1
|
Wu Y, Wang Y, Chen F, Wang B. Loading rutin on surfaces by the layer-by-layer assembly technique to improve the oxidation resistance and osteogenesis of titanium implants in osteoporotic rats. Biomed Mater 2024; 19:045011. [PMID: 38740037 DOI: 10.1088/1748-605x/ad4aa8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Yinsheng Wu
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Fengyan Chen
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
2
|
Zhang P, Chen J, Sun Y, Cao Z, Zhang Y, Mo Q, Yao Q, Zhang W. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. J Mater Chem B 2023; 11:1240-1261. [PMID: 36648128 DOI: 10.1039/d2tb02203f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone. The bi-layer scaffolds were subsequently modified with tannic acid (TA) prime-coating and E7 peptide conjugation (PCL/HA-GelMA/KGN@TA/E7) to regulate endogenous stem cell behaviors and exert antioxidant activity for enhanced osteochondral regeneration. In vitro, the scaffolds could support cell attachment and proliferation, and enhance the chondrogenic and osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BMSCs) in a specific layer. Besides, the incorporation of TA/E7 significantly increased the biological activity of the bi-layer scaffolds including the pro-migratory effect, antioxidant activity, and the maintenance of cell viability against oxidative stress. In vivo, the developed bi-layer scaffolds enhanced the simultaneous regeneration of cartilage and subchondral bone when implanted into a rabbit OCD model through macroscopic, micro-CT, and histological evaluation. Taken together, these investigations demonstrated that the 3D multifunctional bi-layer scaffolds could provide a suitable microenvironment for endogenous stem cells, and promote in situ osteochondral regeneration, showing great potential for the clinical treatment of OCD.
Collapse
Affiliation(s)
- Po Zhang
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
3
|
Paiva JCC, Oliveira L, Vaz MF, Costa-de-Oliveira S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections-A Systematic Review. Bioengineering (Basel) 2022; 9:409. [PMID: 36004934 PMCID: PMC9405200 DOI: 10.3390/bioengineering9080409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone fractures often require fixation devices that frequently need to be surgically removed. These temporary implants and procedures leave the patient more prone to developing medical device-associated infections, and osteomyelitis associated with trauma is a challenging complication for orthopedists. In recent years, biodegradable materials have gained great importance as temporary medical implant devices, avoiding removal surgery. The purpose of this systematic review was to revise the literature regarding the use of biodegradable bone implants in fracture healing and its impact on the reduction of implant-associated infections. The systematic review followed the PRISMA guidelines and was conducted by searching published studies regarding the in vivo use of biodegradable bone fixation implants and its antibacterial activity. From a total of 667 references, 23 studies were included based on inclusion and exclusion criteria. Biodegradable orthopedic implants of Mg-Cu, Mg-Zn, and Zn-Ag have shown antibacterial activity, especially in reducing infection burden by MRSA strains in vivo osteomyelitis models. Their ability to prevent and tackle implant-associated infections and to gradually degrade inside the body reduces the need for a second surgery for implant removal, with expectable gains regarding patients' comfort. Further in vivo studies are mandatory to evaluate the efficiency of these antibacterial biodegradable materials.
Collapse
Affiliation(s)
- José C. C. Paiva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Oliveira
- DPS—Product Systems Development, INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal
| | - Maria Fátima Vaz
- IDMEC—Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
- Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|
5
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
6
|
Jujur IN, Damisih, Devy K, Suha S, Bachtiar BM, Bachtiar EW. Effect of Implantation Ti-6Al-4V ELI in femoral bone defect regeneration of Sprague Dawley rat. J Adv Pharm Technol Res 2021; 11:202-206. [PMID: 33425705 PMCID: PMC7784942 DOI: 10.4103/japtr.japtr_74_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Ti-6Al-4V ELI is one of the most commonly used dental implant restore function. The solution treatment temperature variation can significantly increase the strength, but it is not yet known the effect of these temperature variations on the alloy's biocompatibility properties. Twelve female Sprague Dawley rats were divided into six groups as follows: the treated group, the control group, and the defect group without implant material. In the treated group, the femur bone defect was implanted with as-cast Ti-6Al-4V ELI, 850°C, 950°C, and 1050°C heat-treated Ti-6Al-4V ELI implant material. The rats were euthanized after 30 days postimplantation and evaluated histologically. The results show that the histological scoring of the specimen for femur defect without implant material is 2 (fibrous union and fibrocartilaginous), score with implant as-cast is 2.5, the sample with 850°C heat treatment material is 2.5, 950°C is 2.5, and the temperature at 1050°C is 2.5. The score of 2.5 is between score 2 and score 3: hemorrhage, fibrous union, fibrocartilaginous microhemorrhage, and mineralized cartilage union. In conclusion, there is no effect of different heat treatment temperatures for Ti-6Al-4V ELI implant material in rat bone regeneration's maturation level.
Collapse
Affiliation(s)
- I Nyoman Jujur
- Center for Materials Technology, Agency for the Assessment and Application of Technology (BPPT), Tangerang Selatan, Indonesia
| | - Damisih
- Center for Materials Technology, Agency for the Assessment and Application of Technology (BPPT), Tangerang Selatan, Indonesia
| | - Kartika Devy
- Departement of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Shovy Suha
- Departement of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy Muchlis Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Oral Science Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Oral Science Research Center, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
7
|
Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, Wang W, Pu X, Gu L, Liu L, Xiang Z, Zhang X. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Hyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Linnan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Wenzhao Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xiaobing Pu
- Department of Orthopedics Medical Center, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, College of Engineering & Science, Florida Institute of Technology , Melbourne , FL, 32901 , United States of America
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| |
Collapse
|
8
|
Kamio H, Tsuchiya S, Kuroda K, Okido M, Okabe K, Ohta Y, Toyama N, Hibi H. Chondroitin-4-sulfate transferase-1 depletion inhibits formation of a proteoglycan-rich layer and alters immunotolerance of bone marrow mesenchymal stem cells on titanium oxide surfaces. Acta Biomater 2020; 114:460-470. [PMID: 32707405 DOI: 10.1016/j.actbio.2020.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
Successful osseointegration is essential for dental implants. However, the complete molecular mechanism of osseointegration remains to be elucidated. In this study, we focused on the proteoglycan (PG)-rich layer between titanium oxides (TiOx) and bone, and chondroitin-4-sulfate transferase-1 (C4ST-1), which forms the sugar chain in PGs. Human bone marrow mesenchymal stem cells (hBMSCs) depleted of C4ST-1 were cultured on titanium (Ti) plates, and the interface between hBMSCs and TiOx was analyzed using transmission electron microscopy. Immunotolerance, proliferation, initial adhesion, and calcification of the cells were analyzed in vitro. At 14 days of cultivation, a PG-rich layer was observed between hBMSCs and TiOx. However, the PG-rich layer was reduced in C4ST-1-depleted hBMSCs on TiOx. Real-time RT-PCR showed that conditioned media increased the levels of expression of M1-macrophage markers in human macrophages. However, depletion of C4ST-1 did not affect calcification, cell proliferation, or initial cell adhesion on Ti plates. These results suggested that C4ST-1 in hBMSCs affects their immunotolerance and alters the formation of PG-rich layer formation on TiOx.
Collapse
Affiliation(s)
- Hisanobu Kamio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shuhei Tsuchiya
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Kensuke Kuroda
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Masazumi Okido
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuya Ohta
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
9
|
Milazzo M, Jung GS, Danti S, Buehler MJ. Mechanics of Mineralized Collagen Fibrils upon Transient Loads. ACS NANO 2020; 14:8307-8316. [PMID: 32603087 DOI: 10.1021/acsnano.0c02180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales, highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young's moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger damping effect upon faster inputs compatible to the bone behavior at the macroscale. Our results offer insights into the dissipative behavior of mineralized collagen composites to design and characterize bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) or optimized structures able to bear transient loads, for example, impact, fatigue, in structural applications.
Collapse
Affiliation(s)
- Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Tang J, Chen L, Yan D, Shen Z, Wang B, Weng S, Wu Z, Xie Z, Shao J, Yang L, Shen L. Surface Functionalization with Proanthocyanidins Provides an Anti-Oxidant Defense Mechanism That Improves the Long-Term Stability and Osteogenesis of Titanium Implants. Int J Nanomedicine 2020; 15:1643-1659. [PMID: 32210558 PMCID: PMC7073973 DOI: 10.2147/ijn.s231339] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Aseptic loosening is a major complication after total joint replacement. Reactive oxygen species generated by local tissue cells and liberated from implant surfaces have been suggested to cause implant failures. Surface modification of titanium (Ti)-based implants with proanthocyanidins (PAC) is a promising approach for the development of anti-oxidant defense mechanism to supplement the mechanical functions of Ti implants. In this study, a controlled PAC release system was fabricated on the surface of Ti substrates using the layer-by-layer (LBL) assembly. MATERIALS AND METHODS Polyethyleneimine (PEI) base layer was fabricated to enable layer-by-layer (LBL) deposition of hyaluronic acid/chitosan (HA/CS) multi-layers without or with the PAC. Surface topography and wettability of the fabricated HA/CS-PAC substrates were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR) and contact angle measurement. PAC release profiles were investigated using drug release assays. MC3T3-E1 pre-osteoblast cells were used to assess the osteo-inductive effects of HA/CS-PAC substrates under conditions H2O2-induced oxidative stress in vitro. A rat model of femoral intramedullary implantation evaluated the osseo-integration and osteo-inductive potential of the HA/CS-PAC coated Ti implants in vivo. RESULTS SEM, AFM, FTIR and contact angle measurements verified the successful fabrication of Ti surfaces with multi-layered HA/CS-PAC coating. Drug release assays revealed controlled and sustained release of PAC over 14 days. In vitro, cell-based assays showed high tolerability and enhanced the osteogenic potential of MC3T3-E1 cells on HA/CS-PAC substrates when under conditions of H2O2-induced oxidative stress. In vivo evaluation of femoral bone 14 days after femoral intramedullary implantation confirmed the enhanced osteo-inductive potential of the HA/CS-PAC coated Ti implants. CONCLUSION Multi-layering of HA/CS-PAC coating onto Ti-based surfaces by the LBL deposition significantly enhances implant osseo-integration and promotes osteogenesis under conditions of oxidative stress. This study provides new insights for future applications in the field of joint arthroplasty.
Collapse
Affiliation(s)
- Jiahao Tang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Liang Chen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Deyi Yan
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zijian Shen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Bingzhang Wang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Sheji Weng
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zongyi Wu
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zhongjie Xie
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Jiancan Shao
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Lei Yang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Liyan Shen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| |
Collapse
|
11
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
12
|
Neuber C, Schulze S, Förster Y, Hofheinz F, Wodke J, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Rammelt S, Pietzsch J. Biomaterials in repairing rat femoral defects: In vivo insights from small animal positron emission tomography/computed tomography (PET/CT) studies. Clin Hemorheol Microcirc 2019; 73:177-194. [DOI: 10.3233/ch-199208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Yvonne Förster
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Positron Emission Tomography, Dresden, Germany
| | - Johanna Wodke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | | | | | - Vera Hintze
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
| | - Dieter Scharnweber
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
13
|
Linh NTB, Abueva CDG, Jang DW, Lee BT. Collagen and bone morphogenetic protein-2 functionalized hydroxyapatite scaffolds induce osteogenic differentiation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2019; 108:1363-1371. [PMID: 31574204 DOI: 10.1002/jbm.b.34485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
Surface modification is one important way to fabricate successful biocompatible materials in bone tissue engineering. Hydroxyapatite (HAp) materials have received considerable attention as suitable bioceramics for manufacturing osseous implants because of their similarity to bone mineral in terms of chemical composition. In this study, the surface of porous HAp scaffold was modified by collagen treatment and bone morphogenetic protein-2 (BMP-2) conjugation. The surface modification did not affect the HAp scaffold's bulk properties. No significant difference in compressive strength was found among different scaffolds, with HAp, collagen modified HAp, and collagen-BMP-2-functionalized HAp having compressive strengths of 45.8 ± 3.12, 51.2 ± 4.09, and 50.7 ± 3.98 MPa, respectively. In vitro studies were performed to compare adhesion and osteogenic differentiation between human adipose-derived stem cells (hADSCs) with modified surfaces and those unmodified HAp surfaces. Collagen or BMP-2 alone was insufficient and that both collagen and BMP-2 are necessary to get the desired results. The findings suggest the possibility of using three-dimensional HAp scaffold treated with gold-standard collagen coating and highly researched BMP-2 growth factor as a platform to deliver hADSCs. Results of this study could be used to develop treatment strategy for regenerating completely transected models using more synergistic approaches.
Collapse
Affiliation(s)
- Nguyen T B Linh
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| | - Celine D G Abueva
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| | - Dong-Woo Jang
- InoBone Corporate R&D Center, Soonchunhyang University, Asan, Republic of Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
14
|
Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants. J Mech Behav Biomed Mater 2019; 90:460-471. [DOI: 10.1016/j.jmbbm.2018.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/08/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022]
|
15
|
Song Y, Ma A, Ning J, Zhong X, Zhang Q, Zhang X, Hong G, Li Y, Sasaki K, Li C. Loading icariin on titanium surfaces by phase-transited lysozyme priming and layer-by-layer self-assembly of hyaluronic acid/chitosan to improve surface osteogenesis ability. Int J Nanomedicine 2018; 13:6751-6767. [PMID: 30425487 PMCID: PMC6204858 DOI: 10.2147/ijn.s174953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Icariin (ICA) is one of the main active constituents of Herba Epimedii for improving osteogenesis. It is necessary to create a simple and efficient method to load ICA onto the surface of titanium (Ti) implant. The purpose of this study was to establish a local ICA delivery system via a layer-by-layer (LbL) self-assembly system on phase-transited lysozyme (PTL)-primed Ti surface. Materials and methods A PTL nanofilm was first firmly coated on the pristine Ti. Then, the ICA-loaded hyaluronic acid/chitosan (HA/CS) multilayer was applied via the LbL system to form the HA/CS-ICA surface. This established HA/CS-ICA surface was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The ICA release pattern of the HA/CS-ICA surface was also examined. MC3T3-E1 osteoblast culture test and a rat model were used to evaluate the effects of the HA/CS-ICA surface in vitro and in vivo. Results SEM, XPS and contact angle measurement demonstrated successful fabrication of the HA/CS-ICA surface. The HA/CS-ICA surfaces with different ICA concentrations revealed a controlled release profile of ICA during a 2-week monitoring span. Osteoblasts grown on the coated substrates displayed higher adhesion, viability, proliferation and ALP activity than those on the polished Ti surface. Furthermore, in vivo histological evaluation revealed much obvious bone formation in the ICA-coated group by histological staining and double fluorescent labeling at 2 weeks after implantation. Conclusion The present study demonstrated that ICA-immobilized HA/CS multilayer on the PTL-primed Ti surface had a sustained release pattern of ICA which could promote the osteogenesis of osteoblasts in vitro and improve early osseointegration in vivo. This study provides a novel method for creating a sustained ICA delivery system to improve osteoblast response and osseointegration.
Collapse
Affiliation(s)
- Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ; .,Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Jia Ning
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Qian Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Xu Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| |
Collapse
|
16
|
Akeda K, Yamaguchi S, Matsushita T, Kokubo T, Murata K, Takegami N, Matsumine A, Sudo A. Bioactive pedicle screws prepared by chemical and heat treatments improved biocompatibility and bone-bonding ability in canine lumbar spines. PLoS One 2018; 13:e0196766. [PMID: 29734349 PMCID: PMC5937757 DOI: 10.1371/journal.pone.0196766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Background Titanium (Ti)-6Al-4V alloy, which is widely used in spinal instrumentation with a pedicle screw (PS) system. However, significant clinical problems, including loosening and back-out of PSs, persist. During the last decade, a novel technology that produces bioactive Ti from chemical and heat treatments has been reported that induces the spontaneous formation of a hydroxyapatite (HA) layer on the surface of Ti materials. The purpose of this study was to study the effect of bioactivation of Ti-6Al-4V PSs on the ability of HA formation in vitro and its biocompatibility and bone-bonding ability in vivo. Methods Ti-6V-4Al alloy PSs were prepared and bioactivated by NaOH-CaCl2-heat-water treatments. The HA-forming ability of bioactive PSs in simulated body fluid (SBF) was evaluated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX). Six 11-month-old female beagle dogs were used for the in vivo study. Bioactive and control (without bioactivation) PSs were left and right randomly placed from L1 to L6. One and three months after surgery, lumbar spines were removed for biomechanical and histological analyses. Results In vitro: The surface analysis of bioactive PSs by FE-SEM and EDX showed substantial HA deposits over the entire surface. In vivo: The mean extraction torque was significantly higher for bioactive PSs compared to controls PSs (P<0.01); there was no significant difference in pull-out strength between control and bioactive PSs. Histologically, the contact area between bone tissue and screw surface showed no significant trend to be greater in bioactive PSs compared to control PSs (P = 0.06). Conclusions Bioactive PSs prepared by chemical and heat treatments formed layers of HA on the surface of screws in vitro that improved biocompatibility and bonding ability with bone in vivo. Bioactive PSs may reduce screw loosening to overcome the obstacles confronted in spinal instrumentation surgery.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
- * E-mail:
| | - Seiji Yamaguchi
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Tomiharu Matsushita
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Tadashi Kokubo
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Koichiro Murata
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Norihiko Takegami
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
17
|
Kim JE, Takanche JS, Kim JS, Lee MH, Jeon JG, Park IS, Yi HK. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:397-407. [DOI: 10.1080/21691401.2018.1458033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Eun Kim
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| | | | - Jeong-Seok Kim
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| | - Min-Ho Lee
- Departments of Dental Materials, Chonbuk National University, Jeonju, South Korea
| | - Jae-Gyu Jeon
- Departments of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Il-Song Park
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, South Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
18
|
Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, Yao Y, Lin K, Guo Z, Bi L, Han Y. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 2018; 8:1843. [PMID: 29382859 PMCID: PMC5790016 DOI: 10.1038/s41598-018-19742-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate whether a surface coating with graphene could enhance the surface bioactivation of titanium alloys (Ti6Al4V) to further accelerate in vivo osteogenesis and osseointegration at the implant surface. In this study, a New Zealand white rabbit femoral condyle defect model was established. After 4, 12 and 24 weeks, biomechanical testing, micro-computed tomography (Micro-CT) analyses and histological observations were performed. At the highest push-out forces during the test, microstructure parameters, such as the bone volume/total volume fraction (BV/TV) and mineral apposition rate (MAR), of the new bone were significantly higher in the graphene-coated Ti6Al4V group (G-Ti6Al4V) than in the Ti6Al4V group (P < 0.05). Van Gieson (VG) staining showed that the G-Ti6Al4V group had more new bone formation than the Ti6Al4V group, and the G-Ti6Al4V group showed a closer fit between the bone and implant. In conclusion, graphene might be a novel type of nano-coating material for enhancing the surface biological activity of Ti-based alloy materials and may further promote in vivo osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Kewen Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
- Department of Orthopedics, Qinghai University Affiliated Hospital, Xining, 810001, P.R. China.
| | - Chunhui Wang
- Military Frontier Defence Medical Service Tranning Group, Army Medical University, Hutubi, Xinjiang, 831200, P.R. China
| | - Jinhong Yan
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Qi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Baoping Dang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhuo Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yun Yao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Kaifeng Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhongshang Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yisheng Han
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
19
|
Heller M, Kumar VV, Pabst A, Brieger J, Al-Nawas B, Kämmerer PW. Osseous response on linear and cyclic RGD-peptides immobilized on titanium surfaces in vitro and in vivo. J Biomed Mater Res A 2017; 106:419-427. [PMID: 28971567 DOI: 10.1002/jbm.a.36255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Biomimetic surface modifications of titanium (Ti) implants using the Arg-Gly-Asp-sequence (RGD) are promising to accelerate bone healing in cases of medical implants. Therefore, we compared the impact of linear and cyclic RGD (l- and c-RGD) covalently coupled onto Ti surfaces on the osseous response in vitro and in vivo. In vitro, osteoblasts' behavior on different surfaces (unmodified, amino-silanized [APTES], l- and c-RGD) was analysed regarding adhesion (fluorescence microscopy), proliferation (resazurin stain) and differentiation (reverse transcription polymerase chain reaction on alkaline phosphatase and osteocalcin). In vivo, osteosynthesis screws (unmodified n = 8, l-RGD n = 8, c-RGD n = 8) were inserted into the proximal tibiae of 12 rabbits and evaluated for bone growth parameters (bone implant contact [%] and vertical bone apposition [VBA;%]) at 3 and 6 weeks. In vitro, c- as well as l-RGD surfaces stimulated osteoblasts' adherence, proliferation and differentiation in a similar manner, with only subtle evidence of superiority of the c-RGD modifications. In vivo, c-RGD-modifications led to a significantly increased VBA after 3 and 6 weeks. Thus, coating with c-RGD appears to play an important role influencing osteoblasts' behaviour in vitro but especially in vivo. These findings can be applied prospectively to implantable biomaterials with hypothetically improved survival and success rates. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 106A: 419-427, 2018.
Collapse
Affiliation(s)
- M Heller
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - V V Kumar
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - A Pabst
- Department of Oral, Maxillofacial and Plastic Surgery, Federal Armed Forces Hospital Koblenz, Germany
| | - J Brieger
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - B Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Halle (Saale), Germany
| | - P W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
20
|
Sun J, Li J, Li H, Yang H, Chen J, Yang B, Huo F, Guo W, Tian W. tBHQ Suppresses Osteoclastic Resorption in Xenogeneic-Treated Dentin Matrix-Based Scaffolds. Adv Healthc Mater 2017; 6. [PMID: 28696515 DOI: 10.1002/adhm.201700127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/28/2017] [Indexed: 02/05/2023]
Abstract
Extracellularmatrix (ECM)-based scaffolds are important for their potential therapeutic application. Treated dentin matrix (TDM), a kind of ECM, seeded with allogeneic dental follicle stem cells (TDM/aDFC) provides a suitable inductive microenvironment for tooth root regeneration. Considering the limited sources, xenogeneic TDM (xTDM) is a possible alternative to allogeneic TDM; however, xTDM-based scaffold presents severe osteolysis and resorption lacunae causing regenerated tooth root failure. Immune response-induced excessive osteoclastogenesis plays a critical role in xenogeneic scaffold osteolysis and resorption. The impact of antioxidant, tert-butylhydroquinone (tBHQ), on xTDM/aDFCs-induced osteoclastogenesis and osteoclastic resorption in vivo and in vitro are investigated. tBHQ upregulates heme oxygenase-1 release and downregulates high mobility group box 1 mRNA expression. mRNA expression of other osteoclast-related genes including nuclear factor-kappa Bp65, receptor activator of nuclear factor kappa-B, nuclear factor of activated T-cells cytoplasmic 1, cathepsin K, and integrin β3, also decreases significantly. Furthermore, tBHQ-treated xTDM/aDFCs scaffolds implanted into rhesus macaques show reduced osteolysis and osteoclastic resorption by microcomputed tomography and tartrate-resistant acid phosphatase staining. tBHQ-induced suppression of xTDM/aDFC-induced osteoclastogenesis and osteoclastic resorption presents a new strategy for the regeneration of biological tooth root and could be applied to the regeneration of other complex tissues and organs.
Collapse
Affiliation(s)
- Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences College of Stomatology Chongqing Medical University Chongqing 401147 China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Hefeng Yang
- Department of Dental Research The Affiliated Stomatological Hospital of Kunming Medical University Kunming 650031 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Bo Yang
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Department of Pediatric Dentistry West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| |
Collapse
|
21
|
Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect — A pilot study in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:84-92. [DOI: 10.1016/j.msec.2016.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022]
|
22
|
Galli C, Parisi L, Piergianni M, Smerieri A, Passeri G, Guizzardi S, Costa F, Lumetti S, Manfredi E, Macaluso GM. Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization. Acta Biomater 2016; 42:147-156. [PMID: 27449338 DOI: 10.1016/j.actbio.2016.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Protein adsorption is the first and decisive step to define cell-biomaterial interaction. Guiding the adsorption of desired protein species may represent a viable approach to promote cell activities conducive to tissue regeneration. The aim of the present study was to investigate whether immobilized anti-Fibronectin aptamers could promote the attachment and growth of osteoblastic cells. Polyethyleneglycole diacrylate/thiolated Hyaluronic Acid hydrogels (PEGDA/tHA) were coated with anti-Fibronectin aptamers. Hydrogel loading and Fibronectin bonding were investigated, through spectrophotometry and Bradford assay. Subsequently, human osteoblasts (hOBs) were cultured on hydrogels for 10days in 2D and 3D cultures. Cells were monitored through microscopy and stained for focal adhesions, microfilaments and nuclei using fluorescence microscopy. Samples were also included in paraffin and stained with Hematoxylin-Eosin. Cell number on hydrogels was quantitated over time. Cell migration into the hydrogels was also studied through Calcein AM staining. Aptamers increased the number of adherent hOBs and their cytoplasm appeared more spread and richer in adhesion complexes than on control hydrogels. Viability assays confirmed that significantly more cells were present on hydrogels in the presence of aptamers, already after 48h of culture. When hOBs were encapsulated into hydrogels, cells were more numerous on aptamer-containing PEGDA-tHA. Cells migrated deeper in the gel in the presence of DNA aptamers, appearing on different focus planes. Our data demonstrate that anti-Fibronectin aptamers promote scaffold enrichment for this protein, thus improving cell adhesion and scaffold colonization. STATEMENT OF SIGNIFICANCE We believe aptamer coating of biomaterials is a useful and viable approach to improve the performance of scaffold materials for both research and possibly clinical purposes, because different medical devices could be envisaged able to capture bioactive mediators from the patients' blood and concentrate them where they are needed, on the biomaterial itself. At the same time, this technology could be used to confer 3D cell culture scaffold with the ability to store proteins, such as Fibronectin, taking it from the medium and capture what is produced by cells. This is an improvement of traditional biomaterials that can be enriched with exogenous molecules but are not able to selectively capture a desired molecule.
Collapse
Affiliation(s)
- C Galli
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy; Istituto Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, Parma, Italy.
| | - L Parisi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - M Piergianni
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - A Smerieri
- Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - G Passeri
- Dep. Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - S Guizzardi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - F Costa
- Dep. Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - S Lumetti
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - E Manfredi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - G M Macaluso
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy; Istituto Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, Parma, Italy
| |
Collapse
|
23
|
Ardjomandi N, Huth J, Stamov DR, Henrich A, Klein C, Wendel HP, Reinert S, Alexander D. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:267-275. [PMID: 27287122 DOI: 10.1016/j.msec.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022]
Abstract
Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs.
Collapse
Affiliation(s)
- N Ardjomandi
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - J Huth
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | | | - A Henrich
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - C Klein
- Dental Practice Zahngesundheit Waiblingen, Waiblingen, Germany
| | - H-P Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen, Germany
| | - S Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - D Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany.
| |
Collapse
|
24
|
Lin KF, He S, Song Y, Wang CM, Gao Y, Li JQ, Tang P, Wang Z, Bi L, Pei GX. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6905-16. [PMID: 26930140 DOI: 10.1021/acsami.6b00815] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties.
Collapse
Affiliation(s)
- Kai-Feng Lin
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Shu He
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Yue Song
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Chun-Mei Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Yi Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Jun-Qin Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Peng Tang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Zheng Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Long Bi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Guo-Xian Pei
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| |
Collapse
|
25
|
Klymov A, Song J, Cai X, Te Riet J, Leeuwenburgh S, Jansen JA, Walboomers XF. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating. Acta Biomater 2016; 31:368-377. [PMID: 26691523 DOI: 10.1016/j.actbio.2015.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/28/2022]
Abstract
The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric (∼50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with CaP-coated coated nanogrooves display enhanced in vitro mineralization as compared to unmodified controls or substrates modified with either nanogrooves or CaP coatings. However, our results also indicated that acellular mineralization assays are not necessarily predictive for biological performance. STATEMENT OF SIGNIFICANCE The manuscript describes the possibility to combine the mechanical properties of nanosized topographies with the biochemical properties of a calcium phosphate based coating for improvement of surface mineralization. Interestingly, our results demonstrate that further incubation of our surfaces in SBF type media allowed all surfaces to mineralize rapidly to a high extent. Moreover we prove that nanotexture be used to can stimulate and organize mineralization and that the combination surface of a CaP coating and a nanotexture has the potential to be effective as a bone-implant surface. Such experiments will be of considerable interest to those in the research community and industry, who are focusing on bio-mineralization processes and optimization of modern bone-implants.
Collapse
Affiliation(s)
- Alexey Klymov
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jiankang Song
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xinjie Cai
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Wang J, Wu D, Zhang Z, Li J, Shen Y, Wang Z, Li Y, Zhang ZY, Sun J. Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite-Collagen-Polycaprolactone Composite Construct with Nano-Micro-Macro Hierarchical Structure for Large Bone Defect Treatment. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26244-56. [PMID: 26551161 DOI: 10.1021/acsami.5b08534] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.
Collapse
Affiliation(s)
| | - Dingyu Wu
- National Tissue Engineering Center of China , 68 Jiang Chuan East Road, Shanghai 200241, PR China
| | - Zhanzhao Zhang
- National Tissue Engineering Center of China , 68 Jiang Chuan East Road, Shanghai 200241, PR China
| | | | | | - Zhenxing Wang
- National Tissue Engineering Center of China , 68 Jiang Chuan East Road, Shanghai 200241, PR China
| | - Yu Li
- National Tissue Engineering Center of China , 68 Jiang Chuan East Road, Shanghai 200241, PR China
| | - Zhi-Yong Zhang
- National Tissue Engineering Center of China , 68 Jiang Chuan East Road, Shanghai 200241, PR China
| | | |
Collapse
|
27
|
Ding M, Henriksen SS, Theilgaard N, Overgaard S. Assessment of activated porous granules on implant fixation and early bone formation in sheep. J Orthop Translat 2015; 5:38-47. [PMID: 30035073 PMCID: PMC5987005 DOI: 10.1016/j.jot.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background/Objective Despite recent progress in regeneration medicine, the repair of large bone defects due to trauma, inflammation and tumor surgery remains a major clinical challenge. This study was designed to produce large amounts of viable bone graft materials in a novel perfusion bioreactor to promote bone formation. Methods Cylindrical defects were created bilaterally in the distal femurs of sheep, and titanium implants were inserted. The concentric gap around the implants was randomly filled either with allograft, granules, granules with bone marrow aspirate (BMA) or bioreactor activated granule (BAG). The viable BAG consisted of autologous bone marrow stromal cells (BMSCs) seeded upon porous scaffold granules incubated in a 3D perfusion bioreactor for 2 weeks prior to surgery. 6 weeks after, the bone formation and early implant fixation were assessed by means of micro-CT, histomorphometry, and mechanical test. Results Microarchitectural analysis revealed that bone volume fraction and trabecular thickness in the allograft were not statistically different than those (combination of new bone and residue of granule) in the other 3 groups. The structure of the allograft group was typically plate-like, while the other 3 groups were combination of plate and rod. Histomorphometry showed that allograft induced significantly more bone and less fibrous tissue in the concentric gap than the other 3 granule groups, while the bone ingrowth to implant porous surface was not different. No significant differences among the groups were found regarding early implant mechanical fixation. Conclusion In conclusion, despite nice bone formation and implant fixation in all groups, bioreactor activated graft material did not convincingly induce early implant fixation similar to allograft, and neither bioreactor nor by adding BMA credited additional benefit for bone formation in this model.
Collapse
Affiliation(s)
- Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Corresponding author. Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Winsløwparken 15, 3.sal, DK-5000, Odense C, Denmark.
| | - Susan S. Henriksen
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Naseem Theilgaard
- Danish Technological Institute, Plastics Technology, Taastrup, Denmark
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
28
|
Wesełucha-Birczyńska A, Swiętek M, Sołtysiak E, Galiński P, Płachta Ł, Piekara K, Błażewicz M. Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 2015; 140:2311-20. [PMID: 25679018 DOI: 10.1039/c4an02284j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern medical treatment can be improved by nanotechnology methods for preparing nanocomposites with novel physical, chemical and biological properties. The materials studied and analysed as membranes were produced from poly(ε-caprolactone) (PCL), which contained identical amounts of nano-additives, either montmorillonite (MMT) or functionalized multi-walled carbon nanotubes (MWCNT-f), while the reference membranes were obtained from unmodified PCL. In addition to the conventional methods used in the study of materials for medical purposes such as DSC, contact angle measurements, surface topography, Raman spectroscopy was also applied. Raman microspectroscopy can decode the phenomenon that occurs in the polymer in contact with the nanoparticles. Besides identifying the vibrations of certain functional groups, the calculation of crystallinity parameters is also possible, by which the most intense interactions within the nanocomposites can be analysed. The Raman studies indicate that each of the nano-additives reacts differently with the polymer matrix, which results in material properties that influence its biological properties. MWCNT-f interacts preferentially with the oxygen-containing groups, and particularly with the backbone regions in the vicinity of the single CO bond. The human osteoblast-like MG-63 cells, cultured on the PCL/MWCNT-f membrane for three days, show almost 100% viability.
Collapse
|
29
|
Nakamura M, Hori N, Namba S, Toyama T, Nishimiya N, Yamashita K. Wettability and surface free energy of polarised ceramic biomaterials. Biomed Mater 2015; 10:011001. [DOI: 10.1088/1748-6041/10/1/011001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Deng Z, Yin B, Li W, Liu J, Yang J, Zheng T, Zhang D, Yu H, Liu X, Ma J. Surface characteristics of and in vitro behavior of osteoblast-like cells on titanium with nanotopography prepared by high-energy shot peening. Int J Nanomedicine 2014; 9:5565-73. [PMID: 25489244 PMCID: PMC4257054 DOI: 10.2147/ijn.s71625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND METHODS Commercial pure titanium with nanotopography was prepared via a high-energy shot-peening (HESP) technique. The surface characteristics were evaluated, and the preliminary cell responses to the nanotopographical surface were investigated. RESULTS The nanotopographical surface layer on titanium was successfully processed by HESP. The average nanoscale grains were approximately 60 nm in diameter and they were nonhomogeneously distributed on the surface. MG-63 cells with an osteogenic phenotype were well adhered and well spread on the nanostructured surface. Compared to the original polished control, the nanotopographical surface highly improved the adhesion, viability, and differentiation of MG-63 cells. CONCLUSION Titanium with nanotopography achieved by HESP has good cytocompatibility and shows promise for dental implant applications.
Collapse
Affiliation(s)
- Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Baodi Yin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Weihong Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingyuan Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Tieli Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Dafeng Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoguang Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianfeng Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Zhang Z, Luo X, Xu H, Wang L, Jin X, Chen R, Ren X, Lu Y, Fu M, Huang Y, He J, Fan Z. Bone marrow stromal cell-derived extracellular matrix promotes osteogenesis of adipose-derived stem cells. Cell Biol Int 2014; 39:291-9. [PMID: 25264269 DOI: 10.1002/cbin.10385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Adipose-derived stem cells (ASCs) can differentiate into multiple cell lineages and favor adipogenesis rather than osteogenesis. Because the extracellular matrix (ECM) component of the stem cell niche is important in stem cell differentiation, we hypothesized that ECM produced by human bone marrow stromal cells (BM-ECM) could enhance the osteogenic potential of ASCs during in vitro expansion. We have compared the replication and osteogenic differentiation of ASCs expanded on BM-ECM versus tissue culture plastic (TCP) in vitro and in vivo. During the first two passages, ASC proliferation on BM-ECM was 3.27-fold greater than that on TCP. ASCs expanded on BM-ECM formed more osteogenic colonies and higher expression of osteogenic markers than ASCs expanded on TCP. In nude mice, ASCs that had been expanded on BM-ECM formed more new bone tissue than those expanded on TCP. The data indicate that BM-ECM can be used to promote the osteogenic fate of ASCs.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Plastic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dudeck J, Rehberg S, Bernhardt R, Schneiders W, Zierau O, Inderchand M, Goebbels J, Vollmer G, Fratzl P, Scharnweber D, Rammelt S. Increased bone remodelling around titanium implants coated with chondroitin sulfate in ovariectomized rats. Acta Biomater 2014; 10:2855-65. [PMID: 24534718 DOI: 10.1016/j.actbio.2014.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/25/2014] [Accepted: 01/31/2014] [Indexed: 01/23/2023]
Abstract
Coating titanium implants with artificial extracellular matrices based on collagen and chondroitin sulfate (CS) has been shown to enhance bone remodelling and de novo bone formation in vivo. The aim of this study was to evaluate the effect of estrogen deficiency and hormone replacement therapy (HRT) on the osseointegration of CS-modified Ti implants. 30 adult female, ovariectomized Wistar rats were fed either with an ethinyl-estradiol-rich diet (E) to simulate a clinical relevant HRT or with a genistein-rich diet (G) to test an alternative therapy based on nutritionally relevant phytoestrogens. Controls (C) received an estrogen-free diet. Uncoated titanium pins (Ti) or pins coated with type-I collagen and CS (Ti/CS) were inserted 8weeks after ovarectomy into the tibia. Specimens were retrieved 28days after implantation. Both the amount of newly formed bone and the affinity index (P<0.05) were moderately higher around Ti/CS implants as compared to uncoated Ti. The highest values were measured in the G-Ti/CS and E-Ti/CS groups, the lowest values for the E-Ti and G-Ti controls. Quantitative synchrotron radiation micro-computed tomography (SRμCT) revealed the highest increase in total bone formation around G-Ti/CS as compared to C-Ti (P<0.01). The effects with respect to direct bone apposition were less pronounced with SRμCT. Using scanning nanoindentation, both the indentation modulus and the hardness of the newly formed bone were highest in the E-Ti/CS, G-Ti/CS and G-Ti groups as compared to C-Ti (P<0.05). Coatings with collagen and CS appear to improve both the quantity and quality of bone formed around Ti implants in ovarectomized rats. A simultaneous ethinyl estradiol- and genistein-rich diet seems to enhance these effects.
Collapse
|
33
|
Ruther C, Gabler C, Ewald H, Ellenrieder M, Haenle M, Lindner T, Mittelmeier W, Bader R, Kluess D. In vivo monitoring of implant osseointegration in a rabbit model using acoustic sound analysis. J Orthop Res 2014; 32:606-12. [PMID: 24391086 DOI: 10.1002/jor.22574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/06/2013] [Indexed: 02/04/2023]
Abstract
Implant osseointegration can currently only be assessed reliably post mortem. A novel method that relies on the principle of acoustic sound analysis was developed to enable examination of the longitudinal progress of osseointegration. The method is based on a magnetic sphere inside a hollow cylinder of the implant. By excitation using an external magnetic field, collision of the sphere inside the implant produces a sound signal. Custom-made titanium implants equipped thusly were inserted in each lateral femoral epicondyle of 20 New Zealand White Rabbits. Two groups were investigated: Uncoated, machined surface versus antiadhesive surface; and calcium phosphate-coated surface versus antiadhesive surface. The sound analysis was performed postoperatively and weekly. After 4 weeks, the animals were euthanized, and the axial pull-out strengths of the implants were determined. A significant increase in the central frequency was observed for the loose implants (mean pull-out strength 21.1 ± 16.9 N), up to 6.4 kHz over 4 weeks. In comparison, the central frequency of the osseointegrated implants (105.2 ± 25.3 N) dropped to its initial value. The presented method shows potential for monitoring the osseointegration of different implant surfaces and could considerably reduce the number of animals needed for experiments.
Collapse
Affiliation(s)
- Cathérine Ruther
- Department of Orthopedics, University Medicine Rostock, Doberaner Strasse 142, D-18057, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
35
|
Wang M, Cheng X, Zhu W, Holmes B, Keidar M, Zhang LG. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 2013; 20:1060-71. [PMID: 24219622 DOI: 10.1089/ten.tea.2013.0235] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to design a biomimetic and bioactive tissue-engineered bone construct via a cold atmospheric plasma (CAP) treatment for directed osteogenic differentiation of human bone morrow mesenchymal stem cells (MSCs). Porous nanocrystalline hydroxyapatite/chitosan scaffolds were fabricated via a lyophilization procedure. The nanostructured bone scaffolds were then treated with CAP to create a more favorable surface for cell attachment, proliferation, and differentiation. The CAP-modified scaffolds were characterized via scanning electron microscope, Raman spectrometer, contact angle analyzer, and white light interferometer. In addition, optimal CAP treatment conditions were determined. Our in vitro study shows that MSC adhesion and infiltration were significantly enhanced on CAP modified scaffolds. More importantly, it was demonstrated that CAP-modified nanostructured bone constructs can greatly promote total protein, collagen synthesis, and calcium deposition after 3 weeks of culture, thus making them a promising implantable scaffold for bone regeneration. Moreover, the fibronectin and vitronection adsorption experiments by enzyme-linked immunosorbent assay demonstrated that more adhesion-mediated protein adsorption on the CAP-treated scaffolds. Since the initial specific protein absorption on scaffold surfaces can lead to further recruitment as well as activation of favorable cell functions, it is suggested that our enhanced stem cell growth and osteogenic function may be related to more protein adsorption resulting from surface roughness and wettability modification. The CAP modification method used in this study provides a quick one-step process for cell-favorable tissue-engineered scaffold architecture remodeling and surface property alteration.
Collapse
Affiliation(s)
- Mian Wang
- 1 Department of Mechanical and Aerospace Engineering, The George Washington University , Washington, District of Columbia
| | | | | | | | | | | |
Collapse
|
36
|
Lee YH, Bhattarai G, Park IS, Kim GR, Kim GE, Lee MH, Yi HK. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials 2013; 34:10199-208. [DOI: 10.1016/j.biomaterials.2013.08.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/27/2013] [Indexed: 12/11/2022]
|
37
|
Giselbrecht S, Rapp BE, Niemeyer CM. Chemie der Cyborgs - zur Verknüpfung technischer Systeme mit Lebewesen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Giselbrecht S, Rapp BE, Niemeyer CM. The chemistry of cyborgs--interfacing technical devices with organisms. Angew Chem Int Ed Engl 2013; 52:13942-57. [PMID: 24288270 DOI: 10.1002/anie.201307495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 01/02/2023]
Abstract
The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented.
Collapse
Affiliation(s)
- Stefan Giselbrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz, 76344 Eggenstein-Leopoldshafen (Germany)
| | | | | |
Collapse
|