1
|
Karimi M, Seyyed Tabaei SJ, Ranjbar MM, Fathi F, Jalili A, zamini G, Javadi Mamaghani A, Nazari J, Roshani D, Bagherani N, Khademerfan MB. Construction of A Synthetic Gene Encoding the Multi-Epitope of Toxoplasma gondii and Demonstration of the Relevant Recombinant Protein Production: A Vaccine Candidate. Galen Med J 2020; 9:e1708. [PMID: 34466573 PMCID: PMC8343506 DOI: 10.31661/gmj.v9i0.1708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/06/2019] [Accepted: 11/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is a widely-distributed parasite all over the world whose attributed severe afflicting complications in human necessitate the development of serodiagnostic tests and vaccines for it. Immunological responses to monovalent vaccines and the application of diagnostic reagents including single antigens are not optimally effective. Bioinformatics approaches were used to introduce these epitopes, predict their immunogenicity and preliminarily evaluate their potential as an effective DNA vaccine and for serodiagnostic goals. MATERIALS AND METHODS A 3D structure of proteins was predicted by I-TASSER server, and linear and conformational B cell and T cell epitopes were predicted using the online servers. Then, the predicted epitopes were constructed and called Toxoeb, and their expression in the prokaryotic and eukaryotic cells was demonstrated using SDS-PAGE. In the next step, Western blotting with pooled sera of mice infected with T. gondii was done. RESULTS The current in silico analysis revealed that the B cell epitopes with high immunogenicity for GRA4 protein were located in the residues 34-71, and 230-266, for GRA14 in 308-387, for SAG1 in 182-195, 261-278, and for GRA7 in residues 101-120, 160-176. The T cell epitopes were selected in overlapping regions with the B cell epitopes. The immunogenic region for GRA4 are in the residues 245-253, 50-58, and 40-54, for GRA14 in 307-315, 351-359, and 308- 322, for SAG1 261-269, and 259-267, and for GRA7 in the residues 103-112, and 167-175. The results of the western blotting showed that the expressed protein had immunogenicity. CONCLUSION Our constructed multi-epitope of T. gondii could be considered as a candidate for diagnostic and vaccination purposes.
Collapse
Affiliation(s)
- Maryam Karimi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ghasem zamini
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Science
| | - Amirreza Javadi Mamaghani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nazari
- Medical Department, Arak University of Medical Science, Arak, Iran
| | - Daem Roshani
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nooshin Bagherani
- Department of Molecular Medicine, School of Advanced Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Khademerfan
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Science
| |
Collapse
|
2
|
Dierick M, Vanrompay D, Devriendt B, Cox E. Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host's innate immunity. Biochem Cell Biol 2020; 99:61-65. [PMID: 32585120 DOI: 10.1139/bcb-2020-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin is a multifunctional protein found in the secretions of mammals. The antimicrobial activity of lactoferrin was the first to be discovered and was assumed to be solely dependent on its iron-chelating ability. However, lactoferrin has been reported to display proteolytic activity towards bacterial virulence factors and to modulate the host defence by stimulating the immune system and balancing pathogen-induced inflammation. Here, we review the current understandings of the antimicrobial effect, interaction with host cells, and innate immune modulation of lactoferrin, and put forward this moonlighting protein as a possible alternative for antibiotics.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
4
|
Sarsaiya S, Shi J, Chen J. Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered 2019; 10:469-492. [PMID: 31656120 PMCID: PMC6844412 DOI: 10.1080/21655979.2019.1682108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/08/2019] [Accepted: 10/11/2019] [Indexed: 01/18/2023] Open
Abstract
The bioengineering tools have significant advantages through less time-consuming and utilized as a promising stage for the production of pharmaceutical bioproducts under the single platform. This review highlighted the advantages and current improvement in the plant, animal and microbial bioengineering tools and outlines feasible approaches by biological and process's bioengineering levels for advancing the economic feasibility of pharmaceutical's production. The critical analysis results revealed that system biology and synthetic biology along with advanced bioengineering tools like transcriptome, proteome, metabolome and nano bioengineering tools have shown a promising impact on the development of pharmaceutical's bioproducts. Tools to overcome and resolve the accompanying encounters of pharmaceutical's production that include nano bioengineering tools are also discussed. As a summary and prospect, it also gives new insight into the challenges and possible breakthrough of the development of pharmaceutical's bioproducts through bioengineering tools.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int J Mol Sci 2019; 20:ijms20010138. [PMID: 30609697 PMCID: PMC6337498 DOI: 10.3390/ijms20010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.
Collapse
|
6
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
7
|
Roozbehani M, Falak R, Mohammadi M, Hemphill A, Razmjou E, Meamar AR, Masoori L, Khoshmirsafa M, Moradi M, Gharavi MJ. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine 2018; 36:6124-6132. [DOI: 10.1016/j.vaccine.2018.08.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
|
8
|
Zulpo DL, Igarashi M, Sammi AS, Santos JRD, Sasse JP, Cunha IALD, Taroda A, Barros LDD, Almeida JCD, Jenkins MC, Navarro IT, Garcia JL. rROP2 from Toxoplasma gondii as a potential vaccine against oocyst shedding in domestic cats. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2017; 26:67-73. [DOI: 10.1590/s1984-29612017007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 11/21/2022]
Abstract
Abstract The aim of the present study was to evaluate oocyst shedding in cats immunized by nasal route with T. gondii proteins ROP2. Twelve short hair cats (Felis catus) were divided in three groups G1, G2 and G3 (n=4). Animals from G1 received 100 μg of rROP2 proteins plus 20 μg of Quil-A, G2 received 100 μg of BSA plus 20 μg of Quil-A, and the G3 only saline solution (control group). All treatments were done by intranasal route at days 0, 21, 42, and 63. The challenge was performed in all groups on day 70 with ≅ 800 tissue cysts of ME-49 strain by oral route. Animals from G1 shed less oocysts (86.7%) than control groups. ELISA was used to detect anti-rROP2 IgG and IgA, however, there were no correlation between number of oocyst shedding by either IgG or IgA antibody levels. In the present work, in spite of lesser oocysts production in immunized group than control groups, it was not possible to associate the use of rROP2 via nostrils with protection against oocyst shedding. For the future, the use of either other recombinant proteins or DNA vaccine, in combination with rROP2 could be tested to try improving the efficacy of this kind of vaccine.
Collapse
Affiliation(s)
- Dauton Luiz Zulpo
- Universidade Estadual de Londrina, Brasil; Pontifícia Universidade Católica do Paraná, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang L, Lu G, Zhou A, Han Y, Guo J, Zhou H, Cong H, He S. Evaluation of immune responses induced by rhoptry protein 5 and rhoptry protein 7 DNA vaccines against Toxoplasma gondii. Parasite Immunol 2016; 38:209-17. [PMID: 26802673 DOI: 10.1111/pim.12306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023]
Abstract
Infection with the protozoan parasite Toxoplasma gondii is widespread, and the organism can cause congenital infections in humans. The horizontal transmission of Toxoplasma is even more common than congenital. An effective vaccine strategy brings the prospect of improving Toxoplasma disease control. Rhoptry protein 5 (ROP5) and ROP7 are potential stimulators of humoral and cellular immune responses. In this study, we constructed a multi-antigenic DNA vaccine expressing ROP5 and ROP7 of T. gondii and compared the protective efficacy to single-gene vaccines and control groups. BALB/c mice were immunized intramuscularly three times. The levels of IgG antibodies and cytokines in mice immunized with the multi-antigenic DNA vaccine (pROP5/ROP7) were significantly higher than those in the control mice. Mice vaccinated with pROP5/ROP7 showed a longer survival time (16 days) than single-gene-immunized mice (11 and 12 days, respectively) or control mice (8 days) after a challenge with 1 × 10(4) tachyzoites of RH strain of T. gondii. Furthermore, after intragastric infection with 20 cysts of PRU strain of T. gondii, the number of brain cysts in mice immunized with pROP5/ROP7 was only 25% of the number in control mice. Our results showed that a DNA vaccine encoding ROP5 and ROP7 significantly enhanced protection against T. gondii challenge.
Collapse
Affiliation(s)
- L Wang
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Ji Nan Children's Hospital, 250022, Jinan, Shandong Province, Peoples Republic of China
| | - G Lu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - A Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, Jinan, Shandong, China
| | - Y Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - J Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - H Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - H Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - S He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
10
|
Liu Z, Yin L, Li Y, Yuan F, Zhang X, Ma J, Liu H, Wang Y, Zheng K, Cao J. Intranasal immunization with recombinant Toxoplasma gondii actin depolymerizing factor confers protective efficacy against toxoplasmosis in mice. BMC Immunol 2016; 17:37. [PMID: 27716047 PMCID: PMC5053087 DOI: 10.1186/s12865-016-0173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background Toxoplasma gondii is an opportunistic protozoan closely associated with AIDS and vertical transmission. T. gondii actin depolymerizing factor (TgADF) plays an important role in actin cytoskeleton remodeling, and it is required to invade host cells. TgADF was a promising vaccine candidate. To observe the immunological changes and protective efficacy of recombinant TgADF protein (rTgADF) against T. gondii infection, we optimized the intranasal immunization dose of rTgADF and analyzed the survival rate and tachyzoite loads in mouse tissues after oral challenge with T. gondii tachyzoites. Results rTgADF was prepared, purified, and combined with mouse anti-His antibody and rabbit anti-T. gondii serum. After intranasal immunization with 10 μg, 20 μg, 30 μg, or 40 μg of rTgADF, the 30-μg group elicited high levels of secretory IgA (sIgA) in nasal, intestinal, and vesical washes, raised IgG titres in the sera, strong proliferation of splenocytes, and increased secretion of IL-2 and IFN-γ when compared with the control group. When the mice were orally challenged with T. gondii, an increase in the survival rate (36.36 %) and a decrease in the tachyzoite loads in the liver (67.77 %) and brain (51.01 %) were observed. Conclusions Our findings demonstrate that intranasal immunization with rTgADF can simultaneously trigger mucosal and systemic immune responses and protect the mice against T. gondii infection.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Litian Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yaqing Li
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fei Yuan
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaofan Zhang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Jiazhi Ma
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Hongmei Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, China; National Center for International Research on Tropical Diseases, China; WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, China; National Center for International Research on Tropical Diseases, China; WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
11
|
Anand N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int J Nanomedicine 2015; 10:6355-69. [PMID: 26504384 PMCID: PMC4605239 DOI: 10.2147/ijn.s85286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mohan Lal Dubey
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
12
|
Intranasal immunisation of the recombinant Toxoplasma gondii receptor for activated C kinase 1 partly protects mice against T. gondii infection. Acta Trop 2014; 137:58-66. [PMID: 24813415 DOI: 10.1016/j.actatropica.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/27/2022]
Abstract
Nasal vaccination is an effective therapeutic regimen for preventing certain infectious diseases. The mucosal immune response is important for resistance to Toxoplasma gondii infection. In this study, we evaluated the immune responses elicited in BALB/c mice by nasal immunisation with recombinant T. gondii receptor for activated C kinase 1 (rTgRACK1) and their protective efficacy against T. gondii RH strain during both chronic and lethal infections. Nasal vaccination with rTgRACK1 increased the level of secretory IgA in nasal, intestinal and vesical washes, and the level of IFN-γ and IL-2 in intestinal washes, indicating that rTgRACK1 vaccination promotes mucosal immune responses. The mice immunised with rTgRACK1 also displayed increased levels of rTgRACK1-specific IgA, total IgG, IgG1 and in particular IgG2a in their blood sera, increased production of IFN-γ, IL-2 and IL-4 but not IL-10 from their isolated spleen cells, and enhanced splenocyte proliferation in vitro. rTgRACK1-vaccinated mice were effectively protected against infection with T. gondii RH strain, showing over 50% reduction of tachyzoite burdens in their liver and brain tissues during a chronic infection, and also a 45% increase in their survivals during a lethal challenge. These results indicate that rTgRACK1 might represent an intriguing immunogen for developing a mucosal vaccine against toxoplasmosis.
Collapse
|
13
|
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol 2014; 140:52-70. [PMID: 24602874 DOI: 10.1016/j.exppara.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|