1
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
2
|
Hu T, Tang X, Ruan T, Long S, Liu G, Ma J, Li X, Zhang R, Huang G, Shen Y, Lin T. IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal sperm morphology in humans and mice. Cell Commun Signal 2025; 23:41. [PMID: 39849482 PMCID: PMC11755891 DOI: 10.1186/s12964-025-02043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear. METHODS We recruited a cohort of 323 infertile males with ASZ between August 2019 and June 2024. Genetic mutations were identified by whole-exome sequencing. Computer-aided sperm analysis, Papanicolaou staining, and electron microscopy were applied to evaluate the motility, morphology, and ultrastructure of spermatozoa, respectively. Protein mass spectrometry, western blotting, and bioinformatic analyses were performed to identify critical components of mammalian RS1 to model its structure and explore the pathological mechanism of IQUB deficiency. Intracytoplasmic sperm injection (ICSI) was applied for the patient and Iqub-/- mice. RESULTS We identified a novel homozygous IQUB mutation [c.842del (p.L281Pfs*28)] in an ASZ male with normal sperm morphology (ANM), which resulted in the complete loss of IQUB in sperm flagella. Deficiency of RS1, but not RS2 or RS3, was observed in both IQUB842del patient and Iqub-/- mice, and resulted in the reduction of sperm kinetic parameters, indicating the critical role of IQUB in regulating mammalian RS1 assembly and sperm flagellar beat. More importantly, we identified twelve critical components of RS1 in humans and mice, among which RSPH3, RSPH6A, RSPH9 and DYDC1 constituting the head, DYDC1, NME5, DNAJB13 and PPIL6 assembling into the head-neck complex, AK8, ROPN1L, RSPH14, DYNLL1, and IQUB forming the stalk of RS1. Along with the RS1 defect, the IQUB deficiency caused significant down-regulation of the inner dynein arms of DNAH7 and DNAH12, highlighting their nearby location with RS1. Finally, ICSI can effectively resolve the male infertility caused by IQUB genetic defects. CONCLUSIONS We demonstrate that IQUB may serve as an adapter for sperm flagellar RS1 in both humans and mice and consolidated the causal relationship between IQUB genetic mutations and ANM, further enriching the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Tiechao Ruan
- Department of Obstetrics/Gynecology, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Guicen Liu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Jing Ma
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xueqi Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Ruoxuan Zhang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Ying Shen
- Department of Obstetrics/Gynecology, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
3
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
4
|
Alvarez Viar G, Klena N, Martino F, Nievergelt AP, Bolognini D, Capasso P, Pigino G. Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating. Curr Biol 2024; 34:4464-4475.e9. [PMID: 39270640 PMCID: PMC11466076 DOI: 10.1016/j.cub.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Controlling ciliary beating is essential for motility and signaling in eukaryotes. This process relies on the regulation of various axonemal proteins that assemble in stereotyped patterns onto individual microtubules of the ciliary structure. Additionally, each axonemal protein interacts exclusively with determined tubulin protofilaments of the neighboring microtubule to carry out its function. While it is known that tubulin post-translational modifications (PTMs) are important for proper ciliary motility, the mode and extent to which they contribute to these interactions remain poorly understood. Currently, the prevailing understanding is that PTMs can confer functional specialization at the level of individual microtubules. However, this paradigm falls short of explaining how the tubulin code can manage the complexity of the axonemal structure where functional interactions happen in defined patterns at the sub-microtubular scale. Here, we combine immuno-cryo-electron tomography (cryo-ET), expansion microscopy, and mutant analysis to show that, in motile cilia, tubulin glycylation and polyglutamylation form mutually exclusive protofilament-specific nanopatterns at a sub-microtubular scale. These nanopatterns are consistent with the distributions of axonemal dyneins and nexin-dynein regulatory complexes, respectively, and are indispensable for their regulation during ciliary beating. Our findings offer a new paradigm for understanding how different tubulin PTMs, such as glycylation, glutamylation, acetylation, tyrosination, and detyrosination, can coexist within the ciliary structure and specialize individual protofilaments for the regulation of diverse protein complexes. The identification of a ciliary tubulin nanocode by cryo-ET suggests the need for high-resolution studies to better understand the molecular role of PTMs in other cellular compartments beyond the cilium.
Collapse
Affiliation(s)
| | - Nikolai Klena
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Fabrizio Martino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Davide Bolognini
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Paola Capasso
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy.
| |
Collapse
|
5
|
Ji N, Wang J, Huang W, Huang J, Cai Y, Sun S, Shen X, Liang Y. Transcriptome analysis of the harmful alga Heterosigma akashiwo under a 24-hour light-dark cycle. HARMFUL ALGAE 2024; 133:102601. [PMID: 38485440 DOI: 10.1016/j.hal.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The photoperiod, which is defined as the period of time within a 24-hour time frame that light is available, is an important environmental regulator of several physiological processes in phytoplankton, including harmful bloom-forming phytoplankton. The ichthyotoxic raphidophyte Heterosigma akashiwo is a globally distributed bloom-forming phytoplankton. Despite extensive studies on the ecological impact of H. akashiwo, the influence of the photoperiod on crucial biological processes of this species remains unclear. In this study, gene expression in H. akashiwo was analyzed over a 24-hour light-dark (14:10) treatment period. Approximately 36 % of unigenes in H. akashiwo were differentially expressed during this 24-hour treatment period, which is indicative of their involvement in the response to light-dark variation. Notably, the number of differentially expressed genes exhibited an initial increase followed by a subsequent decrease as the sampling time progressed (T0 vs. other time points). Unigenes associated with photosynthesis and photoprotection reached their peak expression levels after 2-4 h of illumination (T12-T14). In contrast, the expression of unigenes associated with DNA replication peaked at the starting point of the dark period (T0). Furthermore, although several unigenes annotated to photoreceptors displayed potential diel periodicity, genes from various photoreceptor families (such as phytochrome and cryptochrome) showed unique expression patterns. Collectively, our findings offer novel perspectives on the response of H. akashiwo to the light-dark cycle, serving as a valuable resource for investigating the physiology and ecology of this species.
Collapse
Affiliation(s)
- Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Junyue Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wencong Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinwang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 2023; 13:230136. [PMID: 37935354 PMCID: PMC10645079 DOI: 10.1098/rsob.230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
7
|
Mostek-Majewska A, Majewska A, Janta A, Ciereszko A. New insights into posttranslational modifications of proteins during bull sperm capacitation. Cell Commun Signal 2023; 21:72. [PMID: 37046330 PMCID: PMC10091539 DOI: 10.1186/s12964-023-01080-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/13/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Due to the unique nature of spermatozoa, which are transcriptionally and translationally silent, the regulation of capacitation is based on the formation of posttranslational modifications of proteins (PTMs). However, the interactions between different types of PTMs during the capacitation remain unclear. Therefore, we aimed to unravel the PTM-based regulation of sperm capacitation by considering the relationship between tyrosine phosphorylation and reversible oxidative PTMs (oxPTMs), i.e., S-nitrosylation and S-glutathionylation. Since reversible oxPTMs may be closely related to peroxyredoxin (PRDX) activity, the second aim was to verify the role of PRDXs in the PTM-based regulation of capacitation. METHODS Cryopreserved bull sperm were capacitated in vitro with or without PRDX inhibitor. Qualitative parameters of sperm and symptoms characteristic of capacitation were analyzed. Posttranslational protein modifications (S-nitrosylation, S-glutathionylation, tyrosine phosphorylation) were investigated at the cellular level (flow cytometry, fluorescence microscopy) and at the proteomic level (fluorescent gel-based proteomic approach). RESULTS Zona-pellucida binding proteins (ACRBP, SPAM1, ZAN, ZPBP1 and IZUMO4) were particularly rich in reversible oxPTMs. Moreover, numerous flagellar proteins were associated with all analyzed types of PTMs, which indicates that the direction of posttranslational modifications was integrated. Inhibition of PRDX activity during capacitation caused an increase in S-nitrosylation and S-glutathionylation and a decrease in tyrosine phosphorylation. Inhibition of PRDXs caused GAPDHS to undergo S-glutathionylation and the GSTO2 and SOD2 enzymes to undergo denitrosylation. Moreover, PRDX inhibition caused the AKAP proteins to be dephosphorylated. CONCLUSIONS Our research provides evidence that crosstalk occurs between tyrosine phosphorylation and reversible oxPTMs during bull sperm capacitation. This study demonstrates that capacitation triggers S-nitrosylation and S-glutathionylation (and reverse reactions) of zona-pellucida binding proteins, which may be a new important mechanism that determines the interaction between sperms and oocytes. Moreover, TCA-related and flagellar proteins, which are particularly rich in PTMs, may play a key role in sperm capacitation. We propose that the deglutathionylation of ODFs and IZUMO4 proteins is a new hallmark of bull sperm capacitation. The obtained results indicate a relationship between PRDX activity and protein phosphorylation, S-glutathionylation and S-nitrosylation. The activity of PRDXs may be crucial for maintaining redox balance and for providing proper PKA-mediated protein phosphorylation during capacitation. Video Abstract.
Collapse
Affiliation(s)
- Agnieszka Mostek-Majewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland.
| | - Anna Majewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Anna Janta
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| |
Collapse
|
8
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
9
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
10
|
Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of mouse cilia and flagella. Cell Rep 2022; 41:111683. [DOI: 10.1016/j.celrep.2022.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
11
|
Sabui A, Biswas M, Somvanshi PR, Kandagiri P, Gorla M, Mohammed F, Tammineni P. Decreased anterograde transport coupled with sustained retrograde transport contributes to reduced axonal mitochondrial density in tauopathy neurons. Front Mol Neurosci 2022; 15:927195. [PMID: 36245925 PMCID: PMC9561864 DOI: 10.3389/fnmol.2022.927195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are essential organelle required for neuronal homeostasis. Mitochondria supply ATP and buffer calcium at synaptic terminals. However, the complex structural geometry of neurons poses a unique challenge in transporting mitochondria to synaptic terminals. Kinesin motors supply mitochondria to the axonal compartments, while cytoplasmic dynein is required for retrograde transport. Despite the importance of presynaptic mitochondria, how and whether axonal mitochondrial transport and distribution are altered in tauopathy neurons remain poorly studied. In the current study, we have shown that anterograde transport of mitochondria is reduced in P301L neurons, while there is no change in the retrograde transport. Consistently, axonal mitochondrial abundance is reduced in P301L neurons. We further studied the possible role of two opposing motor proteins on mitochondrial transport and found that mitochondrial association of kinesin is decreased significantly in P301L cells. Interestingly, fitting our experimental data into mathematical equations suggested a possible rise in dynein activity to maintain retrograde flux in P301L cells. Our data indicate that decreased kinesin-mediated transport coupled with sustained retrograde transport might reduce axonal mitochondria in tauopathy neurons, thus contributing to the synaptic deficits in Alzheimer’s disease (AD) and other tauopathies.
Collapse
Affiliation(s)
- Anusruti Sabui
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mitali Biswas
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Preethi Kandagiri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Madhavi Gorla
- Centre for Biotechnology, Institute of Science and Technology (IST), Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Fareed Mohammed
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Prasad Tammineni,
| |
Collapse
|
12
|
Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022; 10:biomedicines10051025. [PMID: 35625761 PMCID: PMC9138619 DOI: 10.3390/biomedicines10051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflammation that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and Interleukin-1beta (IL-1β). Human cortical spheroids (hCSs) constitute a valuable tool to study the molecular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these hCSs for three time periods with TNFα and with IL-1β. Transcriptomic analysis reveals that the main process induced in the TNFα- as well as in the IL-1β-stimulated hCSs is neuroinflammation. Central in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically modulated in the TNFα-stimulated and in the IL-1β-stimulated hCSs. Together, our results help to molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.
Collapse
|
13
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
14
|
Dahlin HR, Zheng N, Scott JD. Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily. J Biol Chem 2021; 297:100927. [PMID: 34256050 PMCID: PMC8339350 DOI: 10.1016/j.jbc.2021.100927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cell-signaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1-75) at 1.72 Å resolution. This revealed a four-helix bundle-like configuration featuring terminal β-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile protein-interaction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.
Collapse
Affiliation(s)
- Heather R Dahlin
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, Washington, USA; Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
15
|
Quantitative Assessment of Ciliary Ultrastructure with the Use of Automatic Analysis: PCD Quant. Diagnostics (Basel) 2021; 11:diagnostics11081363. [PMID: 34441298 PMCID: PMC8394936 DOI: 10.3390/diagnostics11081363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
The ciliary ultrastructure can be damaged in various situations. Such changes include primary defects found in primary ciliary dyskinesia (PCD) and secondary defects developing in secondary ciliary dyskinesia (SCD). PCD is a genetic disease resulting from impaired ciliary motility causing chronic disease of the respiratory tract. SCD is an acquired condition that can be caused, for example, by respiratory infection or exposure to tobacco smoke. The diagnosis of these diseases is a complex process with many diagnostic methods, including the evaluation of ciliary ultrastructure using transmission electron microscopy (the golden standard of examination). Our goal was to create a program capable of automatic quantitative analysis of the ciliary ultrastructure, determining the ratio of primary and secondary defects, as well as analysis of the mutual orientation of cilia in the ciliary border. PCD Quant, a program developed for the automatic quantitative analysis of cilia, cannot yet be used as a stand-alone method for evaluation and provides limited assistance in classifying primary and secondary defect classes and evaluating central pair angle deviations. Nevertheless, we see great potential for the future in automatic analysis of the ciliary ultrastructure.
Collapse
|
16
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
17
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
18
|
Lindemann CB, Lesich KA. The many modes of flagellar and ciliary beating: Insights from a physical analysis. Cytoskeleton (Hoboken) 2021; 78:36-51. [PMID: 33675288 PMCID: PMC8048621 DOI: 10.1002/cm.21656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
The mechanism that allows the axoneme of eukaryotic cilia and flagella to produce both helical and planar beating is an enduring puzzle. The nine outer doublets of eukaryotic cilia and flagella are arranged in a circle. Therefore, each doublet pair with its associated dynein motors, should produce torque to bend the flagellum in a different direction. Sequential activation of each doublet pair should, therefore result in a helical bending wave. In reality, most cilia and flagella have a well‐defined bending plane and many exhibit an almost perfectly flat (planar) beating pattern. In this analysis we examine the physics that governs flagellar bending, and arrive at two distinct possibilities that could explain the mechanism of planar beating. Of these, the mechanism with the best observational support is that the flagellum behaves as two ribbons of doublets interacting with a central partition. We also examine the physics of torsion in flagella and conclude that torsion could play a role in transitioning from a planar to a helical beating modality in long flagella. Lastly, we suggest some tests that would provide theoretical and/or experimental evaluation of our proposals.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
19
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
20
|
Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P, Varga V, Honigmann A, Pigino G. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat Struct Mol Biol 2020; 27:1115-1124. [PMID: 32989303 PMCID: PMC7610599 DOI: 10.1038/s41594-020-0507-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023]
Abstract
Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.
Collapse
Affiliation(s)
- Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Nikolai Tsoy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Riccardo Maraspini
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Human Technopole, Milan, Italy.
| |
Collapse
|
21
|
Petriman NA, Lorentzen E. Structural insights into the architecture and assembly of eukaryotic flagella. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:289-299. [PMID: 33150161 PMCID: PMC7590530 DOI: 10.15698/mic2020.11.734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Cilia and flagella are slender projections found on most eukaryotic cells including unicellular organisms such as Chlamydomonas, Trypanosoma and Tetrahymena, where they serve motility and signaling functions. The cilium is a large molecular machine consisting of hundreds of different proteins that are trafficked into the organelle to organize a repetitive microtubule-based axoneme. Several recent studies took advantage of improved cryo-EM methodology to unravel the high-resolution structures of ciliary complexes. These include the recently reported purification and structure determination of axonemal doublet microtubules from the green algae Chlamydomonas reinhardtii, which allows for the modeling of more than 30 associated protein factors to provide deep molecular insight into the architecture and repetitive nature of doublet microtubules. In addition, we will review several recent contributions that dissect the structure and function of ciliary trafficking complexes that ferry structural and signaling components between the cell body and the cilium organelle.
Collapse
Affiliation(s)
- Narcis-Adrian Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Li S, Alfaro AC, Nguyen TV, Young T, Lulijwa R. An integrated omics approach to investigate summer mortality of New Zealand Greenshell™ mussels. Metabolomics 2020; 16:100. [PMID: 32915338 DOI: 10.1007/s11306-020-01722-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Green-lipped mussels, commercially known as Greenshell™ mussels (Perna canaliculus Gmelin 1791), contribute > $300 million to New Zealand's aquaculture exports. However, mortalities during summer months and potential pathogenic outbreaks threaten the industry. Thermal stress mechanisms and immunological responses to pathogen infections need to be understood to develop health assessment strategies and early warning systems. METHODS P. canaliculus were collected during a mortality event at a commercial aquaculture farm in Firth of Thames, New Zealand. Gill tissues from six healthy and six unhealthy mussels were excised and processed for metabolomic (GC-MS) and label-free proteomic (LC-MS) profiling. Univariate analyses were conducted separately on each data layer, with data being integrated via sparse multiple discriminative canonical correlation analysis. Pathway enrichment analysis was used to probe coordinated changes in functionally related metabolite sets. RESULTS Findings revealed disruptions of the tricarboxylic acid (TCA) cycle and fatty acid metabolism in unhealthy mussels. Metabolomics analyses also indicated oxidative stress in unhealthy mussels. Proteomics analyses identified under-expression of proteins associated with cytoskeleton structure and regulation of cilia/flagellum in gill tissues of unhealthy mussels. Integrated omics revealed a positive correlation between Annexin A4 and CCDC 150 and saturated fatty acids, as well as a negative correlation between 2-aminoadipic acid and multiple cytoskeletal proteins. CONCLUSIONS Our study demonstrates the ability of using integrative omics to reveal metabolic perturbations and protein structural changes in the gill tissues of stressed P. canaliculus and provides new insight into metabolite and protein interactions associated with incidences of summer mortality in this species.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
23
|
Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 2020; 16:e1008664. [PMID: 32203505 PMCID: PMC7147805 DOI: 10.1371/journal.pgen.1008664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Motile cilia/flagella are essential for swimming and generating extracellular fluid flow in eukaryotes. Motile cilia harbor a 9+2 arrangement consisting of nine doublet microtubules with dynein arms at the periphery and a pair of singlet microtubules at the center (central pair). In the central system, the radial spoke has a T-shaped architecture and regulates the motility and motion pattern of cilia. Recent cryoelectron tomography data reveal three types of radial spokes (RS1, RS2, and RS3) in the 96 nm axoneme repeat unit; however, the molecular composition of the third radial spoke, RS3 is unknown. In human pathology, it is well known mutation of the radial spoke head-related genes causes primary ciliary dyskinesia (PCD) including respiratory defect and infertility. Here, we describe the role of the primary ciliary dyskinesia protein Rsph4a in the mouse motile cilia. Cryoelectron tomography reveals that the mouse trachea cilia harbor three types of radial spoke as with the other vertebrates and that all triplet spoke heads are lacking in the trachea cilia of Rsph4a-deficient mice. Furthermore, observation of ciliary movement and immunofluorescence analysis indicates that Rsph4a contributes to the generation of the planar beating of motile cilia by building the distal architecture of radial spokes in the trachea, the ependymal tissues, and the oviduct. Although detailed mechanism of RSs assembly remains unknown, our results suggest Rsph4a is a generic component of radial spoke heads, and could explain the severe phenotype of human PCD patients with RSPH4A mutation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Kariya, Aichi, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Sakai
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Kahoru Horiuchi
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Chikako Shingyoji
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hiroshi Hamada
- Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Kyosuke Shinohara
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
25
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
26
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
27
|
Gust KA, Lotufo GR, Thiyagarajah A, Barker ND, Ji Q, Marshall K, Wilbanks MS, Chappell P. Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105204. [PMID: 31185427 DOI: 10.1016/j.aquatox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Previous toxicological investigations of the insensitive munition (IM), 3-nitro-1,2,4-triazol-5-one (NTO), demonstrated histopathological and physiological impacts in mammalian testes. The implications of these findings for fish was unknown, therefore we investigated the effects of chronic (21 day) exposures to NTO and an NTO-containing IM formulation called IMX-101 (composed of 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and NTO) in adult male fathead minnows to assess if impacts on testes were conserved. The NTO exposure caused no significant mortality through the maximum exposure concentration (720 mg/L, measured), however NTO elicited testicular impacts causing significant asynchrony in spermatogenesis and necrosis in secondary spermatocytes at the two highest exposure concentrations (383 mg/L and 720 mg/L) and testicular degeneration at the highest exposure. Microarray-based transcriptomics analysis identified significant enrichment of steroid metabolism pathways and mTORC-signal control of spermatogonia differentiation in NTO exposures each having logical connections to observed asynchronous spermatogenesis. Additionally, NTO impaired transcriptional expression for genes supporting sperm structural and flagellar development including sperm-associated antigen 6 (Spag6). These functional transcriptomic responses are hypothesized contributors to impacted reproductive physiology in NTO exposures that ultimately lead to reductions in spermatozoa. In contrast to NTO, the IMX-101 formulation elicited significant mortality at the two highest exposure concentrations of 25.2 and 50.9 mg/L (DNAN nominal + NTO measured + NQ measured). Unlike NTO and NQ, the DNAN component of the IMX-101 formulation underwent significant transformation in the 21d exposure. From previous investigations, neither NTO nor NQ caused mortality in fish at >1000 mg/L suggesting that mortality in the present study arose from DNAN / DNAN-attributable transformation products. The 12.6 mg/L IMX-101 exposure caused significant sublethal impacts on testes including sperm necrosis, interstitial fibrosis, and Sertoli-like cell hyperplasia. Transcriptional profiles for IMX-101 indicated significant enrichment on multiple signaling pathways supporting spermatogenesis, mitosis / meiosis, and flagellar structure, all logically connected to observed sperm necrosis. Additionally, pronounced transcriptional increases within the PPARα-RXRα pathway, a known DNAN target, has been hypothesized to correspond to Sertoli cell hyperplasia, presumably as a compensatory response to fulfill the nurse-function of Sertoli cells during spermatogenesis. Overall, the transcriptional results indicated unique molecular responses for NTO and IMX-101. Regarding chemical hazard, NTO impacted testes and impaired spermatogenesis, but at high exposure concentrations (≥ 192 mg/L), whereas the IMX-101 formulation, elicited mortality and impacts on reproductive physiology likely caused by DNAN and its transformation products present at concentrations well below the NTO-component concentration within the IMX-101 mixture formulation.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | | | | - Qing Ji
- Bennett Aerospace, Cary, NC, 27511, USA.
| | | | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | |
Collapse
|
28
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
29
|
Wang Y, Xu R, Cheng Y, Cao H, Wang Z, Zhu T, Jiang J, Zhang H, Wang C, Qi L, Liu M, Guo X, Huang J, Sha J. RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. J Genet Genomics 2019; 46:281-290. [DOI: 10.1016/j.jgg.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
30
|
Bottier M, Thomas KA, Dutcher SK, Bayly PV. How Does Cilium Length Affect Beating? Biophys J 2019; 116:1292-1304. [PMID: 30878201 PMCID: PMC6451027 DOI: 10.1016/j.bpj.2019.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video microscopy of uniciliated mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The frequency of cilia beating was estimated from the motion of the cell body and of the cilium. Key features of the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. Most notably, periodic beating did not emerge until the cilium reached a critical length between 2 and 4 μm. Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths with only a slight decrease in frequency as length increased from 4 μm to the normal length of 10-12 μm. The waveform average curvature (rad/μm) was also conserved as the cilium grew. The mechanical metrics of ciliary propulsion (force, torque, and power) all increased in proportion to length. The mechanical efficiency of beating appeared to be maximal at the normal wild-type length of 10-12 μm. These quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, may help distinguish competing hypotheses of the underlying mechanism of oscillation.
Collapse
Affiliation(s)
- Mathieu Bottier
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kyle A Thomas
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
31
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
32
|
Lorès P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, Chaudhry M, Fernandez-Gonzales A, Mitsialis A, Dacheux D, Wolf JP, Papon JF, Gacon G, Escudier E, Arnoult C, Bonhivers M, Savinov SN, Amselem S, Ray PF, Dulioust E, Touré A. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 2019; 27:1196-1211. [PMID: 29365104 DOI: 10.1093/hmg/ddy034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 02/03/2023] Open
Abstract
Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucie Thomas
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France
| | - Baptiste Rode
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Bruno Louis
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | | | - Alex Mitsialis
- Division of Newborn Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France.,Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France
| | - Jean-Philippe Wolf
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Jean-François Papon
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre F-94275, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Estelle Escudier
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Serge Amselem
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble F-38000, France
| | - Emmanuel Dulioust
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
33
|
Lechtreck KF, Mengoni I, Okivie B, Hilderhoff KB. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 2018; 75:352-362. [PMID: 30070024 DOI: 10.1002/cm.21457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Radial spokes (RSs) are multiprotein complexes that regulate dynein activity. In the cell body, RS proteins (RSPs) are present in a 12S precursor, which enters the flagella and converts into the axoneme-bound 20S spokes consisting of a head and stalk. To study RS dynamics in vivo, we expressed fluorescent protein (FP)-tagged versions of the head protein RSP4 and the stalk protein RSP3 to rescue the corresponding Chlamydomonas mutants pf1, lacking spoke heads, and pf14, lacking RSs entirely. RSP3 and RSP4 mostly co-migrated by intraflagellar transport (IFT). The transport was elevated during flagellar assembly and IFT of RSP4-FP depended on RSP3. To study RS assembly independently of ciliogenesis, strains expressing FP-tagged RSPs were mated to untagged cells with, without, or with partial RSs. Tagged RSPs were incorporated in a spotted fashion along wild-type-derived flagella indicating an exchange of RSs. During the repair of pf1-derived axonemes, RSP4-FP is added onto the preexisting spoke stalks with little exchange of RSP3. Thus, RSP3 and RSP4 are transported together but appear to separate inside flagella during the repair of RSs. The 12S RS precursor encompassing both proteins could represent a transport form to ensure stoichiometric delivery of RSPs into flagella by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Batare Okivie
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
34
|
Coan M, Rampioni Vinciguerra GL, Cesaratto L, Gardenal E, Bianchet R, Dassi E, Vecchione A, Baldassarre G, Spizzo R, Nicoloso MS. Exploring the Role of Fallopian Ciliated Cells in the Pathogenesis of High-Grade Serous Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19092512. [PMID: 30149579 PMCID: PMC6163198 DOI: 10.3390/ijms19092512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. Tumor characteristics (e.g., risk factors and epidemiology) are valuable clues to accomplish this task. The two most frequent risk factors for HGSOC are the lifetime number of ovulations, which is associated with increased oxidative stress in the pelvic area caused by ovulation fluid, and a positive family history due to genetic factors. In the attempt to identify novel genetic factors (i.e., genes) associated with HGSOC, we observed that several genes in linkage with HGSOC are expressed in the ciliated cells of the fallopian tube. This finding made us hypothesize that ciliated cells, despite not being the cell of origin for HGSOC, may take part in HGSOC tumor initiation. Specifically, malfunction of the ciliary beat impairs the laminar fluid flow above the fallopian tube epithelia, thus likely reducing the clearance of oxidative stress caused by follicular fluid. Herein, we review the up-to-date findings dealing with HGSOC predisposition with the hypothesis that fallopian ciliated cells take part in HGSOC onset. Finally, we review the up-to-date literature concerning genes that are located in genomic loci associated with epithelial ovarian cancer (EOC) predisposition that are expressed by the fallopian ciliated cells.
Collapse
Affiliation(s)
- Michela Coan
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Laura Cesaratto
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Emanuela Gardenal
- Azienda Ospedaliera Universitaria Integrata, University of Verona, 37129 Verona, Italy.
| | - Riccardo Bianchet
- Scientific Direction, CRO Aviano Italy, Via Franco Gallini, 2 33081 Aviano, Italy.
| | - Erik Dassi
- Centre for Integrative Biology, University of Trento, 38122 Trento, Italy.
| | - Andrea Vecchione
- Department of clinical and molecular medicine, university of Rome "Sapienza", c/o sant andrea hospital, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Milena Sabrina Nicoloso
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| |
Collapse
|
35
|
Han X, Xie H, Wang Y, Zhao C. Radial spoke proteins regulate otolith formation during early zebrafish development. FASEB J 2018; 32:3984-3992. [PMID: 29475374 DOI: 10.1096/fj.201701359r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radial spokes are structurally conserved, macromolecular complexes that are essential for the motility of 9 + 2 motile cilia. In Chlamydomonas species, mutations in radial spoke proteins result in ciliary motility defects. However, little is known about the function of radial spoke proteins during embryonic development. Here, we investigated the role of a novel radial spoke protein, leucine-rich repeat containing protein 23 (Lrrc23), during zebrafish embryonic development. Mutations in lrrc23 resulted in a selective otolith formation defect during early ear development. Similar otolith defects were also present in the radial spoke head 3 homolog ( rsph3) and radial spoke head 4 homolog A ( rsph4a) radial spoke mutants. Notably, the radial spoke protein mutations specifically affected ciliary motility in the otic vesicle (OV), whereas motile cilia in other organs functioned normally. Via high-speed video microscopy, we found that motile cilia formation was stochastic and transient in the OV. Importantly, all the motile cilia in the OV beat circularly, in contrast to the planar beating pattern of typical 9 + 2 motile cilia. We identified the key time frame for motile cilia formation during OV development. Finally, we showed that the functions of radial spoke proteins were conserved between zebrafish and Tetrahymena. Together, our results suggest that radial spoke proteins are essential for ciliary motility in the OV and that radial spoke-regulated OV motile cilia represent a unique type of cilia during early zebrafish embryonic development.-Han, X., Xie, H., Wang, Y., Zhao, C. Radial spoke proteins regulate otolith formation during early zebrafish development.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Haibo Xie
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yadong Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Hu T, Bayly PV. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading. Cytoskeleton (Hoboken) 2018; 75:185-200. [PMID: 29316355 DOI: 10.1002/cm.21432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
It remains unclear how flagella generate propulsive, oscillatory waveforms. While it is well known that dynein motors, in combination with passive cytoskeletal elements, drive the bending of the axoneme by applying shearing forces and bending moments to microtubule doublets, the origin of rhythmicity is still mysterious. Most conceptual models of flagellar oscillation involve dynein regulation or switching, so that dynein activity first on one side of the axoneme, then the other, drives bending. In contrast, a "viscoelastic flutter" mechanism has recently been proposed, based on a dynamic structural instability. Simple mathematical models of coupled elastic beams in viscous fluid, subjected to steady, axially distributed, dynein forces of sufficient magnitude, can exhibit oscillatory motion without any switching or dynamic regulation. Here we introduce more realistic finite element (FE) models of 6-doublet and 9-doublet flagella, with radial spokes and interdoublet links that slide along the central pair or corresponding doublet. These models demonstrate the viscoelastic flutter mechanism. Above a critical force threshold, these models exhibit an abrupt onset of propulsive, wavelike oscillations typical of flutter instability. Changes in the magnitude and spatial distribution of steady dynein force, or to viscous resistance, lead to behavior qualitatively consistent with experimental observations. This study demonstrates the ability of FE models to simulate nonlinear interactions between axonemal components during flagellar beating, and supports the plausibility of viscoelastic flutter as a mechanism of flagellar oscillation.
Collapse
Affiliation(s)
- Tianchen Hu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri
| |
Collapse
|
37
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
38
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
39
|
Abstract
The axoneme is the main extracellular part of cilia and flagella in eukaryotes. It consists of a microtubule cytoskeleton, which normally comprises nine doublets. In motile cilia, dynein ATPase motor proteins generate sliding motions between adjacent microtubules, which are integrated into a well-orchestrated beating or rotational motion. In primary cilia, there are a number of sensory proteins functioning on membranes surrounding the axoneme. In both cases, as the study of proteomics has elucidated, hundreds of proteins exist in this compartmentalized biomolecular system. In this article, we review the recent progress of structural studies of the axoneme and its components using electron microscopy and X-ray crystallography, mainly focusing on motile cilia. Structural biology presents snapshots (but not live imaging) of dynamic structural change and gives insights into the force generation mechanism of dynein, ciliary bending mechanism, ciliogenesis, and evolution of the axoneme.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, 5232 Villigen PSI, Switzerland
| |
Collapse
|
40
|
Sartori P, Geyer VF, Howard J, Jülicher F. Curvature regulation of the ciliary beat through axonemal twist. Phys Rev E 2016; 94:042426. [PMID: 27841522 DOI: 10.1103/physreve.94.042426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/07/2022]
Abstract
Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.
Collapse
Affiliation(s)
- Pablo Sartori
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Veikko F Geyer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
41
|
Frommer A, Hjeij R, Loges NT, Edelbusch C, Jahnke C, Raidt J, Werner C, Wallmeier J, Große-Onnebrink J, Olbrich H, Cindrić S, Jaspers M, Boon M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Marthin JK, Nielsen KG, Amirav I, Elias N, Kerem E, Shoseyov D, Haeffner K, Omran H. Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with Radial Spoke Defects. Am J Respir Cell Mol Biol 2015; 53:563-73. [PMID: 25789548 DOI: 10.1165/rcmb.2014-0483oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder caused by several distinct defects in genes responsible for ciliary beating, leading to defective mucociliary clearance often associated with randomization of left/right body asymmetry. Individuals with PCD caused by defective radial spoke (RS) heads are difficult to diagnose owing to lack of gross ultrastructural defects and absence of situs inversus. Thus far, most mutations identified in human radial spoke genes (RSPH) are loss-of-function mutations, and missense variants have been rarely described. We studied the consequences of different RSPH9, RSPH4A, and RSPH1 mutations on the assembly of the RS complex to improve diagnostics in PCD. We report 21 individuals with PCD (16 families) with biallelic mutations in RSPH9, RSPH4A, and RSPH1, including seven novel mutations comprising missense variants, and performed high-resolution immunofluorescence analysis of human respiratory cilia. Missense variants are frequent genetic defects in PCD with RS defects. Absence of RSPH4A due to mutations in RSPH4A results in deficient axonemal assembly of the RS head components RSPH1 and RSPH9. RSPH1 mutant cilia, lacking RSPH1, fail to assemble RSPH9, whereas RSPH9 mutations result in axonemal absence of RSPH9, but do not affect the assembly of the other head proteins, RSPH1 and RSPH4A. Interestingly, our results were identical in individuals carrying loss-of-function mutations, missense variants, or one amino acid deletion. Immunofluorescence analysis can improve diagnosis of PCD in patients with loss-of-function mutations as well as missense variants. RSPH4A is the core protein of the RS head.
Collapse
Affiliation(s)
- Adrien Frommer
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Rim Hjeij
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Niki T Loges
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Christine Edelbusch
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Charlotte Jahnke
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Claudius Werner
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Julia Wallmeier
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Jörg Große-Onnebrink
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Sandra Cindrić
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Martine Jaspers
- 2 Department of Otorhinolaryngology, University Hospital Leuven, Leuven, Belgium
| | - Mieke Boon
- 3 Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Belgium
| | - Yasin Memari
- 4 Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard Durbin
- 4 Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Sascha Sauer
- 5 Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - June K Marthin
- 6 Danish Primary Ciliary Dyskinesia (PCD) Centre and Pediatrics Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kim G Nielsen
- 6 Danish Primary Ciliary Dyskinesia (PCD) Centre and Pediatrics Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Israel Amirav
- 7 Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nael Elias
- 8 Saint Vincent De-Paul Hospital, Nazareth, Israel
| | - Eitan Kerem
- 9 Cystic Fibrosis and PCD Center, Hadassah Hebrew University Hospital, Jerusalem, Israel; and
| | - David Shoseyov
- 9 Cystic Fibrosis and PCD Center, Hadassah Hebrew University Hospital, Jerusalem, Israel; and
| | - Karsten Haeffner
- 10 Department of Pediatrics, University Hospital Freiburg, Freiburg, Germany
| | - Heymut Omran
- 1 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
42
|
Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia 2015; 4:3. [PMID: 25646146 PMCID: PMC4313461 DOI: 10.1186/s13630-014-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Group of Electron Microscopy of Complex Cellular System, Laboratory of Biomolecular Research, Paul Scherrer Institute, OFLG/010, 5232 Villigen PSI, Switzerland
| |
Collapse
|
43
|
Abstract
In this issue, Oda et al. (2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201312014) use mutant analysis, protein tagging, and cryoelectron tomography to determine the detailed location of components in flagellar radial spokes-a complex of proteins that connect the peripheral microtubule doublets to the central pair. Remarkably, this approach revealed an interaction between radial spokes and the central pair based on geometry rather than a specific signaling mechanism, highlighting the importance of studying a system in three dimensions.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
44
|
Burgoyne T, Lewis A, Dewar A, Luther P, Hogg C, Shoemark A, Dixon M. Characterizing the ultrastructure of primary ciliary dyskinesia transposition defect using electron tomography. Cytoskeleton (Hoboken) 2014; 71:294-301. [DOI: 10.1002/cm.21171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 02/10/2014] [Accepted: 02/26/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Burgoyne
- Electron Microscopy Unit; Royal Brompton Hospital; London United Kingdom
- National Heart and Lung Institute; Imperial College; London United Kingdom
| | - Amy Lewis
- Electron Microscopy Unit; Royal Brompton Hospital; London United Kingdom
- National Heart and Lung Institute; Imperial College; London United Kingdom
| | - Ann Dewar
- National Heart and Lung Institute; Imperial College; London United Kingdom
| | - Pradeep Luther
- National Heart and Lung Institute; Imperial College; London United Kingdom
| | - Claire Hogg
- Paediatric Respiratory Department; Royal Brompton Hospital; London United Kingdom
| | - Amelia Shoemark
- Electron Microscopy Unit; Royal Brompton Hospital; London United Kingdom
- National Heart and Lung Institute; Imperial College; London United Kingdom
| | - Mellisa Dixon
- Electron Microscopy Unit; Royal Brompton Hospital; London United Kingdom
| |
Collapse
|
45
|
Gene mutations in primary ciliary dyskinesia related to otitis media. Curr Allergy Asthma Rep 2014; 14:420. [PMID: 24459089 DOI: 10.1007/s11882-014-0420-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Otitis media with effusion (OME) is the most common cause of conductive hearing loss in children and is strongly associated with primary ciliary dyskinesia (PCD). Approximately half of the children with PCD require otolaryngology care, posing a major problem in this population. Early diagnosis of PCD is critical in these patients to minimise the collateral damage related to OME. The current gold standard for PCD diagnosis requires determining ciliary structure defects by transmission electron microscopy (TEM) or clearly documenting ciliary dysfunction via digital high-speed video microscopy (DHSV). Although both techniques are useful for PCD diagnosis, they have limitations and need to be supported by new methodologies, including genetic analysis of genes related to PCD. In this article, we review classical and recently associated mutations related to ciliary alterations leading to PCD, which can be useful for early diagnosis of the disease and subsequent early management of OME.
Collapse
|
46
|
Jana SC, Marteil G, Bettencourt-Dias M. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr Opin Cell Biol 2013; 26:96-106. [PMID: 24529251 DOI: 10.1016/j.ceb.2013.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule (MT)-based cylinders that form centrosomes and can be modified into basal bodies that template the axoneme, the ciliary MT skeleton. These MT-based structures are present in all branches of the eukaryotic tree of life, where they have important sensing, motility and cellular architecture-organizing functions. Moreover, they are altered in several human conditions and diseases, including sterility, ciliopathies and cancer. Although the ultrastructure of centrioles and derived organelles has been known for over 50 years, the molecular basis of their remarkably conserved properties, such as their 9-fold symmetry, has only now started to be unveiled. Recent advances in imaging, proteomics and crystallography, allowed the building of 3D models of centrioles and derived structures with unprecedented molecular details, leading to a much better understanding of their assembly and function. Here, we cover progress in this field, focusing on the mechanisms of centriole and cilia assembly.
Collapse
|
47
|
Nozawa YI, Yao E, Lin C, Yang JH, Wilson CW, Gacayan R, Chuang PT. Fused (Stk36) is a ciliary protein required for central pair assembly and motile cilia orientation in the mammalian oviduct. Dev Dyn 2013; 242:1307-19. [PMID: 23907739 DOI: 10.1002/dvdy.24024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Motile cilia on the inner lining of the oviductal epithelium play a central role in ovum transport toward the uterus and subsequent fertilization by sperm. While the basic ultrastructure of 9+2 motile cilia (nine peripheral microtubule doublets surrounding a central pair) has been characterized, many important steps of ciliogenesis remain poorly understood. RESULTS Our previous studies on mammalian Fused (Fu) (Stk36), a putative serine-threonine kinase, reveal a critical function of Fu in central pair construction and cilia orientation of motile cilia that line the tracheal and ependymal epithelia. These findings identify a novel regulatory component for these processes. In this study, we show that Fu is expressed in the multi-ciliated oviductal epithelium in several vertebrates, suggesting a conserved function of Fu in the oviduct. In support of this, analysis of Fu-deficient mouse oviducts uncovers a similar role of Fu in central pair construction and cilia orientation. We also demonstrate that Fu localizes to motile cilia and physically associates with kinesin Kif27 located at the cilium base and known central pair components Spag16 and Pcdp1. CONCLUSIONS Our results delineate a novel pathway for central pair apparatus assembly and add important insight to the biogenesis and function of oviductal motile cilia.
Collapse
Affiliation(s)
- Yoko Inès Nozawa
- Cardiovascular Research Institute, University of California, San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang YJ, Zhao L, Meng YP, Shi DL. Xenopus radial spoke protein 3 gene is expressed in the multiciliated cells of epidermis and otic vesicles and sequentially in the nephrostomes. Dev Genes Evol 2013; 223:183-8. [PMID: 23247584 DOI: 10.1007/s00427-012-0433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
We describe the phylogenetic analysis and expression pattern of the Xenopus radial spoke protein 3 (RSP3) gene during early development. The Xenopus RSP3 protein presents characteristic features of the RSP3 family. It contains a radial spoke domain, which is 75 and 72 % identical to the corresponding region of human and Chlamydomonas RSP3 proteins, respectively. Examination of the phylogenetic relationship between the Xenopus RSP3 protein and its known homologues from different deuterostomes indicates that the RSP3 proteins are highly conserved among deuterostomes. Whole-mount in situ hybridization analyses show that Xenopus RSP3 is a maternal mRNA enriched in the animal hemisphere during cleavage stages. The expression is detected in the dorsal region of the embryo during gastrulation, then in the presumptive neuroectoderm at the end of gastrulation. During neurulation and at the subsequent stages, the expression of RSP3 mRNA is detected in the entire multiciliated cells of epidermis. At tail-bud stages, it is progressively expressed in the otic vesicles and sequentially expressed in the nephrostomes. Expression could be also detected in the floor plate of the neural tube. This expression pattern persists until at least late tail-bud stages.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|