1
|
Wang X, Qu X, Liu X, Wang K, Yang Y, Zhang Y, Wang Z, Fan G, Li Y, Zeng Y, Chen H, Zhu T. KLF14 inhibits tumor progression via FOSL1 in glioma. Biochem Biophys Rep 2025; 41:101885. [PMID: 39678169 PMCID: PMC11638655 DOI: 10.1016/j.bbrep.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Glioma, the most frequent central nervous system malignancy, is often promoted by the overexpression of Fos-like antigen 1 (FOSL1). However, the regulation of FOSL1 remains unexplored. The present study aimed to investigate the regulatory mechanism of FOSL1 to identify potential therapeutic targets for glioblastoma. Methods This study's initial investigation utilized dual-luciferase reporter gene assays and quantitative polymerase chain reaction (qPCR) assays to establish that Kruppel-like factor 14 (KLF14) inhibits the transcription of FOSL1. Subsequent immunohistochemistry and western blotting (WB) assays on glioma tissues confirmed a negative association between FOSL1 and KLF14. This study generated KLF14 knockdown cells and double knockdown cells of KLF14 and FOSL1 and further assessed cell growth through various experimental methods. The impact of KLF14 on tumor cell migration via FOSL1 was determined using qPCR and WB assays. A xenograft tumor model was utilized to verify tumor growth suppression by KLF14. Results The present study demonstrated that KLF14 restrains FOSL1 transcription and is inversely correlated with FOSL1 in glioma tissues. KLF14 overexpression was found to counteract FOSL1's effect on cell migration and epithelial-to-mesenchymal transition in glioma cells, which coincided with decreased Snail2 and cluster of differentiation 44 (CD44) expressions. Further, KLF14 overexpression was shown to hinder tumor progression in vivo. Conclusion This study highlights that FOSL1 is negatively regulated by KLF14 in glioblastoma and suggests that KLF14 overexpression can mitigate tumor growth by inhibiting FOSL1, thus identifying KLF14 as a novel molecular target for treating glioblastoma. Further research into the interplay and regulatory dynamics between KLF14 and FOSL1 under varying stress conditions can enhance the precision of glioblastoma treatment.
Collapse
Affiliation(s)
- Xiaohua Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
- Department of General Internal Medicine, Linyi People's Hospital, No.27 Jiefang Road, Lanshan District, Linyi City, Shandong Province, 276003, China
| | - Xinjuan Qu
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Xuelai Liu
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Kaiyue Wang
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Yongfang Yang
- Department of Rehabilitation, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Yujuan Zhang
- Department of Acupuncture and Moxibustion, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Zhenguo Wang
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Yuming Li
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Yuanyuan Zeng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Hongwei Chen
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Ting Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| |
Collapse
|
2
|
Zhao WJ, Qian Y, Zhang YF, Yang AH, Cao JX, Qian HY, Liu Y, Zhu WZ. Endothelial FOSL1 drives angiotensin II-induced myocardial injury via AT1R-upregulated MYH9. Acta Pharmacol Sin 2024:10.1038/s41401-024-01410-9. [PMID: 39592734 DOI: 10.1038/s41401-024-01410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Vascular remodeling represents a pathological basis for myocardial pathologies, including myocardial hypertrophy and myocardial infarction, which can ultimately lead to heart failure. The molecular mechanism of angiotensin II (Ang II)-induced vascular remodeling following myocardial infarction reperfusion is complex and not yet fully understood. In this study, we examined the effect of Ang II infusion on cardiac vascular remodeling in mice. Single-cell sequencing showed Ang II induced cytoskeletal pathway enrichment and that FOS like-1 (FOSL1) affected mouse cardiac endothelial dysfunction by pseudotime analysis. Myosin heavy chain 9 (MYH9) was predominantly expressed in primary cardiac endothelial cells. The Ang II type I receptor blocker telmisartan and the protein kinase C inhibitor staurosporine suppressed Ang II-induced upregulation of MYH9 and FOSL1 phosphorylation in human umbilical vein endothelial cells. Silencing MYH9 abolished Ang II-mediated inhibition of angiogenesis in human umbilical vein endothelial cells, and attenuated AngII-induced vascular hyperpermeability. We found that FOSL1 directly bound to the MYH9 promoter and thus activated transcription of MYH9 by the dual luciferase reporter and chromatin immunoprecipitation assays, leading to vascular dysfunction. In vivo, 6 weeks after injecting adeno-associated virus-ENT carrying the TEK tyrosine kinase (tie) promoter-driven short hairpin RNA for silencing FOSL1 (AAV-tie-shFOSL1), cardiac function represented by the ejection fraction and fractional shortening was improved, myocardial fibrosis was decreased, protein levels of phosphorylated FOSL1, MYH9, and collagen type I alpha were reduced, and cardiac vascular density was recovered in mice with endothelial Fosl1-specific knockdown in Ang II-infused mice. In ischemia-reperfusion mice, AAV-shFosl1 mice had a reduced infarct size and preserved cardiac function compared with control AAV mice. Our findings suggest a critical role of the FOSL1/MYH9 axis in hindering Ang II-induced vascular remodeling, and we identified FOSL1 as a potential therapeutic target in endothelial cell injuries induced by myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Yi-Feng Zhang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Ai-Hua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Jia-Xin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Hong-Yan Qian
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Wei-Zhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Nho KJ, Shin JH, Baek JE, Choi SW. Transcriptome and RNA sequencing analysis of H9C2 cells exposed to diesel particulate matter. Heliyon 2024; 10:e38082. [PMID: 39386855 PMCID: PMC11462235 DOI: 10.1016/j.heliyon.2024.e38082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Although air pollution has been classified as a risk factor for heart disease, the underlying mechanisms remain nebulous. Therefore, this study investigated the effect of diesel particulate matter (DPM) exposure on cardiomyocytes and identified differentially expressed genes (DEGs) induced by DPM. DPM treatment decreased H9C2 cell viability and increased cytotoxicity. Ten genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 3 h. A total of 273 genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 24 h. Signaling pathway analysis revealed that the DEGs were related to the 'reactive oxygens species,' 'IL-17,' and 'fluid shear stress and atherosclerosis' signaling pathways. Hmox1, Fos, and Fosb genes were significantly upregulated among the selected DEGs. This study identified DPM-induced DEGs and verified the selected genes using qRT-PCR and western blotting. The findings provide insights into the molecular events in cardiomyocytes following exposure to DPM.
Collapse
Affiliation(s)
- Kyoung Jin Nho
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jae Hoon Shin
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jin Ee Baek
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Sung Won Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| |
Collapse
|
4
|
Zhou X, Lian K, Jia J, Zhao X, Duan P, Huang J, Shi Y. Functions of Epimedin C in a zebrafish model of glucocorticoid-induced osteoporosis. J Cell Mol Med 2024; 28:e18569. [PMID: 39072972 DOI: 10.1111/jcmm.18569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Epimedium is thought to enhance the integrity of tendons and bones, ease joint discomfort and rigidity and enhance kidney function. Although glucocorticoids are commonly used in clinical practice, the mechanism by which the active compound Epimedin C (EC) alleviates glucocorticoid-induced osteoporosis (GIOP) is not well understood. The therapeutic potential of EC in treating GIOP was evaluated using alizarin red S staining, calcein immersion and fluorescence imaging, and bone mineralization, bone mass accumulation and bone density in zebrafish larvae were determined. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the key signalling pathways related to bone development were identified. A protein-protein interaction network (PPIN) was constructed to identify osteoclast characteristic genes and the findings were verified using real-time quantitative PCR (RT-qPCR). The bone tissue damage caused by prednisolone was reduced by EC. It also altered physiological processes, improved bone density, boosted mineralization and increased bone mass and activity. Subsequent empirical investigations showed that EC impacted the major signalling pathways involved in bone development, such as osteoclast differentiation, oestrogen, MAPK, insulin resistance, PPAR and AMPK signalling pathways. It also decreased the expression of genes typical of osteoclasts. The results of our study uncover a previously unknown function of EC in controlling bone formation and emphasize the potential of EC as a therapeutic target. The osteoprotective effect of EC indicates its potential as a cost-effective strategy for treating GIOP.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junjie Jia
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiaolong Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yihua Shi
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
5
|
Allen KN, Torres-Velarde JM, Vazquez JM, Moreno-Santillán DD, Sudmant PH, Vázquez-Medina JP. Hypoxia exposure blunts angiogenic signaling and upregulates the antioxidant system in endothelial cells derived from elephant seals. BMC Biol 2024; 22:91. [PMID: 38654271 PMCID: PMC11040891 DOI: 10.1186/s12915-024-01892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | | |
Collapse
|
6
|
Fu F, Yang X, Li R, Li Y, Zhou H, Cheng K, Huang R, Wang Y, Guo F, Zhang L, Pan M, Han J, Zhen L, Li L, Lei T, Li D, Liao C. Single-cell RNA sequencing reveals cellular and molecular landscape of fetal cystic hygroma. BMC Med Genomics 2024; 17:96. [PMID: 38650036 PMCID: PMC11036587 DOI: 10.1186/s12920-024-01859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xin Yang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lina Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Min Pan
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Li Zhen
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
7
|
Chen Q, Zhang L, Zhang F, Yi S. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration. J Biol Chem 2023; 299:105444. [PMID: 37949219 PMCID: PMC10716580 DOI: 10.1016/j.jbc.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral glial Schwann cells switch to a repair state after nerve injury, proliferate to supply lost cell population, migrate to form regeneration tracks, and contribute to the generation of a permissive microenvironment for nerve regeneration. Exploring essential regulators of the repair responses of Schwann cells may benefit the clinical treatment for peripheral nerve injury. In the present study, we find that FOSL1, a AP-1 member that encodes transcription factor FOS Like 1, is highly expressed at the injured sites following peripheral nerve crush. Interfering FOSL1 decreases the proliferation rate and migration ability of Schwann cells, leading to impaired nerve regeneration. Mechanism investigations demonstrate that FOSL1 regulates Schwann cell proliferation and migration by directly binding to the promoter of EPH Receptor B2 (EPHB2) and promoting EPHB2 transcription. Collectively, our findings reveal the essential roles of FOSL1 in regulating the activation of Schwann cells and indicate that FOSL1 can be targeted as a novel therapeutic approach to orchestrate the regeneration and functional recovery of injured peripheral nerves.
Collapse
Affiliation(s)
- Qianqian Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Fuchao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Guo G, Fan L, Yan Y, Xu Y, Deng Z, Tian M, Geng Y, Xia Z, Xu Y. Shared metabolic shifts in endothelial cells in stroke and Alzheimer's disease revealed by integrated analysis. Sci Data 2023; 10:666. [PMID: 37775708 PMCID: PMC10542331 DOI: 10.1038/s41597-023-02512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Since metabolic dysregulation is a hallmark of both stroke and Alzheimer's disease (AD), mining shared metabolic patterns in these diseases will help to identify their possible pathogenic mechanisms and potential intervention targets. However, a systematic integration analysis of the metabolic networks of the these diseases is still lacking. In this study, we integrated single-cell RNA sequencing datasets of ischemic stroke (IS), hemorrhagic stroke (HS) and AD models to construct metabolic flux profiles at the single-cell level. We discovered that the three disorders cause shared metabolic shifts in endothelial cells. These altered metabolic modules were mainly enriched in the transporter-related pathways and were predicted to potentially lead to a decrease in metabolites such as pyruvate and fumarate. We further found that Lef1, Elk3 and Fosl1 may be upstream transcriptional regulators causing metabolic shifts and may be possible targets for interventions that halt the course of neurodegeneration.
Collapse
Affiliation(s)
- Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yingxue Yan
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yunhao Xu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Tian
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoqi Geng
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China.
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China.
| |
Collapse
|
9
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
10
|
Allen KN, Torres-Velarde JM, Vazquez JM, Moreno-Santillan DD, Sudmant PH, Vázquez-Medina JP. Hypoxia blunts angiogenic signaling and upregulates the antioxidant system in elephant seal endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547248. [PMID: 37461722 PMCID: PMC10350019 DOI: 10.1101/2023.07.01.547248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Elephant seals experience extreme hypoxemia during diving bouts. Similar depletions in oxygen availability characterize pathologies including myocardial infarction and ischemic stroke in humans, but seals manage these repeated episodes without injury. However, the real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture system to assess the molecular response to prolonged hypoxia. Seal and human cells exposed to 1% O 2 for up to 6 h demonstrated differential responses to both acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling at both the transcriptional and cellular level. Rapid upregulation of genes involved in the glutathione (GSH) metabolism pathway supported maintenance of GSH pools and increases in intracellular succinate in seal but not human cells during hypoxia exposure. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurred in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. In sum, our studies show that in contrast to human cells, seal cells adapt to hypoxia exposure by dampening angiogenic signaling, increasing antioxidant protection, and maintaining mitochondrial morphological integrity and function.
Collapse
|
11
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
12
|
Influence of FOSL1 Inhibition on Vascular Calcification and ROS Generation through Ferroptosis via P53-SLC7A11 Axis. Biomedicines 2023; 11:biomedicines11020635. [PMID: 36831172 PMCID: PMC9953509 DOI: 10.3390/biomedicines11020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Vascular calcification during aging is highly prevalent in patients with cardiovascular disease; however, there is still no improvement in clarifying the development of vascular calcification. FOSL1 is a transcription regulator belonging to the AP-1 family, which has a unique function in vascular senescence, but its role in vascular calcification needs to be further explored. METHODS Primary mouse vascular smooth muscle cells were isolated and used to construct a calcification model in vitro. Seven-week-old male C57BL/6 mice were used to build the vitD3-induced calcification model in vivo. qRT-PCR and western blot were used to verify the expression of FOSL1 and other genes expressed in vascular smooth muscle cells and aortas. The level of calcification was determined by Alizarin Red S (ARS) staining and the calcium content assay. The level of cellular GSH was detected by the GSH assay kit. RESULTS Here, we report that FOSL1 was up-regulated after high-calcium/phosphate treatment in both the in vivo and in vitro vascular calcification models. Functional studies have shown that the reduction of FOSL1 attenuates ferroptosis and calcification in vascular smooth muscle cells, as indicated by ARS staining, calcium content assay, and western blot. The inhibition of FOSL1 downregulated the expression of bone-related molecules including Msh Homeobox 2 (MSX2) and tumor necrosis factor receptor superfamily, member 11b/osteoprotegerin (OPG), suggesting that FOSL1 promoted osteogenic differentiation of vascular smooth muscle cells. Furthermore, we found that the ferroptosis-inducing drug erastin can significantly accelerate calcification in the aortic ring while Ferrostatin-1 (fer-1), a drug to protect cells from ferroptosis, can alleviate calcification. Further experiments have shown that inhibiting FOSL1 can promote the expression of ferroptosis-related genes and attenuate calcification. Functionally, cellular GSH levels were increased after the reduction of FOSL1. CONCLUSIONS In this study, we observed a significant protective effect when we reduced the expression of FOSL1 during vascular calcification, and this effect might regulate ferroptosis to a great extent.
Collapse
|
13
|
Zola M, Mejlachowicz D, Gregorio R, Naud MC, Jaisser F, Zhao M, Behar-Cohen F. Chronic Systemic Dexamethasone Regulates the Mineralocorticoid/Glucocorticoid Pathways Balance in Rat Ocular Tissues. Int J Mol Sci 2022; 23:ijms23031278. [PMID: 35163201 PMCID: PMC8836134 DOI: 10.3390/ijms23031278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11β-hsd2/11β-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR.
Collapse
Affiliation(s)
- Marta Zola
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
| | - Dan Mejlachowicz
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Raquel Gregorio
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Liu CC, Lee HC, Peng YS, Tseng AH, Wu JL, Tsai WY, Wong CS, Su LJ. Transcriptome Analysis Reveals Novel Genes Associated with Cartilage Degeneration in Posttraumatic Osteoarthritis Progression. Cartilage 2021; 13:1249S-1262S. [PMID: 31104480 PMCID: PMC8804845 DOI: 10.1177/1947603519847744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The current therapeutic strategy for posttraumatic osteoarthritis (PTOA) focuses on early intervention to attenuate disease progression, preserve joint function, and defer joint replacement timing. Sequential transcriptomic changes of articular cartilage in a rat model were investigated to explore the molecular mechanism in early PTOA progression. DESIGN Anterior cruciate ligament transection and medial meniscectomy (ACLT + MMx)-induced PTOA model was applied on male Wistar rats. Articular cartilages were harvested at time 0 (naïve), 2 week, and 4 weeks after surgery. Affymetrix Rat genome 230 2.0 array was utilized to analyze the gene expression changes of articular cartilages. RESULTS We identified 849 differentially expressed genes (DEGs) at 2 weeks and 223 DEGs at 4 weeks post-ACLT + MMx surgery compared with time 0 (naïve group). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to gain further insights from these DEGs. 22 novel genes and 1 novel KEGG pathway (axon guidance) in cartilage degeneration of osteoarthritis were identified. Axon guidance molecules-Gnai1, Sema4d, Plxnb1, and Srgap2 commonly dysregulated in PTOA progression. Gnai1 gene showed a concordant change in protein expression by immunohistochemistry staining. CONCLUSIONS Our study identified 22 novel dysregulated genes and axon guidance pathway associated with articular cartilage degeneration in PTOA progression. These findings provide the potential candidates of biomarkers and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Chih-Chung Liu
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoong-Chien Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan,Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Yi-Shian Peng
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | | | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Yuan Tsai
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwna
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwna,Graduate Institute of Medical Sciences, National Defence Medical Center, Taipei, Taiwan,Chih-Shung Wong, Department of Anesthesiology, Cathay General Hospital, No. 280, Renai Road, Sec. 4, Daan District, Taipei 10630, Taiwan.
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Zhang S, Zhou J, Li L, Pan X, Lin J, Li C, Leung WT, Wang L. Effect of dehydroepiandrosterone on atherosclerosis in postmenopausal women. Biosci Trends 2021; 15:353-364. [PMID: 34759119 DOI: 10.5582/bst.2021.01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In China, cardiovascular disease (CVD) has surpassed malignant tumours to become the disease with the highest mortality rate, and atherosclerosis (AS) is an important pathological cause of CVD. Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in circulating human blood and is a precursor of estrogen and androgen. DHEA is converted into a series of sex hormones in local peripheral tissues where its acts physiologically. DHEA also acts therapeutically, thereby avoiding the adverse systemic reactions to sex hormones. DHEA inhibits AS, thus inhibiting the development of CVD, and it improves the prognosis for CVD. The incidence of CVD in postmenopausal women is substantially higher than that in premenopausal women, and that incidence is believed to be related to a decrease in ovarian function. The current review analyzes the mechanisms of postmenopausal women's susceptibility to AS. They tend to have dyslipidemia, and their vascular smooth muscle cells (VSMCs) proliferate and migrate more. In addition, oxidative stress and the inflammatory response of endothelial cells (ECs) are more serious in postmenopausal women. This review also discusses how DHEA combats AS by countering these mechanisms, which include regulating the blood lipid status, protecting ECs (including coping with oxidative stress and inflammatory reactions of the vascular endothelium, inhibiting apoptosis of ECs, and inducing NO production) and inhibiting the proliferation and migration of VSMCs. As a result, DHEA has great value in preventing AS and inhibiting its progression in postmenopausal women.
Collapse
Affiliation(s)
- Siwei Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lijuan Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Lin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
16
|
Meng L, Xu KX, Zhao MX, Li K, Zhu K, Yuan DW, Wang HN, Dai PG, Yan R. Nucleolar protein 6 promotes cell proliferation and acts as a potential novel prognostic marker for hepatocellular carcinoma. Chin Med J (Engl) 2021; 134:2611-2618. [PMID: 34561331 PMCID: PMC8577660 DOI: 10.1097/cm9.0000000000001655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Nucleolar protein 6 (NOL6) is a nucleolar RNA-associated protein that is highly conserved between species. It has been proved to be associated with the prognosis of liver cancer. However, the underlying mechanism has not been fully established. This study aimed to assess the relationship between NOL6 and liver cancer prognosis. Methods: We constructed an NOL6-short hairpin RNA (shRNA)-expressing lentivirus. Through viral transfection, cell growth assay and fluorescence-activated cell sorting, we evaluated the effect of shRNA-mediated NOL6 knockdown on the proliferation, colony formation, and apoptosis of hepatocellular carcinoma (HCC) cells. The relationship between NOL6 expression and HCC patient survival has been established through bioinformatics analysis. We also explored the downstream molecular regulatory network of NOL6 in HCC by performing an Ingenuity Pathway Analysis in the database. Results: Increased NOL6 expression was detected in HCC cells compared to normal controls; HCC patients with high NOL6 expression had poorer prognoses than those with low expression. NOL6 knockdown inhibited HCC cell proliferation, apoptosis, and colony formation. Also, MAPK8, CEBPA, and FOSL1 were selected as potential downstream genes of NOL6. Conclusions: NOL6 up-regulates HCC cell proliferation and affects downstream expression of related genes. Moreover, NOL6 is considered to be associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Lei Meng
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai-Xuan Xu
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Ming-Xi Zhao
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Da-Wei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao-Nan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng-Gao Dai
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Pathogenic Effects of Mineralocorticoid Pathway Activation in Retinal Pigment Epithelium. Int J Mol Sci 2021; 22:ijms22179618. [PMID: 34502527 PMCID: PMC8431771 DOI: 10.3390/ijms22179618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are amongst the most used drugs to treat retinal diseases of various origins. Yet, the transcriptional regulations induced by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation in retinal pigment epithelium cells (RPE) that form the outer blood-retina barrier are unknown. Levels of endogenous corticoids, ligands for MR and GR, were measured in human ocular media. Human RPE cells derived from induced pluripotent stem cells (iRPE) were used to analyze the pan-transcriptional regulations induced by aldosterone-an MR-specific agonist, or cortisol or cortisol + RU486-a GR antagonist. The retinal phenotype of transgenic mice that overexpress the human MR (P1.hMR) was analyzed. In the human eye, the main ligand for GR and MR is cortisol. The iRPE cells express functional GR and MR. The subset of genes regulated by aldosterone and by cortisol + RU-486, and not by cortisol alone, mimics an imbalance toward MR activation. They are involved in extracellular matrix remodeling (CNN1, MGP, AMTN), epithelial-mesenchymal transition, RPE cell proliferation and migration (ITGB3, PLAUR and FOSL1) and immune balance (TNFSF18 and PTX3). The P1.hMR mice showed choroidal vasodilation, focal alteration of the RPE/choroid interface and migration of RPE cells together with RPE barrier function alteration, similar to human retinal diseases within the pachychoroid spectrum. RPE is a corticosteroid-sensitive epithelium. MR pathway activation in the RPE regulates genes involved in barrier function, extracellular matrix, neural regulation and epithelial differentiation, which could contribute to retinal pathology.
Collapse
|
18
|
Huang MP, Gu SZ, Huang B, Li GW, Xiong ZP, Tang T, Zeng SN. Apatinib Inhibits Angiogenesis in Intrahepatic Cholangiocarcinoma by Regulating the Vascular Endothelial Growth Factor Receptor-2/Signal Transducer and Activator of Transcription Factor 3/Hypoxia Inducible Factor 1 Subunit Alpha Signaling Axis. Pharmacology 2021; 106:509-519. [PMID: 34412054 DOI: 10.1159/000514410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (ICC), which is difficult to diagnose and is usually fatal due to its late clinical presentation and a lack of effective treatment, has risen over the past decades but without much improvement in prognosis. OBJECTIVE The study aimed to investigate the role of apatinib that targets vascular endothelial growth factor receptor-2 (VEGFR2) in ICC. METHODS MTT assays, cell scratch assays, and tube formation assays were used to assess the effect of apatinib on human ICC cell line (HuCCT-1) and RBE cells proliferation, migration, and angiogenic capacity, respectively. Expression of vascular endothelial growth factor (VEGF), VEGFR2, signal transducer and activator of transcription factor 3 (STAT3), pSTAT3, and hypoxia inducible factor 1 subunit alpha (HIF-1α) pathway proteins was assessed using Western blotting and mRNA expression analysis in HuCCT-1 was performed using RT-qPCR assays. The pcDNA 3.1(-)-VEGFR2 and pcDNA 3.1(-)-HIF-1α were transfected into HuCCT-1 and RBE cells using Lipofectamine 2,000 to obtain overexpressed HuCCT-1 and RBE cells. RESULTS We found that apatinib-inhibited proliferation, migration, and angiogenesis of HuCCT-1 and RBE cells in vitro in a dose-dependent manner. We also proved that apatinib effectively inhibits angiogenesis in tumor cells by blocking the expression of VEGF and VEGFR2 in these cells. In addition, we demonstrated that apatinib regulates the expression of STAT3 phosphorylation by inhibiting VEGFR2. Finally, we showed that apatinib regulates ICC angiogenesis and HIF-1α/VEGF expression via STAT3. CONCLUSIONS Based on the above findings, we conclude that apatinib inhibits HuCCT-1 and RBE cell proliferation, migration, and tumor angiogenesis by inhibiting the VEGFR2/STAT3/HIF-1α axis signaling pathway. Apatinib can be a promising drug for ICC-targeted molecular therapy.
Collapse
Affiliation(s)
- Man-Ping Huang
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Shan-Zhi Gu
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Bin Huang
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Guo-Wen Li
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Zheng-Ping Xiong
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Tian Tang
- Department of Intervention Hunan, Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Changsha, China
| | - Sai-Nan Zeng
- Infection Controlling Center, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
19
|
Ren K, Wang L, Wang L, Du Q, Cao J, Jin Q, An G, Li N, Dang L, Tian Y, Wang Y, Sun J. Investigating Transcriptional Dynamics Changes and Time-Dependent Marker Gene Expression in the Early Period After Skeletal Muscle Injury in Rats. Front Genet 2021; 12:650874. [PMID: 34220936 PMCID: PMC8248501 DOI: 10.3389/fgene.2021.650874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Following skeletal muscle injury (SMI), from post-injury reaction to repair consists of a complex series of dynamic changes. However, there is a paucity of research on detailed transcriptional dynamics and time-dependent marker gene expression in the early stages after SMI. In this study, skeletal muscle tissue in rats was taken at 4 to 48 h after injury for next-generation sequencing. We examined the transcriptional kinetics characteristics during above time periods after injury. STEM and maSigPro were used to screen time-correlated genes. Integrating 188 time-correlated genes with 161 genes in each time-related gene module by WGCNA, we finally identified 18 network-node regulatory genes after SMI. Histological staining analyses confirmed the mechanisms underlying changes in the tissue damage to repair process. Our research linked a variety of dynamic biological processes with specific time periods and provided insight into the characteristics of transcriptional dynamics, as well as screened time-related biological indicators with biological significance in the early stages after SMI.
Collapse
Affiliation(s)
- Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China.,Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Liangliang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Liang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qianqian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lihong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingjie Tian
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingyuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
20
|
Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. Emerging Role of AP-1 Transcription Factor JunB in Angiogenesis and Vascular Development. Int J Mol Sci 2021; 22:ijms22062804. [PMID: 33802099 PMCID: PMC8000613 DOI: 10.3390/ijms22062804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Collapse
|
21
|
Deciphering of Key Pharmacological Pathways of Poria Cocos Intervention in Breast Cancer Based on Integrated Pharmacological Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4931531. [PMID: 33149754 PMCID: PMC7603580 DOI: 10.1155/2020/4931531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Poria cocos (Fuling), a natural plant, has recently emerged as a promising strategy for cancer treatment. However, the molecular mechanisms of Poria cocos action in breast cancer remain poorly understood. METHODS TCMSP database was used to screen the potential active ingredients in Poria cocos. GEO database was used to identify differentially expressed genes. Network pharmacology was used to identify the specific pathways and key target proteins related to breast cancer. Finally, molecular docking was used to validate the results. RESULTS In our study, 237 targets were predicted for 15 potential active ingredients found in Poria cocos. An interaction network of predicted targets and genes differentially regulated in breast cancers was constructed. Based on the constructed network and further analysis including network topology, KEGG, survival analysis, and gene set enrichment analysis, 3 primary nodes were identified as key potential targets that were significantly enriched in the PPAR signaling pathway. CONCLUSION The results showed that potential active ingredients of Poria cocos might interfere with breast cancer through synergistic regulation of PTGS2, ESR1, and FOS.
Collapse
|
22
|
Hughes CK, Maalouf SW, Liu WS, Pate JL. Molecular profiling demonstrates modulation of immune cell function and matrix remodeling during luteal rescue†. Biol Reprod 2020; 100:1581-1596. [PMID: 30915454 DOI: 10.1093/biolre/ioz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum (CL) is essential for maintenance of pregnancy in all mammals and luteal rescue, which occurs around day 16-19 in the cow, is necessary to maintain luteal progesterone production. Transcriptomic and proteomic profiling were performed to compare the day 17 bovine CL of the estrous cycle and pregnancy. Among mRNA and proteins measured, 140 differentially abundant mRNA and 24 differentially abundant proteins were identified. Pathway analysis was performed using four programs. Modulated pathways included T cell receptor signaling, vascular stability, cytokine signaling, and extracellular matrix remodeling. Two mRNA that were less in pregnancy were regulated by prostaglandin F2A in culture, while two mRNA that were greater in pregnancy were regulated by interferon tau. To identify mRNA that could be critical regulators of luteal fate, the mRNA that were differentially abundant during early pregnancy were compared to mRNA that were differentially abundant during luteal regression. Eight mRNA were common to both datasets, including mRNA related to regulation of steroidogenesis and gene transcription. A subset of differentially abundant mRNA and proteins, including those associated with extracellular matrix functions, were predicted targets of differentially abundant microRNA (miRNA). Integration of miRNA and protein data, using miRPath, revealed pathways such as extracellular matrix-receptor interactions, abundance of glutathione, and cellular metabolism and energy balance. Overall, this study has provided a comprehensive profile of molecular changes in the corpus luteum during maternal recognition of pregnancy and has indicated that some of these functions may be miRNA-regulated.
Collapse
Affiliation(s)
- Camilla K Hughes
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Samar W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
23
|
Nitkin CR, Xia S, Menden H, Yu W, Xiong M, Heruth DP, Ye SQ, Sampath V. FOSL1 is a novel mediator of endotoxin/lipopolysaccharide-induced pulmonary angiogenic signaling. Sci Rep 2020; 10:13143. [PMID: 32753701 PMCID: PMC7403357 DOI: 10.1038/s41598-020-69735-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Systemic sepsis is a known risk factor for bronchopulmonary dysplasia (BPD) in premature infants, a disease characterized by dysregulated angiogenesis and impaired vascular and alveolar development. We have previoulsy reported that systemic endotoxin dysregulates pulmonary angiogenesis resulting in alveolar simplification mimicking BPD in neonatal mice, but the underlying mechanisms remain unclear. We undertook an unbiased discovery approach to identify novel signaling pathways programming sepsis-induced deviant lung angiogenesis. Pulmonary endothelial cells (EC) were isolated for RNA-Seq from newborn C57BL/6 mice treated with intraperitoneal lipopolysaccharide (LPS) to mimic systemic sepsis. LPS significantly differentially-regulated 269 genes after 6 h, and 1,934 genes after 24 h. Using bioinformatics, we linked 6 h genes previously unknown to be modulated by LPS to 24 h genes known to regulate angiogenesis/vasculogenesis to identify pathways programming deviant angiogenesis. An immortalized primary human lung EC (HPMEC-im) line was generated by SV40 transduction to facilitate mechanistic studies. RT-PCR and transcription factor binding analysis identified FOSL1 (FOS like 1) as a transcriptional regulator of LPS-induced downstream angiogenic or vasculogenic genes. Over-expression and silencing studies of FOSL1 in immortalized and primary HPMEC demonstrated that baseline and LPS-induced expression of ADAM8, CXCR2, HPX, LRG1, PROK2, and RNF213 was regulated by FOSL1. FOSL1 silencing impaired LPS-induced in vitro HPMEC angiogenesis. In conclusion, we identified FOSL1 as a novel regulator of sepsis-induced deviant angiogenic signaling in mouse lung EC and human fetal HPMEC.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| | - Sheng Xia
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Heather Menden
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Wei Yu
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Min Xiong
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Unaffiliated, Kansas City, USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Shui Qing Ye
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| |
Collapse
|
24
|
Duan L, Zhao M, Ang L, Hu H, Wu Z, Wang J, Huang J, Zheng L, Dong W. Down-regulation of FOS-like antigen 1 enhances drug sensitivity in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2092-2099. [PMID: 32922605 PMCID: PMC7476927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Multidrug resistance (MDR) to chemotherapeutic drugs is an important reason for clinical chemotherapy failure. So far, the relationship between FOS-like antigen1 (FOSL1) and chemotherapy sensitivity of breast cancer remains unclear. This study investigates the relationship between FOSL1 and chemotherapy sensitivity of breast cancer and its molecular mechanism. METHODS Doxorubicin-resistant MCF-7/ADR breast cancer cells were transfected with NC (control) or FOSL1 siRNA and assayed for cell viability and relative colony number by MTT assay and colony formation, respectively. The expression level of FOSL1 was detected by immunohistochemistry (IHC). The relationship between FOSL1 and chemotherapy sensitivity was analyzed by a one-way of variance analysis and Pearson's chi-square test among a total of 50 patients with stage II and III breast cancer before and after they received epirubicin-based neoadjuvant chemotherapy (NCT) between 2012 and 2017. RESULTS The expression of FOSL1 was increased in breast cancer tissues compared with normal breast tissues (P<0.05), and the expression of FOSL1 was decreased after NCT treatment compared with breast cancer tissues (or before NCT). This lower expression of FOSL1 was correlated with chemotherapy resistance or chemotherapy sensitivity (P<0.05). Moreover, the expression level of FOSL1 was markedly lower in NCT-sensitive patients than that of NCT-resistant patients (P<0.05). CONCLUSION Down-regulation of FOSL1 potentiated chemotherapy sensitivity of breast cancer, and its lower expression attenuated chemotherapeutic drug resistance in human breast cancer cells. FOSL1 might be a drug target for predicting chemotherapy effect in breast cancer.
Collapse
Affiliation(s)
- Lingdi Duan
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Min Zhao
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Lin Ang
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Hongguang Hu
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Jin Wang
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Jin Huang
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Li Zheng
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| | - Wei Dong
- Department of Pathology, The Second People’s Hospital of HefeiHefei 230011, Anhui, P. R. China
| |
Collapse
|
25
|
Nijhawan P, Behl T. The Role of Endostatin in Rheumatoid Arthritis. Curr Rheumatol Rev 2020; 17:68-75. [PMID: 32348230 DOI: 10.2174/1573397115666191127141801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/19/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endostatin by its therapeutic value against rheumatoid arthritis has recently gained significant interest in biomedical science. A recent study revealed that various approaches have been made to prevent rheumatoid arthritis by either controlling or inhibiting the progression of angiogenesis. OBJECTIVE The main objective of the current manuscript is to enumerate the intrinsic role of endostatin in rheumatoid arthritis. METHODS A thorough and detailed review of literature from the papers published from the year 1997-2019 was studied for the preparation of the current article. RESULTS Endostatin is one such agent of the subfamily of ECM called as multiplexins obtained from proteolytic cleavage of XVIII and its carboxylic terminal fragments and is known for its antiangiogenic and antiproliferative property. The exact mechanism of endostatin is still unclear, but it acts by downregulating or inhibiting the responses of various factors, including Id1, Id3, matrix metalloproteinase, and Nuclear factor Kappa B that are liable for angiogenesis. The mutual effects on adipogenesis and angiogenesis, endostatin inhibits dietary-induced obesity and its related metabolic disorders, such as insulin resistance, glucose intolerance, and hepatic steatosis. CONCLUSION The present review demonstrates the intrinsic usage of endostatin as a novel molecule in rheumatoid arthritis. It focuses on the status of the therapeutic potential of endostatin in inhibiting the activity of angiogenesis is also very well explored.
Collapse
Affiliation(s)
- Priya Nijhawan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
26
|
Zhu J, Zhao YP, Zhang YQ. Low expression of FOSL1 is associated with favorable prognosis and sensitivity to radiation/pharmaceutical therapy in lower grade glioma. Neurol Res 2020; 42:522-527. [PMID: 32245342 DOI: 10.1080/01616412.2020.1748323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objectives: FOSL1 is overexpressed in multiple cancers including malignant glioma and contributes to different cellular processes. However, little attention has been paid to the lower grade glioma (LGG).Methods: Cox coefficients were examined to compare FOSL1 expression among different tumors types using OncoLnc. The UCSC Xena browser was used to generate Kaplan-Meier survival curves and explore the association between FOSL1 expression and overall survival (OS) in TCGA-LGG and subgroups.Results: FOSL1 expression in LGG was ranked first among 21 different cancers. LGG with lower FOSL1 expression had longer OS (P < 0.001). The astrocytoma group had the highest FOSL1 expression and shortest OS, followed by oligoastrocytoma and oligodendroglioma (P < 0.05). The 1p19q co-deletion or IDH mutation subgroups had lower FOSL1 expression and longer OS (P < 0.001). Compared with the corresponding groups, LGG with lower FOSL1 expression had longer OS than the following groups: astrocytoma, oligodendroglioma, with/without 1p19q co-deletion, with IDH mutation, with radiation, and with pharmaceutical therapy (P < 0.05).Discussion: FOSL1 is a prognostic marker in LGG and subgroups.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ya-Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Qi Zhang
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Banerjee J, Lodhi N, Nguyen BN. The Role of Poly(ADP-Ribose) Polymerase-1 in Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:634-643. [PMID: 31750014 DOI: 10.1089/wound.2018.0821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Critical Issue: Chronic nonhealing wounds of the lower extremities resulting in major amputations are a major health problem worldwide. Significance: Diabetes and ischemia are two major etiologies of nonhealing wounds of the lower extremities. Hyperglycemia from diabetes and oxidative stress from ischemia activate polyadenosine diphosphate (ADP)-ribose polymerase-1 (PARP-1), which is a nuclear enzyme that is best known for its role in DNA repair. However, the exact function of PARP-1 in ischemic/diabetic wound healing has not been well studied. Recent Advances: Poly-ADP-ribose (PAR) polymer has been detected in the wound bed and many of the PARylation-related reactions (oxidative stress response, expression of inflammatory cytokines and chemokines, cell proliferation, and migration) are important in the wound healing process. However, the role of PARP-1 in wound healing and the potential of targeting PARP-1 therapeutically in wounds are only recently being elucidated, with much still unknown. This review summarizes the recent advances in this field, highlighting some of the mechanisms through which PARP-1 may affect normal wound closure. Future Directions: The review also presents a perspective on some of the downstream targets of PARP-1 that may be explored for their role in wound healing and discusses about the therapeutic potential of PARP inhibitors for wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Vascular Surgery, George Washington University, Washington, District of Columbia
| | - Niraj Lodhi
- Department of Biomedical Research, Hackensack University Medical Center, Hackensack, New Jersey
| | - Bao-Ngoc Nguyen
- Department of Vascular Surgery, George Washington University, Washington, District of Columbia
| |
Collapse
|
28
|
lncRNA PSORS1C3 is regulated by glucocorticoids and fine-tunes OCT4 expression in non-pluripotent cells. Sci Rep 2019; 9:8370. [PMID: 31182783 PMCID: PMC6557835 DOI: 10.1038/s41598-019-44827-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
OCT4 is a transcription factor known for its regulatory roles in stemness, tumorigenesis and stress response. Considering its versatile functions, expression of OCT4 is regulated at different levels. PSORS1C3, a long non-coding RNA overlapped with OCT4, has a putative association with immune mediated diseases; however, its exact functions remained to be elucidated. Here, we demonstrated that PSORS1C3 is regulated by glucocorticoids (GC), has two endogenously active promoters, promoter 0 and 1, and two sets of transcripts, short and long variants. According to our findings, PSORS1C3 promoters behaved differently during neural differentiation of NT2 cells and glucocorticoid receptor (GR) activation. In both processes the expression pattern of short variants differed from that of long variants and was similar to OCT4 expression. Furthermore, our data revealed that PSORS1C3’s promoter 0 could act as an enhancer for OCT4 in non-pluripotent cells, where its deletion caused a significant decrease in OCT4 expression. Meanwhile, during GR activation promoter 0 functioned as a negative regulator and alleviated transcription induction of OCT4 after GC treatment. Altogether, our work clarified the structure and regulation of PSORS1C3, explained its relation to immune-related disease through GR signaling and introduced it as a novel fine-tuner of OCT4 expression in non-pluripotent cells.
Collapse
|
29
|
Fiscon G, Conte F, Paci P. SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines. BMC Bioinformatics 2018; 19:436. [PMID: 30497369 PMCID: PMC6266956 DOI: 10.1186/s12859-018-2421-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies. METHODS Recently, we developed SWIM, a software able to unveil a small pool of genes - called switch genes - critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like phenotype. RESULTS SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list encompasses genes like CAV1, COL5A1, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBS1, and VEGFC, involved in "ECM-receptor interaction" and "focal adhesion" pathways. The inhibition of switch genes highly correlates with the activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2, SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells. Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1. CONCLUSIONS We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells by repressing the 4-core genes' expression, which severely halts cancer growth and might affect the therapeutic outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| |
Collapse
|
30
|
Han Y, Zhao X, Sun Y, Sui Y, Liu J. Retracted
: Effects of FOSL1 silencing on osteosarcoma cell proliferation, invasion and migration through the ERK/AP‐1 signaling pathway. J Cell Physiol 2018; 234:3598-3612. [DOI: 10.1002/jcp.27048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Han
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| | - Xingyu Zhao
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| | - Yifu Sun
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Beijing China
| | - Yutong Sui
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Beijing China
| | - Jianguo Liu
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| |
Collapse
|
31
|
Saitoh Y, Bureta C, Sasaki H, Nagano S, Maeda S, Furukawa T, Taniguchi N, Setoguchi T. The histone deacetylase inhibitor LBH589 inhibits undifferentiated pleomorphic sarcoma growth via downregulation of FOS-like antigen 1. Mol Carcinog 2018; 58:234-246. [PMID: 30303565 DOI: 10.1002/mc.22922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is the second most frequent soft tissue sarcoma. Because of its resistance to chemotherapy, UPS patients are treated with surgical resection and complementary radiotherapy. However, since standard chemotherapy has not been established, unresectable or metastatic cases result in a poor prognosis. Therefore, the identification of a more effective therapy for UPS patients is needed. The development and progression of malignant tumors involve epigenetic alterations, and histone deacetylases (HDAC) have become a promising chemotherapeutic target. In this study, we investigated the potential effects and mechanisms of an HDAC inhibitor, LBH589, in UPS cells. We confirmed that LBH589 exhibits potent antitumor activities in four human UPS cell lines (GBS-1, TNMY-1, Nara-F, and Nara-H) and IC50 values ranged from 7 to 13 nM. A mouse xenograft model showed that LBH589 treatment effectively suppressed tumor growth. FACS analysis showed that LBH589 induced apoptosis and G2/M cell cycle arrest. Among apoptosis-related proteins, the expressions of Bcl-2 and Bcl-xL were decreased and the expression of Bak and Bim increased. Among cell cycle-related proteins, reductions of CDK1, p-CDK1, cyclin B1, Aurora A, and Aurora B were observed after LBH589 treatment. RNA microarray identified the FOS-like antigen 1 (FOSL1) gene as a downregulated gene in response to LBH589 in UPS cells. While knockdown of FOSL1 decreased UPS cell proliferation, overexpression induced cell proliferation. Our results show that LBH589 could be a promising chemotherapeutic agent in the treatment of UPS and downregulation of the FOSL1 gene could be the new molecular target of UPS treatment.
Collapse
Affiliation(s)
- Yoshinobu Saitoh
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Costansia Bureta
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Sasaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuhiko Furukawa
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
32
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Fiscon G, Conte F, Farina L, Paci P. Network-Based Approaches to Explore Complex Biological Systems towards Network Medicine. Genes (Basel) 2018; 9:genes9090437. [PMID: 30200360 PMCID: PMC6162385 DOI: 10.3390/genes9090437] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Network medicine relies on different types of networks: from the molecular level of protein–protein interactions to gene regulatory network and correlation studies of gene expression. Among network approaches based on the analysis of the topological properties of protein–protein interaction (PPI) networks, we discuss the widespread DIAMOnD (disease module detection) algorithm. Starting from the assumption that PPI networks can be viewed as maps where diseases can be identified with localized perturbation within a specific neighborhood (i.e., disease modules), DIAMOnD performs a systematic analysis of the human PPI network to uncover new disease-associated genes by exploiting the connectivity significance instead of connection density. The past few years have witnessed the increasing interest in understanding the molecular mechanism of post-transcriptional regulation with a special emphasis on non-coding RNAs since they are emerging as key regulators of many cellular processes in both physiological and pathological states. Recent findings show that coding genes are not the only targets that microRNAs interact with. In fact, there is a pool of different RNAs—including long non-coding RNAs (lncRNAs) —competing with each other to attract microRNAs for interactions, thus acting as competing endogenous RNAs (ceRNAs). The framework of regulatory networks provides a powerful tool to gather new insights into ceRNA regulatory mechanisms. Here, we describe a data-driven model recently developed to explore the lncRNA-associated ceRNA activity in breast invasive carcinoma. On the other hand, a very promising example of the co-expression network is the one implemented by the software SWIM (switch miner), which combines topological properties of correlation networks with gene expression data in order to identify a small pool of genes—called switch genes—critically associated with drastic changes in cell phenotype. Here, we describe SWIM tool along with its applications to cancer research and compare its predictions with DIAMOnD disease genes.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, via dei Taurini 19, 00185 Rome, Italy.
- SysBio Centre of Systems Biology, Piazza della Scienza, 3, 20126 Milan, Italy.
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, via dei Taurini 19, 00185 Rome, Italy.
- SysBio Centre of Systems Biology, Piazza della Scienza, 3, 20126 Milan, Italy.
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Viale Ariosto 25, 00185 Rome, Italy.
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, via dei Taurini 19, 00185 Rome, Italy.
- SysBio Centre of Systems Biology, Piazza della Scienza, 3, 20126 Milan, Italy.
| |
Collapse
|
34
|
Chen X, Zhao M, Huang J, Li Y, Wang S, Harrington CA, Qian DZ, Sun XX, Dai MS. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J Cell Biochem 2018; 119:4945-4956. [PMID: 29384218 DOI: 10.1002/jcb.26739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
FOSL1 is frequently overexpressed in multiple types of human cancers including invasive breast cancers and implicated in cancer invasion and metastasis. However, how FOSL1 is overexpressed in cancers remains to be elucidated. Several microRNAs (miRNAs) have been shown to target FOSL1 and are downregulated in human cancers. Here, we report that miR-130a is a novel FOSL1 targeting miRNA. Using gene expression microarray analysis, we found that FOSL1 is among the most up-regulated genes in cells transfected with miR-130a inhibitors. Transient transfection-immunoblot, RNA-immunoprecipitation, and luciferase reporter assays revealed that miR-130a directly targets FOSL1 mRNA at its 3'-UTR. Overexpression of miR-130a significantly reduced the levels of FOSL1 in invasive breast cancer MDA-MB-231 and Hs578T cell lines and suppresses their migration and invasion. This inhibition can be rescued by ectopic expression of miR-130a-resistant FOSL1. Interestingly, we show that overexpression of miR-130a increased the levels of tight-junction protein ZO-1 while inhibition of miR-130a reduced the levels of ZO-1. We further show that miR-130a expression is significantly reduced in cancer tissues from triple-negative breast cancer (TNBC) patients, correlating significantly with the upregulation of FOSL1 expression, compared to non-TNBC tissues. Together, our results reveal that miR-130a directly targets FOSL1 and suppresses the inhibition of ZO-1, thus inhibiting cancer cell migration and invasion, in TNBCs.
Collapse
Affiliation(s)
- Xiaowei Chen
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Zhao
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Jin Huang
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Yuhuang Li
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Christina A Harrington
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, Oergon
| | - David Z Qian
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Xiao-Xin Sun
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Mu-Shui Dai
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| |
Collapse
|
35
|
Fiscon G, Conte F, Licursi V, Nasi S, Paci P. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep 2018; 8:7769. [PMID: 29773872 PMCID: PMC5958093 DOI: 10.1038/s41598-018-26081-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma, the most malignant brain cancer, contains self-renewing, stem-like cells that sustain tumor growth and therapeutic resistance. Identifying genes promoting stem-like cell differentiation might unveil targets for novel treatments. To detect them, here we apply SWIM - a software able to unveil genes (named switch genes) involved in drastic changes of cell phenotype - to public datasets of gene expression profiles from human glioblastoma cells. By analyzing matched pairs of stem-like and differentiated glioblastoma cells, SWIM identified 336 switch genes, potentially involved in the transition from stem-like to differentiated state. A subset of them was significantly related to focal adhesion and extracellular matrix and strongly down-regulated in stem-like cells, suggesting that they may promote differentiation and restrain tumor growth. Their expression in differentiated cells strongly correlated with the down-regulation of transcription factors like OLIG2, POU3F2, SALL2, SOX2, capable of reprogramming differentiated glioblastoma cells into stem-like cells. These findings were corroborated by the analysis of expression profiles from glioblastoma stem-like cell lines, the corresponding primary tumors, and conventional glioma cell lines. Switch genes represent a distinguishing feature of stem-like cells and we are persuaded that they may reveal novel potential therapeutic targets worthy of further investigation.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- SysBio Centre of Systems Biology, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- SysBio Centre of Systems Biology, Rome, Italy
| | - Valerio Licursi
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Sergio Nasi
- Department of Biology and Biotecnology - Charles Darwin, "Sapienza" University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
- SysBio Centre of Systems Biology, Rome, Italy.
| |
Collapse
|
36
|
Li YL, Jin YF, Liu XX, Li HJ. A comprehensive analysis of Wnt/β-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As 2O 3 in renal cancer. Ren Fail 2018; 40:331-339. [PMID: 29633893 PMCID: PMC6014489 DOI: 10.1080/0886022x.2018.1456461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the effect of As2O3 treatment on Wnt/β-catenin signaling pathway-related genes and pathways in renal cancer. Illumina-based RNA-seq of 786-O cells with or without As2O3 treatment was performed, and differentially expressed genes (DEGs) were identified using Cuffdiff software. TargetMine was utilized to perform Gene Ontology (GO) pathway and Disease Ontology enrichment analyses. Furthermore, TRANSFAC database and LPIA method were applied to select differentially expressed transcription factors (TFs) and pathways related to Wnt/β-catenin signaling pathway, respectively. Additionally, transcriptional regulatory and pathway crosstalk networks were constructed. In total, 1684 DEGs and 69 TFs were screened out. The 821 up-regulated DEGs were mainly enriched in 67 pathways, 70 GO terms, and 46 disease pathways, while only 1 pathway and 5 GO terms were enriched for 863 down-regulated DEGs. A total of 18 DEGs (4 up-regulated and 14 down-regulated genes) were involved in the Wnt/β-catenin signaling pathway. Among the 18 DEGs, 4 ones were TFs. Furthermore, 211 pathways were predicted to be linked to the Wnt/β-catenin signaling pathway. In conclusion, As2O3 may have a significant effect on the Wnt/β-catenin signaling pathway for renal cancer treatment. The potential key DEGs are expected to be used as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Lei Li
- a Medical Examination Center , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Yu-Fen Jin
- b Clinical Laboratory , The Second Hospital of Jilin University , Changchun , China
| | - Xiu-Xia Liu
- b Clinical Laboratory , The Second Hospital of Jilin University , Changchun , China
| | - Hong-Jun Li
- a Medical Examination Center , China-Japan Union Hospital of Jilin University , Changchun , China
| |
Collapse
|
37
|
Vučićević D, Gehre M, Dhamija S, Friis-Hansen L, Meierhofer D, Sauer S, Ørom UA. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation. Oncotarget 2017; 7:33934-47. [PMID: 27129154 PMCID: PMC5085129 DOI: 10.18632/oncotarget.8985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells.
Collapse
Affiliation(s)
- Dubravka Vučićević
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Maja Gehre
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,EMBL, Heidelberg, Germany
| | - Sonam Dhamija
- Medizinische Hochschule Hannover Institute of Biochemistry, Hannover, Germany.,RNA Biology and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Zhang L, Huang Y, Yu Z, Shao M, Luo Y, Zhu Y. Identification of key genes and pathways and therapeutic agents in cadmium-treated liver cells: A bioinformatics study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:145-150. [PMID: 28934692 DOI: 10.1016/j.etap.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Evidence indicates that Cadmium (Cd) can accumulate in liver, which results in acute or chronic cell damage with unclear complex mechanisms. Thus, we aimed to explore the possible molecules and pathways by using bioinformatics methods Consequently, two datasets (GSE8865 and GSE31286) were retrieved and the differentially expressed genes (DEGs) were screened out. The intersection of the DEGs included seven up-regulated and forty-three down-regulated genes, which were mainly enriched in biological cell proliferation items, and were enriched in several metabolism-related pathways. Among the DEGs, several hub genes such as EGR1, FOSL1, ITGA2, EDN1, and IER3 were screened out through protein-protein interaction analysis. Interestingly, BW-B70C was predicted to be a potential agent for attenuating Cd-induced liver cell damage. The present study gave a novel insight into the mechanisms of Cd-induced liver cell damage or malignant transformation and identified several small agents that might be critical for Cd toxicity prevention and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China; Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Huang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen Yu
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Mengmeng Shao
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China.
| |
Collapse
|
39
|
Wynne JW, Todd S, Boyd V, Tachedjian M, Klein R, Shiell B, Dearnley M, McAuley AJ, Woon AP, Purcell AW, Marsh GA, Baker ML. Comparative Transcriptomics Highlights the Role of the Activator Protein 1 Transcription Factor in the Host Response to Ebolavirus. J Virol 2017; 91:e01174-17. [PMID: 28931675 PMCID: PMC5686711 DOI: 10.1128/jvi.01174-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023] Open
Abstract
Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Shawn Todd
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Victoria Boyd
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mary Tachedjian
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Brian Shiell
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Megan Dearnley
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Alexander J McAuley
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michelle L Baker
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
40
|
Lu R, Mucaki EJ, Rogan PK. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 2017; 45:e27. [PMID: 27899659 PMCID: PMC5389469 DOI: 10.1093/nar/gkw1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.
Collapse
Affiliation(s)
- Ruipeng Lu
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada
| | - Peter K Rogan
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada.,Department of Oncology, Western University, London, Ontario, N6A 4L6, Canada.,Cytognomix Inc., London, Ontario, N5X 3X5, Canada
| |
Collapse
|
41
|
Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E, Poletto V, Marchini S, Beltrame L, Gallizzi G, Da Prada GA, Pedrazzoli P, Riccardi A, Porta C, Zambelli A, D'Incalci M. Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. Eur J Cancer 2017; 77:155-164. [DOI: 10.1016/j.ejca.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022]
|
42
|
Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep 2017; 37:BSR20160643. [PMID: 28232512 PMCID: PMC5469333 DOI: 10.1042/bsr20160643] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/12/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of Fos-related antigen-1 (Fra1) is commonly elevated in various malignant cancers and is strongly implicated in invasion and metastasis. However, the molecular mechanisms underlying its dysregulation in human glioma remain poorly understood. In the present study, we demonstrate that up-regulation of Fra1 plays a crucial role in the glioma aggressiveness and epithelial–mesenchymal transition (EMT) activated by Wnt/β-catenin signal pathway. In glioma cells, activation of Wnt/β-catenin signalling by Wnt3a administration obviously induced EMT and directly activated the transcription of Fra1. Phenotype experiments revealed that up-regulation of Fra1 induced by Wnt/β-catenin signalling drove the EMT of glioma cells. Furthermore, it was found that the cisplatin resistance acquired by Wnt/β-catenin signalling activation depended on increased expression of Fra1. Analysis of clinical specimens verified a positive correlation between Fra1 and β-catenin as well as a poor prognosis in glioma patients with double-high expressions of them. These findings indicate that an aberrant Wnt/β-catenin signalling leads to the EMT and drug resistance of glioma via Fra1 induction, which suggests novel therapeutic strategies for the malignant disease.
Collapse
|
43
|
Distinct epigenomes in CD4 + T cells of newborns, middle-ages and centenarians. Sci Rep 2016; 6:38411. [PMID: 27917918 PMCID: PMC5137168 DOI: 10.1038/srep38411] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
Age-related variations in genes and microRNAs expression and DNA methylation have been reported respectively; however, their interactions during aging are unclear. We therefore investigated alterations in the transcriptomes, miRNAomes and DNA methylomes in the same CD4+T cells from newborn (NB), middle-aged (MA) and long-lived (LL) individuals to elucidate the molecular changes and their interactions. A total 659 genes showed significantly expression changes across NB, MA and LL individuals, in which we identified four age-related co-expression modules with three hub networks of co-expressed genes and non-coding RNAs. Moreover, we identified 9835 differentially methylated regions (DMRs) including 7015 hypermethylated and 2820 hypomethylated DMRs in the NB compared with the MA, and 12,362 DMRs including 4809 hypermethylated and 7553 hypomethylated DMRs in the MA compared with the LL. The integrated analysis revealed a potential relationship between genes transcription and DNA methylation for many age- or immune-related genes, suggesting that DNA methylation-dependent transcription regulation is involved in development and functions of T cells during aging. Our results reveals age-related transcription and methylation changes and their interactions in human T cells from the cradle to the grave. Longitudinal work is required to establish the relationship between identified age-associated genes/DNA methylation and T cells aging phenotypes.
Collapse
|
44
|
Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells. Int J Mol Sci 2016; 17:ijms17111833. [PMID: 27827897 PMCID: PMC5133834 DOI: 10.3390/ijms17111833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/11/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling.
Collapse
|
45
|
Wei H, Cheng Z, Ouyang C, Zhang Y, Hu Y, Chen S, Wang C, Lu F, Zhang J, Wang Y, Liu X. Glycoprotein screening in colorectal cancer based on differentially expressed Tn antigen. Oncol Rep 2016; 36:1313-24. [DOI: 10.3892/or.2016.4937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
|
46
|
Randhawa PK, Jaggi AS. TRPV4 channels: physiological and pathological role in cardiovascular system. Basic Res Cardiol 2015; 110:54. [PMID: 26415881 DOI: 10.1007/s00395-015-0512-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India.
| |
Collapse
|
47
|
Tian S, Cao D, Zou H, Bai F, Wang Z, Pan S, Feng M. Endothelial cell-targeted pVEGF165 polyplex plays a pivotal role in inhibiting intimal thickening after vascular injury. Int J Nanomedicine 2015; 10:5751-68. [PMID: 26425083 PMCID: PMC4583553 DOI: 10.2147/ijn.s88109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Upregulation of vascular endothelial growth factor (VEGF) expression can inhibit intimal thickening after vascular injury. However, the lack of efficient gene delivery systems leads to insufficient VEGF expression, which prevents its application in gene therapy. In the present study, to improve the delivery of the plasmid vector with the VEGF gene (pVEGF165) to the injured vessel wall, we explored the potentially important difference between endothelial cell-targeted and nontargeted polymeric carriers. The αvβ3 integrin is overexpressed on activated endothelial cells but not on normal quiescent vessels. In this study, CDG2-cRGD, synthesized by conjugating an αvβ3 integrin-binding cyclic arginylglycylaspartic acid (cRGD) peptide with the Generation 2 polycation polyamidoamine (PAMAMG2)-g-cyclodextrin (termed as CDG2), was developed as a targetable carrier. It was observed that the specific integrin-ligand interactions greatly enhanced cellular internalization of CDG2-cRGD in human umbilical vein endothelial cells (HUVECs), which are notoriously difficult to transfect. Consequently, HUVECs were found to show remarkably high levels of VEGF165 expression induced by the CDG2-cRGD polyplex. Interestingly, VEGF165 overexpression in vivo was more complex than that in vitro, and in vivo assays demonstrated that the stimulus response to balloon injury in arteries could obviously upregulate VEGF165 expression in the saline-treated group, although it was not enough to prevent intimal thickening. In gene-transfected groups, intravascular delivery of pVEGF165 with the CDG2-cRGD polyplex into rabbits after vascular injury resulted in a significant inhibition of intimal thickening at 4 weeks, whereas the low therapeutic efficacy in the nontargeted CDG2-treated group was only comparable to that in the saline-treated group. It is becoming clear that the conflicting results of VEGF165 gene therapy in two gene-transfected groups are reflective of the pivotal role of the cRGD-conjugated carriers in achieving the beneficial therapeutic effects of vascular gene therapy.
Collapse
Affiliation(s)
- Shouqin Tian
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Duanwen Cao
- Department of Pharmaceutical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haijuan Zou
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Feng Bai
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhongjuan Wang
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shirong Pan
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China ; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, People's Republic of China
| | - Min Feng
- School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
48
|
Behl T, Kotwani A. Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy. Life Sci 2015; 135:131-7. [DOI: 10.1016/j.lfs.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
|
49
|
van IJzendoorn DGP, de Jong D, Romagosa C, Picci P, Benassi MS, Gambarotti M, Daugaard S, van de Sande M, Szuhai K, Bovée JVMG. Fusion events lead to truncation of FOS in epithelioid hemangioma of bone. Genes Chromosomes Cancer 2015; 54:565-74. [PMID: 26173738 DOI: 10.1002/gcc.22269] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/14/2023] Open
Abstract
Epithelioid hemangioma of bone is a locally aggressive vascular neoplasm. It can be challenging to diagnose because of the wide histological spectrum, which can make it difficult to differentiate from other vascular neoplasms such as epithelioid hemangioendothelioma or epithelioid angiosarcoma. COBRA-FISH karyotyping identified a balanced t(3;14) translocation. Transcriptome sequencing of the index case and two other epithelioid hemangiomas revealed a recurrent translocation breakpoint involving the FOS gene, which was fused to different partners in all three cases. The break was observed in exon 4 of the FOS gene and the fusion event led to the introduction of a stop codon. In all instances, the truncation of the FOS gene would result in the loss of the transactivation domain (TAD). Using FISH probes we found a break in the FOS gene in two additional cases, in none of these cases a recurrent fusion partner could be identified. In total, FOS was split in 5/7 evaluable samples. We did not observe point mutations leading to early stop codons in any of the 10 cases where RNA was available. Detection of FOS rearrangement may be a useful diagnostic tool to assist in the often difficult differential diagnosis of vascular tumors of bone. Our data suggest that the translocation causes truncation of the FOS protein, with loss of the TAD, which is thereby a novel mechanism involved in tumorigenesis.
Collapse
Affiliation(s)
| | - Danielle de Jong
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cleofe Romagosa
- Department of Pathology, Hospital Vall D'hebron, Barcelona, Spain
| | - Piero Picci
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Marco Gambarotti
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | | | - Michiel van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|