were exerted by decreasing PPARγ protein expression to enhance SDF1 and CXCR4 expression. Furthermore, CMA was found positively regulated by ERα signaling in PTC. CONCLUSION Our investigation identified CMA regulated by ERα promoting PTC tumor progression that enhanced tumor cell proliferation and migration by targeting PPARγ-SDF1/CXCR4 signaling, representing a potential target for treatment of PTC.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xie
- Shanghai TCM-Integrated hospital (endocrinology department), Shanghai, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaogen Cai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Anhui, China
| | - Li Ding
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Anhui, China
| | - Yijie Wu
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Tang
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Tian J, Kou X, Wang R, Jing H, Chen C, Tang J, Mao X, Zhao B, Wei X, Shi S. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy 2020; 17:2586-2603. [PMID: 32910719 DOI: 10.1080/15548627.2020.1821547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) has been applied to treat a variety of autoimmune and inflammatory diseases. Psychosocial stress can aggravate disease progression in chronic inflammatory patients. Whether psychological stress affects MSCT is largely unknown. In this study we show that psychological stress attenuates therapeutic effects of MSCT in a DSS-induced colitis mouse model by elevating the levels of exosomal Mir7k/mmu-let-7 k (microRNA 7 k) in circulation. Mechanistically, Mir7k inhibits STAT3 pathway in donor MSCs, leading to upregulated expression of BECN1 (beclin 1, autophagy related) and, thus, activation of macroautophagy/autophagy. Inhibition of autophagy by blocking Mir7k or activating STAT3 signaling can restore MSCT-mediated therapy in psychologically stressed colitis mice. Our study identifies a previously unknown role of autophagy in regulating MSCT therapy via exosomal miRNA Mir7k.Abbreviations: BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; DAI: disease activity index; DAPI: 4',6-diamidino-2-phenylindole; DSS: dextran sulfate sodium; GFP: green fluorescent protein; HAI: histological activity index; IFNG/IFN-γ: interferon gamma; IL10: interleukin 10; IL1RN/IL-1Rra: interleukin 1 receptor antagonist; KD: knockdown; miRNA: microRNA; MSCs: mesenchymal stem cells; MSCT: mesenchymal stem cell transplantation; NTA: nanoparticle tracking analysis; PGE2: prostaglandin E2; SD: standard deviation; siRNA: small-interfering RNA; STAT3: signal transducer and activator of transcription 3; TEM: transmission electron microscopy; TGFB1/TGF-β1: transforming growth factor, beta 1; Th17 cell: T helper cell 17; TNF/TNF-α: tumor necrosis factor; TNFAIP6/TSG6: tumor necrosis factor alpha induced protein 6; Tregs: regulatory T cells.
Collapse
Affiliation(s)
- Jun Tian
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xiaoxing Kou
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Huan Jing
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Jianxia Tang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xueli Mao
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Bingjiao Zhao
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xi Wei
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Songtao Shi
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
42
|
Chen XD, Tan JL, Feng Y, Huang LJ, Zhang M, Cheng B. Autophagy in fate determination of mesenchymal stem cells and bone remodeling. World J Stem Cells 2020; 12:776-786. [PMID: 32952858 PMCID: PMC7477662 DOI: 10.4252/wjsc.v12.i8.776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Jia-Li Tan
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Yi Feng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Li-Jia Huang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Mei Zhang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| |
Collapse
|
43
|
Wei X, Yi X, Lv H, Sui X, Lu P, Li L, An Y, Yang Y, Yi H, Chen G. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy. Cell Death Dis 2020; 11:657. [PMID: 32814765 PMCID: PMC7438519 DOI: 10.1038/s41419-020-02857-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the severe lung damage and respiratory failure without effective therapy. However, there was a lack of understanding of the mechanism by which exosomes regulate autophagy during ALI/ARDS. Here, we found lipopolysaccharide (LPS) significantly increased inflammatory factors, administration of exosomes released by human umbilical cord mesenchymal stem cells (hucMSCs) successfully improved lung morphometry. Further studies showed that miR-377-3p in the exosomes played a pivotal role in regulating autophagy, leading to protect LPS induced ALI. Compared to exosomes released by human fetal lung fibroblast cells (HFL-1), hucMSCs-exosomes overexpressing miR-377-3p more effectively suppressed the bronchoalveolar lavage (BALF) and inflammatory factors and induced autophagy, causing recoveration of ALI. Administration of miR-377-3p expressing hucMSCs-exosomes or its target regulatory-associated protein of mTOR (RPTOR) knockdown significantly reduced ALI. In summary, miR-377-3p released by hucMSCs-exosomes ameliorated Lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy in vivo and in vitro.
Collapse
Affiliation(s)
- Xuxia Wei
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiaomeng Yi
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Haijin Lv
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xin Sui
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Pinglan Lu
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Lijuan Li
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yuling An
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yang Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Huimin Yi
- Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Guihua Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Liu Y, Ma Y, Du B, Wang Y, Yang GY, Bi X. Mesenchymal Stem Cells Attenuated Blood-Brain Barrier Disruption via Downregulation of Aquaporin-4 Expression in EAE Mice. Mol Neurobiol 2020; 57:3891-3901. [PMID: 32613467 PMCID: PMC7399688 DOI: 10.1007/s12035-020-01998-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022]
Abstract
Blood-brain barrier disruption is one of the hallmarks of multiple sclerosis. Mesenchymal stem cells showed great potential for the multiple sclerosis therapy. However, the effect of mesenchymal stem cells on blood-brain barrier in multiple sclerosis remains unclear. Here, we investigated whether mesenchymal stem cells transplantation protected blood-brain barrier integrity and further explored possible underlying mechanisms. Adult female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptide33-55 (MOG33-55) to induce experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (5 × 105) were transplanted via tail vein at disease onset. In the cell culture, we examined lipopolysaccharide-induced AQP4 upregulation in astrocytes. Results indicated that mesenchymal stem cells therapy improved neurobehavioral outcomes in EAE mice, reduced inflammatory cell infiltration, IgG protein leakage, and demyelination in spinal cord. Mesenchymal stem cells therapy also increased tight junction protein expression. In addition, mesenchymal stem cells downregulated AQP4 and A2B adenosine receptor (A2BAR) expression in EAE mice in spinal cord. We found that MSCs-conditioned medium (MCM) reduced the expression of inflammatory cytokines, AQP4 and A2BAR in lipopolysaccharide-activated astrocytes. BAY-60-6583 (a selective A2BAR agonist) reversed the MCM-induced AQP4 downregulation and increased p38 MAPK phosphorylation. Furthermore, the upregulation effects of A2BAR agonist were eliminated when treated with p38 MAPK inhibitor SB203580. Thus, we concluded that mesenchymal stem cells alleviated blood-brain barrier disruption by downregulating AQP4 in multiple sclerosis, possibly through inhibiting the A2BAR/p38 MAPK signaling pathway. Our work suggests that mesenchymal stem cells exert beneficial effect through maintaining blood-brain barrier integrity in EAE mice.
Collapse
Affiliation(s)
- Yanqun Liu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yuanyuan Ma
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.,Department of Neurology, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
45
|
Xin Y, Gao J, Hu R, Li H, Li Q, Han F, He Z, Lai L, Su M. Changes of immune parameters of T lymphocytes and macrophages in EAE mice after BM-MSCs transplantation. Immunol Lett 2020; 225:66-73. [PMID: 32544469 DOI: 10.1016/j.imlet.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory infiltration, demyelination and axonal injury. Mesenchymal stem cells (MSCs) are pluripotent which can not only differentiate into many types of cells, but also have immunomodulatory effects. We show here that the transplantation of bone marrow MSCs (BM-MSCs) prevents the development of experimental autoimmune encephalomyelitis (EAE), the most common animal model of MS. Furthermore, we demonstrate that the immunologic mechanism by which BM-MSC transplantation ameliorates EAE involves inhibiting the proliferation and activation of T cells, reducing the production of inflammatory cytokines, and regulating macrophage responses, especially the macrophage polarization. The findings broaden our understanding about the regulation of T cell and macrophage immune responses by MSC transplantation.
Collapse
Affiliation(s)
- Ying Xin
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jie Gao
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Rong Hu
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Hong Li
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qian Li
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Feng Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Zhixu He
- Key Laboratory for Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou, 550004, China
| | - Laijun Lai
- Department of Allied Health Science, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Min Su
- Department of Human Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China; Key Laboratory for Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
46
|
Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O'Malley G, Ryan AE, Ritter T. TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection In Vivo. Mol Ther 2020; 28:2023-2043. [PMID: 32531237 PMCID: PMC7474271 DOI: 10.1016/j.ymthe.2020.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-β1 (TGF-β MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-β MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-β MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-β MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-β MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-β MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-β1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.
Collapse
Affiliation(s)
- Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Luke Watson
- Orbsen Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Steven McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
47
|
Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020; 16:28-37. [PMID: 31185790 PMCID: PMC6984485 DOI: 10.1080/15548627.2019.1630223] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy occurs at basal levels in all eukaryotic cells and plays an important role in maintaining bio-energetic homeostasis through the control of molecule degradation and organelle turnover. It can be induced by environmental conditions such as starvation, and is deregulated in many diseases including autoimmune diseases, neurodegenerative disorders, and cancer. Interestingly, the modulation of autophagy in mesenchymal stem cells (MSCs) represents a possible mechanism which, affecting MSC properties, may have an impact on their regenerative, therapeutic potential. Furthermore, the ability of MSCs to modulate autophagy of cells in injured tissues/organs has been recently proposed to be involved in the regeneration of damaged tissues and organs. In particular, MSCs can affect autophagy in immune cells involved in injury-induced inflammation reducing their survival, proliferation, and function and favoring the resolution of inflammation. In addition, MSCs can affect autophagy in endogenous adult or progenitor cells, promoting their survival, proliferation and differentiation supporting the restoration of functional tissue. This review provides, for the first time, an overview of the studies which highlight a possible link between the therapeutic properties of MSCs and their ability to modulate autophagy, and it summarizes examples of disorders where these therapeutic properties have been correlated with such modulation. A better elucidation of the mechanism(s) through which MSCs can modulate the autophagy of target cells and how autophagy can affect MSCs therapeutic properties, can provide a wider perspective for the clinical application of MSCs in the treatment of many diseases.Abbreviations: 3-MA: 3-methyladenine; AD: Alzheimer disease; ATG: autophagy-related; BECN1: beclin 1; BM: bone marrow; CD: cluster of differentiation; EAE: experimental autoimmune encephalomyelitis; IL: interleukin; INF: interferon; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MSCs: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; PD: Parkinson disease; PtdIns3K: class III phosphatidylinositol 3-kinase; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; SQSTM1: sequestosome 1; TBI: traumatic brain injury; TGF: transforming growth factor; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Sabrina Ceccariglia
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italia
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|
48
|
Rossi F, Noren H, Sarria L, Schiller PC, Nathanson L, Beljanski V. Combination therapies enhance immunoregulatory properties of MIAMI cells. Stem Cell Res Ther 2019; 10:395. [PMID: 31852519 PMCID: PMC6921447 DOI: 10.1186/s13287-019-1515-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs), adult stromal cells most commonly isolated from bone marrow (BM), are being increasingly utilized in various therapeutic applications including tissue repair via immunomodulation, which is recognized as one of their most relevant mechanism of action. The promise of MSC-based therapies is somewhat hindered by their apparent modest clinical benefits, highlighting the need for approaches that would increase the efficacy of such therapies. Manipulation of cellular stress-response mechanism(s) such as autophagy, a catabolic stress-response mechanism, with small molecules prior to or during MSC injection could improve MSCs’ therapeutic efficacy. Unfortunately, limited information exists on how manipulation of autophagy affects MSCs’ response to inflammation and subsequent immunoregulatory properties. Methods In this study, we exposed BM-MSC precursor cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, to autophagy modulators tamoxifen (TX) or chloroquine (CQ), together with IFN-γ. Exposed cells then underwent RNA sequencing (RNAseq) to determine the effects of TX or CQ co-treatments on cellular response to IFN-γ at a molecular level. Furthermore, we evaluated their immunoregulatory capacity using activated CD4+ T cells by analyzing T cell activation marker CD25 and the percentage of proliferating T cells after co-culturing the cells with MIAMI cells treated or not with TX or CQ. Results RNAseq data indicate that the co-treatments alter both mRNA and protein levels of key genes responsible for MSCs’ immune-regulatory properties. Interestingly, TX and CQ also altered some of the microRNAs targeting such key genes. In addition, while IFN-γ treatment alone increased the surface expression of PD-L1 and secretion of IDO, this increase was further enhanced with TX. An improvement in MIAMI cells’ ability to decrease the activation and proliferation of T cells was also observed with TX, and to a lesser extent, CQ co-treatments. Conclusion Altogether, this work suggests that both TX and CQ have a potential to enhance MIAMI cells’ immunoregulatory properties. However, this enhancement is more pronounced with TX co-treatment.
Collapse
Affiliation(s)
- Fiorella Rossi
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Leonor Sarria
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Paul C Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA.,Prime Cell Biomedical Inc., Miami, FL, USA
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA.
| |
Collapse
|
49
|
Wang HY, Li C, Liu WH, Deng FM, Ma Y, Guo LN, Kong DH, Hu KA, Liu Q, Wu J, Sun J, Liu YL. Autophagy inhibition via Becn1 downregulation improves the mesenchymal stem cells antifibrotic potential in experimental liver fibrosis. J Cell Physiol 2019; 235:2722-2737. [PMID: 31508820 PMCID: PMC6916329 DOI: 10.1002/jcp.29176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is the result of a vicious cycle between inflammation-induced chronic hepatocyte injury and persistent activation of hepatic stellate cells (HSCs). Mesenchymal stem cell (MSC)-based therapy may represent a potential remedy for treatment of LF. However, the fate of transplanted MSCs in LF remains largely unknown. In the present study, the fate and antifibrotic effect of MSCs were explored in a LF model induced by CCl4 in mouse. Additionally, MSCs were stimulated in vitro with LF-associated factors, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β1 (TGF-β1), to mimic the LF microenvironment. We unveiled that MSCs exhibited autophagy in response to the LF microenvironment through Becn1 upregulation both in vivo and in vitro. However, autophagy suppression induced by Becn1 knockdown in MSCs resulted in enhanced antifibrotic effects on LF. The improved antifibrotic potential of MSCs may be attributable to their inhibitory effects on T lymphocyte infiltration, HSCs proliferation, as well as production of TNF-α, IFN-γ, and TGF-β1, which may be partially mediated by elevated paracrine secretion of PTGS2/PGE2 . Thus, autophagy manipulation in MSCs may be a novel strategy to promote their antifibrotic efficacy.
Collapse
Affiliation(s)
- Hang Yu Wang
- Key Laboratory of Xingjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Can Li
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Hua Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Mei Deng
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan Ma
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Na Guo
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - De Hua Kong
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kang An Hu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiang Wu
- Deep-Underground Medicine Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Sun
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Lun Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
50
|
Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 2019; 235:116830. [PMID: 31487529 DOI: 10.1016/j.lfs.2019.116830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS). In attempt to identify an appropriate treatment for improving the neurological symptoms and remyelination process, autologous and allogenic transplantation of mesenchymal stem cells (MSCs) have been introduced as an effective therapeutic strategy in MS. MSCs are a heterogeneous subset of pluripotent non-hematopoietic stromal cells that are isolated from bone marrow, adipose tissue, placenta and other sources. MSCs have considerable therapeutic effects due to their ability in differentiation, migration, immune-modulation and neuroregeneration. To date, numerous experimental and clinical studies demonstrated that MSCs therapy improves the CNS repair and modulates functional neurological symptoms. Here, we provided an overview of the current knowledge about the clinical applications of MSCs in MS. Furthermore, the major challenges and risks of MSCs therapy in MS patients have been elucidated.
Collapse
Affiliation(s)
- Sahar Rostami Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|