1
|
Biswas I, Precilla S D, Kuduvalli SS, K B, R S, T S A. Ultrastructural and immunohistochemical insights on the anti-glioma effects of a dual-drug cocktail in an in vivo experimental model. J Chemother 2024; 36:593-606. [PMID: 38240036 DOI: 10.1080/1120009x.2024.2302741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 10/23/2024]
Abstract
Glioma coined as 'butterfly tumor' exhibits intense heterogeneity at the molecular and cellular levels. Although, Temozolomide exerted a long-ranging and prevailing therapeutic effect against glioma, albeit it has provided modest survival outcome. Fucoidan, (marine brown algal derivative) has demonstrated potent anti-tumor effects including glioma. Nevertheless, there is paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. The present study aimed to explore the plausible synergistic anti-glioma efficacy of Fucoidan in combination with Temozolomide in an in vivo experimental model. The dual-drug combination significantly inhibited tumor growth in in vivo and prolonged the survival rate when compared with the other treatment and tumor-control groups, via down-regulation of inflammatory cascade- IL-6/T LR4 and JAK/STAT3 as per the immunohistochemistry findings. Furthermore, the ultrastructural analysis indicated that the combinatorial treatment had restored the normal neuronal architecture of glioma-induced rats. Overall, the dual-drug cocktail might enhance the therapeutic outcome in glioma patients.
Collapse
Affiliation(s)
- Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Daisy Precilla S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Bhavani K
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Anitha T S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
2
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
3
|
Chen F, Gong M, Weng D, Jin Z, Han G, Yang Z, Han J, Wang J. Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:18. [PMID: 38240856 PMCID: PMC10799134 DOI: 10.1007/s00262-023-03592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor worldwide. Within HCC's tumor microenvironment, focal adhesion kinase (FAK) plays a critical role. Regulatory T cells (Treg) modulate the polarization of tumor-associated macrophages , but the relationship between FAK, Treg cells, and macrophages remains underexplored. Phellinus linteus (PL) shows promise as a treatment for HCC due to its pharmacological effects. This study aimed to explore the relationship between FAK and Treg-macrophages and to assess whether PL could exert a protective effect through the FAK process in HCC. Initially, C57BL/6-FAK-/- tumor-bearing mice were utilized to demonstrate that FAK stimulates HCC tumor development. High dosages (200 μM) of FAK and the FAK activator ZINC40099027 led to an increase in Treg (CD4+CD25+) cells, a decrease in M1 macrophages (F4/80+CD16/32+, IL-12, IL-2, iNOS), and an increase in M2 macrophages (F4/80+CD206+, IL-4, IL-10, Arg1, TGF-β1). Additionally, FAK was found to encourage cell proliferation, migration, invasion, and epithelial-mesenchymal transition while inhibiting apoptosis in HepG2 and SMMC7721 cells. These effects were mediated by the PI3K/AKT1/Janus Kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (p38 MAPK)/Jun N-terminal Kinase (JNK) signaling pathways. Furthermore, PL exhibited a potent antitumor effect in vivo in a dose-dependent manner, reducing FAK, Treg cells, and M2 macrophages, while increasing M1 macrophages. This effect was achieved through the inhibition of the PI3K/AKT/JAK/STAT3, and p38/JNK pathways. Overall, our findings suggest that FAK promotes HCC via Treg cells that polarize macrophages toward the M2 type through specific signaling pathways. PL, acting through FAK, could be a protective therapy against HCC.
Collapse
Affiliation(s)
- Feihua Chen
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Mouchun Gong
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Dengcheng Weng
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Zhaoqing Jin
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Guofeng Han
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Ziqiang Yang
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Junjun Han
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China
| | - Jianjiang Wang
- Department of General Surgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, No. 548 Yijin Road, Jincheng Street, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li T, Ge H, Yang Q, Wang J, Yin Q, Wang H, Hou G. Oncogenic role of microRNA-19b-3p-mediated SOCS3 in glioma through activation of JAK-STAT pathway. Metab Brain Dis 2022; 38:945-960. [PMID: 36484970 DOI: 10.1007/s11011-022-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
The altered expression of microRNA (miRNA) has been implicated in glioma. Here, the current study aimed to clarify the oncogenic effects of miR-19b-3p on cellular processes of glioma and to elucidate the underlying mechanism associated with SOCS3 and the JAK-STAT signaling pathway. Differentially expressed genes related to glioma were initially identified via microarray analysis. Twenty-five glioma patients were selected for clinical data collection, while additional 12 patients with traumatic brain injuries were selected as controls. Cell senescence was assessed by β-galactosidase staining, proliferation by MTT assay and apoptosis by flow cytometry following gain- and/or loss-of-function of miR-19b-3p or SOCS3. Glioma xenograft mouse model was developed through subcutaneous injection to nude mice to provide evidence in vivo. The glioma patients exhibited overexpressed miR-19b-3p and poorly-expressed SOCS3. SOCS3 was identified as a target gene of miR-19b-3p through dual-luciferase reporter gene assay. miR-19b-3p repressed SOCS3 expression and activated the JAK-STAT signaling pathway. Furthermore, miR-19b-3p inhibition promoted apoptosis and senescence, and suppressed cell proliferation through inactivation of the JAK-STAT signaling pathway and up-regulation of SOCS3. The reported regulatory axis was validated in nude mice as evidenced by suppressed tumor growth. Taken together, this study demonstrates that miR-19b-3p facilitates glioma progression via activation of the JAK-STAT signaling pathway by targeting SOCS3, highlighting a novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Tao Li
- The Second Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, No. 81, Congtai Road, Congtai District, 056000, Handan, Hebei Province, P. R. China
| | - Hong Ge
- Personnel Department, Handan Psychiatric Hospital, 056000, Handan, P. R. China
| | - Qingyan Yang
- Department of Otolaryngology, Affiliated Hospital of Hebei Engineering University, 056000, Handan, P. R. China
| | - Junmei Wang
- The Fourth Department of Neurosurgery, Handan Central Hospital, 056000, Handan, P. R. China
| | - Qian Yin
- Department of Laboratory Medicine, Han Gang Hospital, 056000, Handan, P. R. China
| | - Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, 056000, Handan, P. R. China
| | - Gaolei Hou
- The Second Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, No. 81, Congtai Road, Congtai District, 056000, Handan, Hebei Province, P. R. China.
| |
Collapse
|
6
|
Liu P, Fan D, Qiao W, He X, Zhang L, Jiang Y, Yang T. SAR Study and Molecular Mechanism Investigation of Novel Naphthoquinone-furan-2-cyanoacryloyl Hybrids with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14102104. [PMID: 36297539 PMCID: PMC9609996 DOI: 10.3390/pharmaceutics14102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
A series of novel naphthoquinone-furan-2-cyanoacryloyl hybrids were designed; they were synthesized and preliminarily evaluated for their anti-proliferative activities in vitro against several cancer cell lines and normal cells. The most potent compound, 5c, inhibited the proliferation of HeLa cells (IC50 value of 3.10 ± 0.02 μM) and colony survival, and it induced apoptosis while having relatively weaker effects on normal cells. Compound 5c also triggered ROS generation and accumulation, thus partially contributing to the observed cell apoptosis. A Western blotting analysis demonstrated that compound 5c inhibited the phosphorylation of STAT3. Furthermore, a biolayer interferometry (BLI) analysis confirmed that compound 5c had a direct effect on STAT3, with a KD value of 13.0 μM. Molecular docking showed that 5c specifically occupied the subpockets in the SH2 domain, thereby blocking the whole transmission signaling process. Overall, this study provides an important structural reference for the development of effective antitumor agents.
Collapse
Affiliation(s)
- Pingxian Liu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Laboratory of Lung Cancer, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Schäfer A, Evers L, Meier L, Schlomann U, Bopp MHA, Dreizner GL, Lassmann O, Ben Bacha A, Benescu AC, Pojskic M, Preußer C, von Strandmann EP, Carl B, Nimsky C, Bartsch JW. The Metalloprotease-Disintegrin ADAM8 Alters the Tumor Suppressor miR-181a-5p Expression Profile in Glioblastoma Thereby Contributing to Its Aggressiveness. Front Oncol 2022; 12:826273. [PMID: 35371977 PMCID: PMC8964949 DOI: 10.3389/fonc.2022.826273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.
Collapse
Affiliation(s)
- Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Evers
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Meier
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Miriam H A Bopp
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Gian-Luca Dreizner
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Olivia Lassmann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Aaron Ben Bacha
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | | | - Mirza Pojskic
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
8
|
Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, Baligar P, Kumar AP, Goh BC, Wang L, Sethi G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev 2020; 41:1291-1336. [PMID: 33289118 DOI: 10.1002/med.21761] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors, responsible for regulating cellular proliferation, cellular differentiation, migration, programmed cell death, inflammatory response, angiogenesis, and immune activation. In this review, we have discussed the classical regulation of STAT3 via diverse growth factors, cytokines, G-protein-coupled receptors, as well as toll-like receptors. We have also highlighted the potential role of noncoding RNAs in regulating STAT3 signaling. However, the deregulation of STAT3 signaling has been found to be associated with the initiation and progression of both solid and hematological malignancies. Additionally, hyperactivation of STAT3 signaling can maintain the cancer stem cell phenotype by modulating the tumor microenvironment, cellular metabolism, and immune responses to favor drug resistance and metastasis. Finally, we have also discussed several plausible ways to target oncogenic STAT3 signaling using various small molecules derived from natural products.
Collapse
Affiliation(s)
- Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Akul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Arundhiti Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Health System, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Li H, Yao Q, Min L, Huang S, Wu H, Yang H, Fan L, Wang J, Zheng N. The Combination of Two Bioactive Constituents, Lactoferrin and Linolenic Acid, Inhibits Mouse Xenograft Esophageal Tumor Growth by Downregulating Lithocholyltaurine and Inhibiting the JAK2/STAT3-Related Pathway. ACS OMEGA 2020; 5:20755-20764. [PMID: 32875209 PMCID: PMC7450510 DOI: 10.1021/acsomega.0c01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The addition of lactoferrin and three unsaturated fatty acids, oleic acid, docosahexaenoic acid (DHA), and linolenic acid, to dairy products was approved in recent years. Research into the biological activities of lactoferrin and these three unsaturated fatty acids has revealed anti-inflammatory, antiviral, antioxidant, antitumor, antiparasitic, and antibiotic effects. However, investigations and comparisons of lactoferrin + oleic acid/DHA/linolenic acid combinations in an esophageal cancer cell model and in xenograft tumor models have not been extensively reported, and the related mechanism of these combinations remains elusive. In the present study, the effects of lactoferrin and the three fatty acids on KYSE450 cell viability, migration, and invasion were investigated to choose the proper doses and effective combination in vitro. A tumor-bearing nude mouse model was established to investigate the role of selected combinations in inhibiting esophageal tumor formation in vivo. Metabonomics detection and data analysis were performed to screen special metabolites and related pathways, which were validated by western blotting. The results demonstrated that lactoferrin, the three unsaturated fatty acids, and their combinations inhibited the viability, migration, and invasion of KYSE450 cells and induced apoptosis and the lactoferrin + linolenic acid combination exhibited the strongest activity in suppressing KYSE450 tumor formation in vivo. The lactoferrin + linolenic acid combination inhibited phosphorylation in the JAK2/STAT3-related pathway by downregulating the special metabolite lithocholyltaurine, thereby suppressing formation of KYSE450 tumors.
Collapse
Affiliation(s)
- Huiying Li
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qianqian Yao
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Li Min
- State
Key Laboratory of Livestock and Poultry Breeding, Institute of Animal
Science, Guangdong Academy of Agricultural
Sciences, Guangzhou 510640, P. R. China
| | - Shengnan Huang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Haoming Wu
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huaigu Yang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Linlin Fan
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jiaqi Wang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Nan Zheng
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
10
|
Ciechomska IA, Gielniewski B, Wojtas B, Kaminska B, Mieczkowski J. EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Exp Mol Med 2020; 52:1326-1340. [PMID: 32788653 PMCID: PMC8080762 DOI: 10.1038/s12276-020-0479-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that glioma stem cells (GSCs), which are rare cells characterized by pluripotency and self-renewal ability, are responsible for glioblastoma (GBM) propagation, recurrence and resistance to therapies. Bone morphogenic proteins (BMPs) induce GSC differentiation, which leads to elimination of GSCs and sensitization of glioma to chemotherapeutics. Alterations in the epidermal growth factor receptor (EGFR) gene are detected in more than half of GBMs; however, the role of EGFR in the chemoresistance of GSCs remains unknown. Here, we examined whether EGFR signaling affects BMP4-induced differentiation of GSCs and their response to the alkylating drug temozolomide (TMZ). We show that BMP4 triggers the SMAD signaling cascade in GSCs independent of the EGFR level. BMP4 downregulated the levels of pluripotency markers (SOX2 and OLIG2) with a concomitant induction of an astrocytic marker (GFAP) and a neuronal marker (β-Tubulin III). However, GSCs with different EGFR levels responded differently to treatments. BMP4-induced differentiation did not enhance sensitivity to TMZ in EGFRlow GSCs, in contrast to EGFRhigh GSCs, which underwent apoptosis. We then identified differences in cell cycle regulation. In EGFRlow cells, BMP4-triggered G1 cell cycle arrest which was not detected in EGFRhigh cells. RNA-seq profiles further highlighted transcriptomic alterations and distinct processes characterizing EGFR-dependent responses in the course of BMP4-induced differentiation. We found that the control of BIM (the pro-apoptotic BCL-2 family protein) by the AKT/FOXO3a axis only operated in BMP4-differentiated EGFRhigh cells upon TMZ treatment. The properties of individual glioma stem cells (GSCs) may influence the success of chemotherapy in tackling aggressive brain cancer. GSCs promote tumor growth and chemotherapy resistance in glioblastoma tumors. One potential treatment approach uses bone morphogenetic proteins to induce GSCs to differentiate into less harmful cells. Once the GSC population has dwindled, chemoresistance reduces in many but not all cases. Jakub Mieczkowski, Bozena Kaminska and co-workers at the Nencki Institute of Experimental Biology in Warsaw, Poland, conducted experiments on patient-derived glioblastoma cell cultures. They found that samples with high expression levels of the epidermal growth factor receptor (EGFR) protein in GSCs showed heightened sensitivity to the chemotherapy drug temozolomide after differentiation. Conversely, low levels of EGFR resulted in chemoresistance being maintained after differentiation, which may explain the failure of chemotherapy in some patients.
Collapse
Affiliation(s)
- Iwona Anna Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur St, 02-093, Warsaw, Poland.
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur St, 02-093, Warsaw, Poland.
| |
Collapse
|
11
|
Romeo MA, Gilardini Montani MS, Benedetti R, Santarelli R, D'Orazi G, Cirone M. STAT3 and mutp53 Engage a Positive Feedback Loop Involving HSP90 and the Mevalonate Pathway. Front Oncol 2020; 10:1102. [PMID: 32754441 PMCID: PMC7367154 DOI: 10.3389/fonc.2020.01102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Oncosuppressor TP53 and oncogene STAT3 have been shown to engage an interplay in which they negatively influence each other. Conversely, mutant (mut) p53 may sustain STAT3 phosphorylation by displacing SH2 phosphatase while whether STAT3 could influence mutp53 has not been clarified yet. In this study we found that pharmacologic or genetic inhibition of STAT3 in both glioblastoma and pancreatic cancer cells, carrying mutp53 protein, reduced mutp53 expression level by down-regulating chaperone HSP90 as well as molecules belonging to the mevalonate pathway. On the other hand, HSP90 and the mevalonate pathway were involved in sustaining STAT3 phosphorylation mediated by mutp53. In conclusion, this study unveils for the first time that mutp53 can establish with STAT3, similarly to what observed with other oncogenic pathways, a criminal alliance with a crucial role in promoting cancerogenesis.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Gabriella D'Orazi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
12
|
Ge YX, Wang YH, Zhang J, Yu ZP, Mu X, Song JL, Wang YY, Yang F, Meng N, Jiang CS, Zhang H. New cinnamic acid-pregenolone hybrids as potential antiproliferative agents: Design, synthesis and biological evaluation. Steroids 2019; 152:108499. [PMID: 31536733 DOI: 10.1016/j.steroids.2019.108499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023]
Abstract
A series of new cinnamic acid-pregenolone hybrids (5a-5o) was designed, synthesized and evaluated for their in vitro antiproliferative activity. Some of them showed potential antiproliferative activity and selectivity towards a panel of cancer cell lines, including A549, H157, HepG2, MCF-7, and HL-60. Among these analogs, compound 5f showed the most promising activity with IC50 values ranging from 3.2 to 6.8 μM, and it was taken as a model compound in the following antiproliferative mechanism study. In Hoechst 33258 staining assay, 5f-treated A549 cells displayed significant apoptosis characteristics. Flow cytometry analysis revealed that 5f showed the antiproliferative activity against A549 via G1 cell cycle arrest and inducing apoptosis. Western blotting analysis demonstrated that 5f enhanced apoptosis of A549 cells by down-regulating Bcl-2 and up-regulating Bax protein expression. The present study highlighted this series of cinnamic acid-pregenolone hybrids as a new antiproliferative lead prototype.
Collapse
Affiliation(s)
- Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan-Hong Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yin-Yin Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
13
|
Zhang L, Peterson TE, Lu VM, Parney IF, Daniels DJ. Antitumor activity of novel pyrazole-based small molecular inhibitors of the STAT3 pathway in patient derived high grade glioma cells. PLoS One 2019; 14:e0220569. [PMID: 31361777 PMCID: PMC6667205 DOI: 10.1371/journal.pone.0220569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) transcription factor has been observed in many human cancers with roles in tumor initiation, progression, drug resistance, angiogenesis and immunosuppression. STAT3 is constitutively activated in a variety of cancers including adult high grade gliomas (aHGGs) such as glioblastoma (GBM), and pediatric high grade gliomas (pHGG). Inhibiting STAT3 is a promising target-specific chemotherapeutic strategy for tumors with aberrant STAT3 signaling. Here we investigated the antitumor effects of novel pyrazole-based STAT3 pathway inhibitors named MNS1 (Mayo Neurosurgery 1) in both pediatric and adult HGG tumor cells. MNS1 compounds selectively decreased cell viability and proliferation in patient-derived HGG cells with minimal toxicity on normal human astrocytes. These inhibitors selectively blocked IL-6-induced STAT3 phosphorylation and nuclear localization of pSTAT3 without affecting other signaling molecules including Akt, STAT1, JAK2 or ERK1/2 phosphorylation. Functional analysis showed that MNS1 compounds induced apoptosis and decrease tumor migration. The anti-tumor effects extended into a murine pHGG (diffuse intrinsic pontine glioma) patient derived xenograft, and systemic toxicity was not evident during dose escalation in mice. These results support further development of STAT3 inhibitors for both pediatric and adult HGG.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Timothy E. Peterson
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Victor M. Lu
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian F. Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - David J. Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
17
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
18
|
A Jak2-selective inhibitor potently reverses the immune suppression by modulating the tumor microenvironment for cancer immunotherapy. Biochem Pharmacol 2017; 145:132-146. [DOI: 10.1016/j.bcp.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
19
|
Cho HJ, Park JH, Nam JH, Chang YC, Park B, Hoe HS. Ascochlorin Suppresses MMP-2-Mediated Migration and Invasion by Targeting FAK and JAK-STAT Signaling Cascades. J Cell Biochem 2017; 119:300-313. [PMID: 28569433 DOI: 10.1002/jcb.26179] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Human glioblastomas express higher levels of matrix metalloprotease-2 (MMP-2) than low-grade brain tumors and normal brain tissues. Ascochlorin (ASC) has anti-metastatic, anti-angiogenic, and synergistic effect in various types of cancer cells. However, it remains unknown whether ASC can affect cell migration and invasion in malignant human glioma cells. In this study, we found that ASC indeed inhibits cell migration and invasion in U373MG and A172. ASC significantly suppresses the MMP-2 gelatinolytic activity and expression in U373MG and A172. To determine the molecular mechanism by which ASC suppressed cell migration and invasion, we investigated whether ASC could modulate metastasis via focal adhesion kinase (FAK) and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, a potential drug target. ASC strongly inhibits the phosphorylation of FAK, and treatment with a FAK inhibitor significantly suppresses cancer cell migration in the presence of ASC. In addition, ASC significantly decreased phosphorylation of JAK2/STAT3, cancer cell migration and nuclear translocation of STAT3. Taken together, these results suggest that ASC inhibits cell migration and invasion by blocking FAK and JAK/STAT signaling, resulting in reduced MMP-2 activity. J. Cell. Biochem. 119: 300-313, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Duryugongwon-ro, Nam-gu, Daegu 42472, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| |
Collapse
|
20
|
Wang M, Lin T, Wang Y, Gao S, Yang Z, Hong X, Chen G. CXCL12 suppresses cisplatin-induced apoptosis through activation of JAK2/STAT3 signaling in human non-small-cell lung cancer cells. Onco Targets Ther 2017; 10:3215-3224. [PMID: 28721072 PMCID: PMC5499863 DOI: 10.2147/ott.s133055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aims Poor efficacy of chemotherapy drugs in non-small-cell lung cancer (NSCLC) is the key reason for the failure of treatment, but the mechanism of this remains largely unknown. Stromal cell-derived factor 1-alpha (SDF-1α/CXCL12) is a small chemotactic cytokine protein that plays an important role in tumor progression. In this study, we investigated the anti-apoptotic mechanism of the CXCL12/CXCR4 axis in response to cisplatin, a commonly used chemotherapeutic drug, in human lung adenocarcinoma A549 cells. Methods CXCL12 blocks cisplatin-induced apoptosis in A549, and the results were shown by propidium iodide/annexin V staining in vitro. The mechanism of CXCL12 stimulating phosphorylation of STAT3 through CXCR4/JAK2 was demonstrated by immunofluorescence and Western blotting. The expression of CXCL12 and p-STAT3 in clinical specimens was examined by immunohistochemistry. Results CXCL12 significantly decreased the ratio of apoptotic cells and stimulation of phospho-signal transducer and activator of transcription (p-STAT)-3 in a time-dependent manner through interaction with CXCR4. Among the signaling molecules downstream of CXCR4, the JAK2/STAT3 pathway plays a predominant role in the anti-apoptotic effect of CXCL12. Analysis of clinical specimens revealed that increased CXCL12 and p-STAT3 expression correlates with enhanced lung cancer progression. Conclusion These data suggest that CXCR4 contributes to CXCL12-mediated anti-apoptosis by activating JAK2/STAT3 pathway in NSCLC cells. Therefore, targeting CXCL12/CXCR4 signaling pathway reveals a potential therapeutic approach for NSCLC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun
| | - Song Gao
- Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Zhaoyang Yang
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital
| | - Xuan Hong
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital
| | - Gongyan Chen
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital
| |
Collapse
|
21
|
Seydi E, Hosseini SA, Salimi A, Pourahmad J. Propolis induce cytotoxicity on cancerous hepatocytes isolated from rat model of hepatocellular carcinoma: Involvement of ROS-mediated mitochondrial targeting. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
ZHOU RONGJING, XU XIONGYING, LIU BUXING, DAI WENZHEN, CAI MEIQIN, BAI CHUNFENG, ZHANG XIANFEI, WANG LIMIN, LIN LI, JIA SHUZHEN, WANG WENHUA. Growth-inhibitory and chemosensitizing effects of microRNA-31 in human glioblastoma multiforme cells. Int J Mol Med 2015; 36:1159-64. [DOI: 10.3892/ijmm.2015.2312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/30/2015] [Indexed: 11/06/2022] Open
|
23
|
WANG XINHONG, LIU MINGNA, HUANG PING, XU JUN, LIU AIYUN, CHEN JING, LV CHENGQIAN, XU RUILING. Simultaneous silencing of β-catenin and signal transducer and activator of transcription 3 synergistically induces apoptosis and inhibits cell proliferation in HepG2 liver cancer cells. Mol Med Rep 2015; 12:2263-8. [DOI: 10.3892/mmr.2015.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
|
24
|
LaPorte MG, da Paz Lima DJ, Zhang F, Sen M, Grandis JR, Camarco D, Hua Y, Johnston PA, Lazo JS, Resnick LO, Wipf P, Huryn DM. 2-Guanidinoquinazolines as new inhibitors of the STAT3 pathway. Bioorg Med Chem Lett 2014; 24:5081-5. [PMID: 25288188 PMCID: PMC4250329 DOI: 10.1016/j.bmcl.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022]
Abstract
Synthesis and SAR investigation of 2-guanidinoquinazolines, initially identified in a high content screen for selective STAT3 pathway inhibitors, led to a more potent analog (11c) that demonstrated improved anti-proliferative activity against a panel of HNSCC cell lines.
Collapse
Affiliation(s)
- Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Dimas José da Paz Lima
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Feng Zhang
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15260, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul A Johnston
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lynn O Resnick
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Baskin R, Park SO, Keserű GM, Bisht KS, Wamsley HL, Sayeski PP. The Jak2 small molecule inhibitor, G6, reduces the tumorigenic potential of T98G glioblastoma cells in vitro and in vivo. PLoS One 2014; 9:e105568. [PMID: 25162558 PMCID: PMC4146502 DOI: 10.1371/journal.pone.0105568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/21/2014] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2.
Collapse
Affiliation(s)
- Rebekah Baskin
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Sung O. Park
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - György M. Keserű
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kirpal S. Bisht
- Department of Chemistry, University of South Florida, Tampa, FL, United States of America
| | - Heather L. Wamsley
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, United States of America
| | - Peter P. Sayeski
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Shin D, Arthur G, Popescu M, Korkin D, Shyu CR. Uncovering influence links in molecular knowledge networks to streamline personalized medicine. J Biomed Inform 2014; 52:394-405. [PMID: 25150201 DOI: 10.1016/j.jbi.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVES We developed Resource Description Framework (RDF)-induced InfluGrams (RIIG) - an informatics formalism to uncover complex relationships among biomarker proteins and biological pathways using the biomedical knowledge bases. We demonstrate an application of RIIG in morphoproteomics, a theranostic technique aimed at comprehensive analysis of protein circuitries to design effective therapeutic strategies in personalized medicine setting. METHODS RIIG uses an RDF "mashup" knowledge base that integrates publicly available pathway and protein data with ontologies. To mine for RDF-induced Influence Links, RIIG introduces notions of RDF relevancy and RDF collider, which mimic conditional independence and "explaining away" mechanism in probabilistic systems. Using these notions and constraint-based structure learning algorithms, the formalism generates the morphoproteomic diagrams, which we call InfluGrams, for further analysis by experts. RESULTS RIIG was able to recover up to 90% of predefined influence links in a simulated environment using synthetic data and outperformed a naïve Monte Carlo sampling of random links. In clinical cases of Acute Lymphoblastic Leukemia (ALL) and Mesenchymal Chondrosarcoma, a significant level of concordance between the RIIG-generated and expert-built morphoproteomic diagrams was observed. In a clinical case of Squamous Cell Carcinoma, RIIG allowed selection of alternative therapeutic targets, the validity of which was supported by a systematic literature review. We have also illustrated an ability of RIIG to discover novel influence links in the general case of the ALL. CONCLUSIONS Applications of the RIIG formalism demonstrated its potential to uncover patient-specific complex relationships among biological entities to find effective drug targets in a personalized medicine setting. We conclude that RIIG provides an effective means not only to streamline morphoproteomic studies, but also to bridge curated biomedical knowledge and causal reasoning with the clinical data in general.
Collapse
Affiliation(s)
- Dmitriy Shin
- University of Missouri, School of Medicine, Department of Pathology and Anatomical Sciences, Columbia, MO 65212, United States; University of Missouri, Graduate School, MU Informatics Institute, Columbia, MO 65211, United States.
| | - Gerald Arthur
- University of Missouri, School of Medicine, Department of Pathology and Anatomical Sciences, Columbia, MO 65212, United States; University of Missouri, Graduate School, MU Informatics Institute, Columbia, MO 65211, United States
| | - Mihail Popescu
- University of Missouri, School of Medicine, Department of Health Management and Informatics, Columbia, MO 65212, United States; University of Missouri, Graduate School, MU Informatics Institute, Columbia, MO 65211, United States; University of Missouri, College of Engineering, Department of Computer Science, Columbia, MO 65211, United States
| | - Dmitry Korkin
- Worcester Polytechnic Institute, Department of Computer Science, Department of Biology and Biotechnology, Department of Applied Math, Worcester, MA 01609, United States
| | - Chi-Ren Shyu
- University of Missouri, Graduate School, MU Informatics Institute, Columbia, MO 65211, United States; University of Missouri, College of Engineering, Department of Electrical and Computer Engineering, Columbia, MO 65211, United States
| |
Collapse
|
27
|
Integration of genome-wide of Stat3 binding and epigenetic modification mapping with transcriptome reveals novel Stat3 target genes in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1341-50. [PMID: 25111868 DOI: 10.1016/j.bbagrm.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many human tumors, including gliomas, and regulates the expression of genes implicated in proliferation, survival, apoptosis, angiogenesis and immune regulation. Only a small fraction of those genes has been proven to be direct STAT3 targets. In gliomas, STAT3 can play tumor suppressive or oncogenic roles depending on the tumor genetic background with target genes being largely unknown. RESULTS We used chromatin immunoprecipitation, promoter microarrays and deep sequencing to assess the genome-wide occupancy of phospho (p)-Stat3 and epigenetic modifications of H3K4me3 and H3ac in C6 glioma cells. This combined assessment identified a list of 1200 genes whose promoters have both Stat3 binding sites and epigenetic marks characteristic for actively transcribed genes. The Stat3 and histone markings data were also intersected with a set of microarray data from C6 glioma cells after inhibition of Jak2/Stat3 signaling. Subsequently, we found 284 genes characterized by p-Stat3 occupancy, activating histone marks and transcriptional changes. Novel genes were screened for their potential involvement in oncogenesis, and the most interesting hits were verified by ChIP-PCR and STAT3 knockdown in human glioma cells. CONCLUSIONS Non-random association between silent genes, histone marks and p-Stat3 binding near transcription start sites was observed, consistent with its repressive role in transcriptional regulation of target genes in glioma cells with specific genetic background.
Collapse
|
28
|
Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S. The role of JAK-STAT signaling within the CNS. JAKSTAT 2014; 2:e22925. [PMID: 24058789 PMCID: PMC3670265 DOI: 10.4161/jkst.22925] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022] Open
Abstract
JAK-STAT is an efficient and highly regulated system mainly dedicated to the regulation of gene expression. Primarily identified as functioning in hematopoietic cells, its role has been found critical in all cell types, including neurons. This review will focus on JAK-STAT functions in the mature central nervous system. Our recent research suggests the intriguing possibility of a non-nuclear role of STAT3 during synaptic plasticity. Dysregulation of the JAK-STAT pathway in inflammation, cancer and neurodegenerative diseases positions it at the heart of most brain disorders, highlighting the importance to understand how it can influence the fate and functions of brain cells.
Collapse
Affiliation(s)
- Celine S Nicolas
- MRC Centre for Synaptic Plasticity; School of Physiology and Pharmacology; University of Bristol; Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta Rev Cancer 2014; 1845:136-54. [PMID: 24388873 DOI: 10.1016/j.bbcan.2013.12.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.
Collapse
Affiliation(s)
| | - Sakshi Sikka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Rohit Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Benny K H Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA.
| |
Collapse
|
30
|
Sang YL, Duan YT, Qiu HY, Wang PF, Makawana JA, Wang ZC, Zhu HL, He ZX. Design, synthesis, biological evaluation and molecular docking of novel metronidazole derivatives as selective and potent JAK3 inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra01444h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two series of novel metronidazole derivatives as potential inhibitors targeting JAK have been designed, synthesized and their biological activities were also evaluated.
Collapse
Affiliation(s)
- Ya-Li Sang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Yong-Tao Duan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Jigar A. Makawana
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Zhen-Xiang He
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| |
Collapse
|
31
|
Park SY, Hwang JS, Jang M, Lee SH, Park JH, Han IO. A novel caffeic acid-1-piperonylpiperazine hybridization compound HBU-47 inhibits LPS-mediated inflammation in RAW264.7 macrophage cells. Int Immunopharmacol 2013; 19:60-5. [PMID: 24360823 DOI: 10.1016/j.intimp.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023]
Abstract
In the present study, we synthesized a new hybrid compound by coupling caffeic acid and 1-piperonylpiperazine. The synthetic compound, acetyl-caffeic acid-1-piperonylpiperazine (HBU-47), showed potent anti-inflammatory effects inhibiting lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in RAW264.7 macrophage cells. HBU-47 inhibited LPS-caused induction of inducible NO synthase (iNOS), cyclooxygenase-2, interleukin-6 and interleukin-1β in RAW264.7 cells in time- and dose-dependent manner. Compared to HBU-47, neither caffeic acid nor 1-piperonylpiperazine displayed significant inhibition of LPS responses. HBU-47 did not affect LPS-caused activation of mitogen-activated kinases (MAPKs) or IκB-α degradation. Instead, LPS-mediated NF-κB activation and DNA bindings of p65, p50 and c-Rel to the NF-κB binding site of iNOS promoter were inhibited by HBU-47. Overall, our data suggest that the novel caffeic acid hybrid compound downregulates inflammatory responses through inhibition of NF-κB and NF-κB-dependent gene expressions, thus, further suggesting its efficacy as a promising therapeutic agent.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Physiology and Biophysics, Inha University, College of Medicine, Incheon, South Korea
| | - Ji-Sun Hwang
- Department of Physiology and Biophysics, Inha University, College of Medicine, Incheon, South Korea
| | - Mi Jang
- Department of Chemical & Biological Engineering, Hanbat National University, Dongseodaero 125, Dukmyung-Dong, Yuseong-Gu, Daejeon 305-719, South Korea
| | - Seung Hwan Lee
- Department of Chemical & Biological Engineering, Hanbat National University, Dongseodaero 125, Dukmyung-Dong, Yuseong-Gu, Daejeon 305-719, South Korea
| | - Jeong-Ho Park
- Department of Chemical & Biological Engineering, Hanbat National University, Dongseodaero 125, Dukmyung-Dong, Yuseong-Gu, Daejeon 305-719, South Korea
| | - Inn-Oc Han
- Department of Physiology and Biophysics, Inha University, College of Medicine, Incheon, South Korea.
| |
Collapse
|
32
|
Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, Lan H, Wu LB. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis 2013; 4:e746. [PMID: 23907460 PMCID: PMC3763427 DOI: 10.1038/cddis.2013.242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 01/12/2023]
Abstract
The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma.
Collapse
Affiliation(s)
- G Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, People's Republic of China
| | - J J Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, People's Republic of China
| | - X L Chen
- Hubei Provincial Key Laboratory of Embryo Stem Cells, Shiyan City, Hubei Province, People's Republic of China
| | - S M Du
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, People's Republic of China
| | - D S Li
- Hubei Provincial Key Laboratory of Embryo Stem Cells, Shiyan City, Hubei Province, People's Republic of China
| | - Z J Pei
- Hubei Provincial Key Laboratory of Embryo Stem Cells, Shiyan City, Hubei Province, People's Republic of China
| | - H Lan
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, People's Republic of China
| | - L B Wu
- Hubei Provincial Key Laboratory of Embryo Stem Cells, Shiyan City, Hubei Province, People's Republic of China
| |
Collapse
|
33
|
|
34
|
Development of novel molecular probes of the Rio1 atypical protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1292-301. [PMID: 23523885 DOI: 10.1016/j.bbapap.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/21/2022]
Abstract
The RIO kinases are essential protein factors required for the synthesis of new ribosomes in eukaryotes. Conserved in archaeal organisms as well, RIO kinases are among the most ancient of protein kinases. Their exact molecular mechanisms are under investigation and progress of this research would be significantly improved with the availability of suitable molecular probes that selectively block RIO kinases. RIO kinases contain a canonical eukaryotic protein kinase fold, but also display several unusual structural features that potentially create opportunity for the design of selective inhibitors. In an attempt to identify structural leads to target the RIO kinases, a series of pyridine caffeic acid benzyl amides (CABA) were tested for their ability to inhibit the autophosphorylation activity of Archeaoglobus fulgidus Rio1 (AfRio1). Screening of a small library of CABA molecules resulted in the identification of four compounds that measurably inhibited AfRio1 activity. Additional biochemical characterization of binding and inhibition activity of these compounds demonstrated an ATP competitive inhibition mode, and allowed identification of the functional groups that result in the highest binding affinity. In addition, docking of the compound to the structure of Rio1 and determination of the X-ray crystal structure of a model compound (WP1086) containing the desired functional groups allowed detailed analysis of the interactions between these compounds and the enzyme. Furthermore, the X-ray crystal structure demonstrated that these compounds stabilize an inactive form of the enzyme. Taken together, these results provide an important step in identification of a scaffold for the design of selective molecular probes to study molecular mechanisms of Rio1 kinases in vitro and in vivo. In addition, it provides a rationale for the future design of potent inhibitors with drug-like properties targeting an inactive form of the enzyme. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
|
35
|
Sadeque A, Serão NV, Southey BR, Delfino KR, Rodriguez-Zas SL. Identification and characterization of alternative exon usage linked glioblastoma multiforme survival. BMC Med Genomics 2012. [PMID: 23206951 PMCID: PMC3548711 DOI: 10.1186/1755-8794-5-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Alternative exon usage (AEU) is an important component of gene regulation. Exon expression platforms allow the detection of associations between AEU and phenotypes such as cancer. Numerous studies have identified associations between gene expression and the brain cancer glioblastoma multiforme (GBM). The few consistent gene expression biomarkers of GBM that have been reported may be due to the limited consideration of AEU and the analytical approaches used. The objectives of this study were to develop a model that accounts for the variations in expression present between the exons within a gene and to identify AEU biomarkers of GBM survival. Methods The expression of exons corresponding to 25,403 genes was related to the survival of 250 individuals diagnosed with GBM in a training data set. Genes exhibiting AEU in the training data set were confirmed in an independent validation data set of 78 patients. A hierarchical mixed model that allows the consideration of covariation between exons within a gene and of the effect of the epidemiological characteristics of the patients was developed to identify associations between exon expression and patient survival. This general model describes all three possible scenarios: multi-exon genes with and without AEU, and single-exon genes. Results AEU associated with GBM survival was identified on 2477 genes (P-value < 5.0E-04 or FDR-adjusted P-value < 0.05). G-protein coupled receptor 98 (Gpr98) and epidermal growth factor (Egf) were among the genes exhibiting AEU with 30 and 9 exons associated with GBM survival, respectively. Pathways enriched among the AEU genes included focal adhesion, ECM-receptor interaction, ABC transporters and pathways in cancer. In addition, 24 multi-exon genes without AEU and 8 single-exon genes were associated with GBM survival (FDR-adjusted P-value < 0.05). Conclusions The inferred patterns of AEU were consistent with in silico AS models. The hierarchical model used offered a flexible and simple way to interpret and identify associations between survival that accommodates multi-exon genes with or without AEU and single exon genes. Our results indicate that differential expression of AEU could be used as biomarker for GBM and potentially other cancers.
Collapse
Affiliation(s)
- Ahmed Sadeque
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|