1
|
Liu L, Zou C, Shen J, Huang R, Zhang F, Du Y, Luo X, Yang A, Zhang J, Guan Y, Yan X. MUL1 identified as mitochondria-linked biomarker promoting cisplatin resistance in OC cells. Gene 2024; 930:148841. [PMID: 39134101 DOI: 10.1016/j.gene.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Ovarian cancer (OC) ranks among the prevalent tumors affecting the female reproductive system. The aim of this study was to evaluate mitochondria-associated platinum resistance genes using organoid models. Univariate Cox regression, LASSO and multivariate Cox regression analyses were performed on The Cancer Genome Atlas (TCGA) database to construct 2-gene prognostic signature (MUL1 and SSBP1), and GSE26712 dataset was used for external validation. In addition, the relationship between MUL1 and platinum resistance was examined by organoid culture, lentiviral transduction, CCK8 assay, and Western blot. The results showed that patients in the high-risk group exhibited significantly worse OS (P = 0.002, P = 0.017). Drug sensitivity analysis revealed that platinum resistance increased with the upregulation of MUL1 expression (Cor = 0.5154, P = 0.02). Our experimental findings demonstrated that knockout of the MUL1 gene significantly increased apoptosis and enhanced the sensitivity of the OC cell line A2780 to cisplatin. Through this study, we have provided strong evidence for further research on prognostic risk factors and individualized treatment in OC patients, and provided new insights into addressing platinum resistance in OC.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Chengyang Zou
- The Affiliated Central Hospital of Lishui, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China.
| | - Jingtian Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Rong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fubin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Yongming Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xishao Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Aiwu Yang
- Department of Obstetrics and Gynecology, The Wenzhou People's Hospital, Wenzhou, Zhejiang, China.
| | - Jinsan Zhang
- Department of Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Sargiacomo C, Klepinin A. Density Gradient Centrifugation Is an Effective Tool to Isolate Cancer Stem-like Cells from Hypoxic and Normoxia Triple-Negative Breast Cancer Models. Int J Mol Sci 2024; 25:8958. [PMID: 39201646 PMCID: PMC11354270 DOI: 10.3390/ijms25168958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence has indicated that stemness-related genes are associated with the aggressiveness of triple-negative breast cancer (TNBC). Because no universal markers for breast CSCs are available, we applied the density gradient centrifugation method to enrich breast CSCs. We demonstrated that the density centrifugation method allows for the isolation of cancer stem cells (CSCs) from adherent and non-adherent MCF7 (Luminal A), MDA-MB-231 (TNBC) and MDA-MB-468 (TNBC) breast cancer cells. The current study shows that the CSCs' enriched fraction from Luminal A and TNBC cells have an increased capacity to grow anchorage-independently. CSCs from adherent TNBC are mainly characterized by metabolic plasticity, whereas CSCs from Luminal A have an increased mitochondrial capacity. Moreover, we found that non-adherent growth CSCs isolated from large mammospheres have a higher ability to grow anchorage-independently compared to CSCs isolated from small mammospheres. In CSCs, a metabolic shift towards glycolysis was observed due to the hypoxic environment of the large mammosphere. Using a bioinformatic analysis, we indicate that hypoxia HYOU1 gene overexpression is associated with the aggressiveness, metastasis and poor prognosis of TNBC. An in vitro study demonstrated that HYOU1 overexpression increases breast cancer cells' stemness and hyperactivates their metabolic activity. In conclusion, we show that density gradient centrifugation is a non-marker-based approach to isolate metabolically flexible (normoxia) CSCs and glycolytic (hypoxic) CSCs from aggressive TNBC.
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
| | - Aleksandr Klepinin
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| |
Collapse
|
4
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
5
|
Pourbaghi M, Haghani L, Zhao K, Karimi A, Marinelli B, Erinjeri JP, Geschwind JFH, Yarmohammadi H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr Oncol 2023; 30:6609-6622. [PMID: 37504345 PMCID: PMC10377758 DOI: 10.3390/curroncol30070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.
Collapse
Affiliation(s)
- Miles Pourbaghi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Leila Haghani
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Ken Zhao
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Anita Karimi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Brett Marinelli
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Joseph P. Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | | | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| |
Collapse
|
6
|
Alfano A, Cafferata EGA, Gangemi M, Nicola Candia A, Malnero CM, Bermudez I, Lopez MV, Ríos GD, Rotondaro C, Cuneo N, Curiel DT, Podhajcer OL, Lopez MV. In Vitro and In Vivo Efficacy of a Stroma-Targeted, Tumor Microenvironment Responsive Oncolytic Adenovirus in Different Preclinical Models of Cancer. Int J Mol Sci 2023; 24:9992. [PMID: 37373140 PMCID: PMC10297998 DOI: 10.3390/ijms24129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
More than one million women are diagnosed annually worldwide with a gynecological cancer. Most gynecological cancers are diagnosed at a late stage, either because a lack of symptoms, such as in ovarian cancer or limited accessibility to primary prevention in low-resource countries, such as in cervical cancer. Here, we extend the studies of AR2011, a stroma-targeted and tumor microenvironment responsive oncolytic adenovirus (OAdV), whose replication is driven by a triple hybrid promoter. We show that AR2011 was able to replicate and lyse in vitro fresh explants obtained from human ovarian cancer, uterine cancer, and cervical cancer. AR2011 was also able to strongly inhibit the in vitro growth of ovarian malignant cells obtained from human ascites fluid. The virus could synergize in vitro with cisplatin even on ascites-derived cells obtained from patients heavily pretreated with neoadjuvant chemotherapy. AR2011(h404), a dual transcriptionally targeted derived virus armed with hCD40L and h41BBL under the regulation of the hTERT promoter, showed a strong efficacy in vivo both on subcutaneous and intraperitoneally established human ovarian cancer in nude mice. Preliminary studies in an immunocompetent murine tumor model showed that AR2011(m404) expressing the murine cytokines was able to induce an abscopal effect. The present studies suggest that AR2011(h404) is a likely candidate as a novel medicine for intraperitoneal disseminated ovarian cancer.
Collapse
Affiliation(s)
- Ana Alfano
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Eduardo G. A. Cafferata
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Mariela Gangemi
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Alejandro Nicola Candia
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Cristian M. Malnero
- Facultad de Ingeniería, Universidad Argentina de la Empresa, Lima 775, Ciudad Autónoma de Buenos Aires C1073AAO, Argentina; (C.M.M.); (I.B.)
| | - Ismael Bermudez
- Facultad de Ingeniería, Universidad Argentina de la Empresa, Lima 775, Ciudad Autónoma de Buenos Aires C1073AAO, Argentina; (C.M.M.); (I.B.)
| | - Mauricio Vargas Lopez
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Gregorio David Ríos
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Cecilia Rotondaro
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Nicasio Cuneo
- Servicio de Ginecología, Departamento de Cirugía, Hospital Municipal de Oncología Maria Curie, Avenida Patricias Argentinas 750, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina;
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Osvaldo L. Podhajcer
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Maria Veronica Lopez
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| |
Collapse
|
7
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
8
|
Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, Sun W, Chen X. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med 2022; 20:191. [PMID: 35509067 PMCID: PMC9066866 DOI: 10.1186/s12967-022-03370-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Triosephosphate isomerase 1 (TPI1), as a key glycolytic enzyme, is upregulated in multiple cancers. However, expression profile and regulatory mechanism of TPI1 in breast cancer (BRCA) remain mysterious. Methods Western blotting and immunohistochemistry (IHC) assays were used to investigate the expression of TPI1 in BRCA specimens and cell lines. TPI1 correlation with the clinicopathological characteristics and prognosis of 362 BRCA patients was analyzed using a tissue microarray. Overexpression and knockdown function experiments in cells and mice models were performed to elucidate the function and mechanisms of TPI1-induced BRCA progression. Related molecular mechanisms were clarified using co-IP, IF, mass spectrometric analysis, and ubiquitination assay. Results We have found TPI1 is highly expressed in BRCA tissue and cell lines, acting as an independent indicator for prognosis in BRCA patients. TPI1 promotes BRCA cell glycolysis, proliferation and metastasis in vitro and in vivo. Mechanistically, TPI1 activates phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway to regulate epithelial–mesenchymal transformation (EMT) and aerobic glycolysis, which is positively mediated by cell division cycle associated 5 (CDCA5). Moreover, TPI1 interacts with sequestosome-1 (SQSTM1)/P62, and P62 decreases the protein expression of TPI1 by promoting its ubiquitination in MDA-MB-231 cells. Conclusions TPI1 promotes BRCA progression by stabilizing CDCA5, which then activates the PI3K/AKT/mTOR pathway. P62 promotes ubiquitin-dependent proteasome degradation of TPI1. Collectively, TPI1 promotes tumor development and progression, which may serve as a therapeutic target for BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03370-2.
Collapse
Affiliation(s)
- Xiaoying Jin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Dandan Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Mengxia Lei
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yan Guo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yuqing Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Fengzhi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Weiling Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| |
Collapse
|
9
|
Guo F, Yang Z, Sehouli J, Kaufmann AM. Blockade of ALDH in Cisplatin-Resistant Ovarian Cancer Stem Cells In Vitro Synergistically Enhances Chemotherapy-Induced Cell Death. Curr Oncol 2022; 29:2808-2822. [PMID: 35448203 PMCID: PMC9031660 DOI: 10.3390/curroncol29040229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer-related death. The high mortality and morbidity associated with EOC are mostly due to late diagnosis and chemotherapy drug resistance. Currently, the standard first-line chemotherapy regimen is systemic administration of platinum-based chemotherapy combined with a taxane. A major problem besides cisplatin resistance (occurring in nearly one-third of patients) is the greater toxicity of the drug combinations. A synergistic treatment with drug supporting activity could maximize the cytotoxic effects of chemotherapeutic agents on tumor cells while decreasing the dosage of each drug to potentially reduce toxicity. The ALDH-blocking agent Disulfiram (DSF), a clinically approved drug used for alcoholism treatment, has displayed promising anti-cancer activity. We previously described that blocking ALDH activity enhances the induction of apoptosis, especially in ovarian cancer stem cells treated with chemotherapeutic agents. In this study, we further investigated the synergistic effect of DSF in combination with cytotoxic chemotherapeutic drugs. The concentration of each chemotherapeutic agent could be significantly reduced with sustained efficacy on tumor cell apoptosis in cell lines in vitro (Dose-Reduction Index at IC50 from 1 to 50). Moreover, the potential chemo-sensitizing effects of DSF on ALDH-associated cisplatin-resistant ovarian cancer stem cells were also investigated and shown that in contrast to its high resistance to cisplatin, the cisplatin-resistant cells remain very sensitive to DSF-induced cytotoxicity (apoptosis and necrosis: cisplatin-resistant cells vs. parental cells: 60.4% vs. 20.5%). In combination with DSF and cisplatin, relatively more apoptosis and necrosis were induced in cisplatin-resistant cells than in their parental cells (apoptosis and necrosis: cisplatin-resistant cells vs. parental cells: 81.5% vs. 50.1%). A transcriptome analysis identified that ALDH was mainly enriched in the cancer-associated fibroblasts and showed that ALDH plays roles in responding to oxidative stress, metabolisms, and energy transition in the ALDH-associated cisplatin-resistant ovarian cancer stem cells. In conclusion, our data demonstrate a key role of ALDH-associated cisplatin-resistant cancer stem cells and identifies DSF as a potential adjuvant for a rational protocol design by computational quantitative assessment in vitro on ovarian cancer cell lines. Our work contributes to resolving the ALDH-associated cisplatin resistance and provides a resource for the development of novel chemotherapeutic regimens.
Collapse
Affiliation(s)
- Fang Guo
- Department of Gynecology, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China;
| | - Zhi Yang
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China;
| | - Jalid Sehouli
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Andreas M. Kaufmann
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
- HPV Research Laboratory, Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-516-499; Fax: +49-(0)30-450-7-564-958
| |
Collapse
|
10
|
Involvement of Cancer Stem Cells in Chemoresistant Relapse of Epithelial Ovarian Cancer Identified by Transcriptome Analysis. JOURNAL OF ONCOLOGY 2022; 2022:6406122. [PMID: 35401749 PMCID: PMC8991408 DOI: 10.1155/2022/6406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Despite the initial resection and chemotherapeutic treatment, relapse is common, which leads to poor survival rates in patients. A primary cause of recurrence is the persistence of ovarian cancer stem cells (OCSCs) with high tumorigenicity and chemoresistance. To achieve a better therapeutic response in EOC relapse, the mechanisms underlying acquired chemoresistance associated with relapse-initiating OCSCs need to be studied. Transcriptomes of both chemosensitive primary and chemoresistant relapse EOC samples were obtained from ICGC OV-AU dataset for differential expression analysis. The upregulated genes were further studied using KEGG and GO analysis. Significantly increased expression of eighteen CSC-related genes was found in chemoresistant relapse EOC groups. Upregulation of the expression in four hub genes including WNT3A, SMAD3, KLF4, and PAX6 was verified in chemoresistant relapse samples via immunohistochemistry staining, which confirmed the existence and enrichment of OCSCs in chemoresistant relapse EOC. KEGG and GO enrichment analysis in microarray expression datasets of isolated OCSCs indicated that quiescent state, increased ability of drug efflux, and enhanced response to DNA damage may have caused the chemoresistance in relapse EOC patients. These findings demonstrated a correlation between OCSCs and acquired chemoresistance and illustrated potential underlying mechanisms of OCSC-initiated relapse in EOC patients. Meanwhile, the differentially expressed genes in OCSCs may serve as novel preventive or therapeutic targets against EOC recurrence in the future.
Collapse
|
11
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
12
|
Chen M, Su J, Feng C, Liu Y, Zhao L, Tian Y. Chemokine CCL20 promotes the paclitaxel resistance of CD44 +CD117 + cells via the Notch1 signaling pathway in ovarian cancer. Mol Med Rep 2021; 24:635. [PMID: 34278466 PMCID: PMC8280726 DOI: 10.3892/mmr.2021.12274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have found that C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6)/notch receptor 1 (Notch1) signaling serves an important role in various diseases, but its role and mechanism in ovarian cancer remains to be elucidated. The aim of the present study was to investigate the underlying mechanism of CCL20/CCR6/Notch1 signaling in paclitaxel (PTX) resistance of a CD44+CD117+ subgroup of cells in ovarian cancer. The CD44+CD117+ cells were isolated from SKOV3 cells, followed by determination of the PTX resistance and the CCR6/Notch1 axis. Notch1 was silenced in the CD44+CD117+ subgroup and these cells were treated with CCL20, followed by examination of PTX resistance and the CCR6/Notch1 axis. Furthermore, in nude mice, CD44+CD117+ and CD44‑CD117‑ cells were used to establish the xenograft model and cells were treated with PTX and/or CCL20, followed by proliferation, apoptosis, reactive oxygen species (ROS) and mechanism analyses. Higher expression levels of Oct4, CCR6, Notch1 and ATP binding cassette subfamily G member 1 (ABCG1), increased sphere formation ability, IC50 and proliferative ability, as well as lower ROS levels and apoptosis were observed in CD44+CD117+ cells compared with the CD44‑CD117‑ cells. It was found that CCL20 could significantly increase the expression levels of Oct4, CCR6, Notch1 and ABCG1, enhance the IC50, sphere formation ability and proliferation, as well as decrease the ROS and apoptosis levels in the CD44+CD117+ cells. However, Notch1 knockdown could markedly reverse these changes. Moreover, CCL20 could significantly increase the proliferation and expression levels of Oct4, CCR6, Notch1 and ABCG1 in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. After treatment with PTX, apoptosis and ROS levels were decreased in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. Collectively, the present results demonstrated that, via the Notch1 pathway, CCL20/CCR6 may promote the stemness and PTX resistance of CD44+CD117+ cells in ovarian cancer.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Juan Su
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Chunmei Feng
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Ying Liu
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
MacDonagh L, Santiago RM, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Exploitation of the vitamin A/retinoic acid axis depletes ALDH1-positive cancer stem cells and re-sensitises resistant non-small cell lung cancer cells to cisplatin. Transl Oncol 2021; 14:101025. [PMID: 33550205 PMCID: PMC7868629 DOI: 10.1016/j.tranon.2021.101025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Despite advances in personalised medicine and the emerging role of immune checkpoints in directing treatment decisions in subsets of lung cancer patients, non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related deaths worldwide. The development of drug resistance plays a key role in the relapse of lung cancer patients in the clinical setting, mainly due to the unlimited renewal capacity of residual cancer stem cells (CSCs) within the tumour cell population during chemotherapy. In this study, we investigated the function of the CSC marker, aldehyde dehydrogenase (ALDH1) in retinoic acid cell signalling using an in vitro model of cisplatin resistant NSCLC. The addition of key components in retinoic acid cell signalling, all-trans retinoic acid (ATRA) and retinol to cisplatin chemotherapy, significantly reduced ALDH1-positive cell subsets in cisplatin resistant NSCLC cells relative to their sensitive counterparts resulting in the re-sensitisation of chemo-resistant cells to the cytotoxic effects of cisplatin. Furthermore, combination of ATRA or retinol with cisplatin significantly inhibited cell proliferation, colony formation and increased cisplatin-induced apoptosis. This increase in apoptosis may, at least in part, be due to differential gene expression of the retinoic acid (RARα/β) and retinoid X (RXRα) nuclear receptors in cisplatin-resistant lung cancer cells. These data support the concept of exploiting the retinoic acid signalling cascade as a novel strategy in targeting subsets of CSCs in cisplatin resistant lung tumours.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Rhyla Mae Santiago
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Eamon Breen
- Flow Cytometry Facility, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Medical Oncology Department, St James's Hospital, Dublin, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Histopathology Department, St James's Hospital & Trinity College Dublin, Ireland.
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| |
Collapse
|
14
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
15
|
Delphinidin Increases the Sensitivity of Ovarian Cancer Cell Lines to 3-Bromopyruvate. Int J Mol Sci 2021; 22:ijms22020709. [PMID: 33445795 PMCID: PMC7828231 DOI: 10.3390/ijms22020709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
3-Bromopyruvic acid (3-BP) is a promising anticancer compound. Two ovary cancer (OC) cell lines, PEO1 and SKOV3, showed relatively high sensitivity to 3-BP (half maximal inhibitory concentration (IC50) of 18.7 and 40.5 µM, respectively). However, the further sensitization of OC cells to 3-BP would be desirable. Delphinidin (D) has been reported to be cytotoxic for cancer cell lines. We found that D was the most toxic for PEO1 and SKOV3 cells from among several flavonoids tested. The combined action of 3-BP and D was mostly synergistic in PEO1 cells and mostly weakly antagonistic in SKOV3 cells. The viability of MRC-5 fibroblasts was not affected by both compounds at concentrations of up to 100 µM. The combined action of 3-BP and D decreased the level of ATP and of dihydroethidium (DHE)-detectable reactive oxygen species (ROS), cellular mobility and cell staining with phalloidin and Mitotracker Red in both cell lines but increased the 2’,7’-dichlorofluorescein (DCFDA)-detectable ROS level and decreased the mitochondrial membrane potential and mitochondrial mass only in PEO1 cells. The glutathione level was increased by 3-BP+D only in SKOV3 cells. These differences may contribute to the lower sensitivity of SKOV3 cells to 3-BP+D. Our results point to the possibility of sensitization of at least some OC cells to 3-BP by D.
Collapse
|
16
|
Petricciuolo M, Davidescu M, Fettucciari K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L, Macchioni L. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon 2020; 6:e05741. [PMID: 33364504 PMCID: PMC7753915 DOI: 10.1016/j.heliyon.2020.e05741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 μM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 μM 3BP. ROS generated in mitochondria were enhanced at 30 μM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 μM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.
Collapse
Affiliation(s)
- Maya Petricciuolo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
17
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
18
|
Broccoli extract increases drug-mediated cytotoxicity towards cancer stem cells of head and neck squamous cell carcinoma. Br J Cancer 2020; 123:1395-1403. [PMID: 32773768 PMCID: PMC7591858 DOI: 10.1038/s41416-020-1025-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Head and neck squamous cell carcinomas (HNSCC) are malignant neoplasms with poor prognosis. Treatment-resistant cancer stem cell (CSC) is one reason for treatment failure. Considerable attention has been focused on sulforaphane (SF), a phytochemical from broccoli possessing anticancer properties. We investigated whether SF could enhance the chemotherapeutic effects of cisplatin (CIS) and 5-fluorouracil (5-FU) against HNSCC–CSCs, and its mechanisms of action. Methods CD44+/CD271+ FACS-isolated CSCs from SCC12 and SCC38 human cell lines were treated with SF alone or combined with CIS or 5-FU. Cell viability, colony- and sphere-forming ability, apoptosis, CSC-related gene and protein expression and in vivo tumour growth were assessed. Safety of SF was tested on non-cancerous stem cells and in vivo. Results SF reduced HNSCC–CSC viability in a time- and dose-dependent manner. Combining SF increased the cytotoxicity of CIS twofold and 5-FU tenfold, with no effects on non-cancerous stem cell viability and functions. SF-combined treatments inhibited CSC colony and sphere formation, and tumour progression in vivo. Potential mechanisms of action included the stimulation of caspase-dependent apoptotic pathway, inhibition of SHH pathway and decreased expression of SOX2 and OCT4. Conclusions Combining SF allowed lower doses of CIS or 5-FU while enhancing these drug cytotoxicities against HNSCC–CSCs, with minimal effects on healthy cells.
Collapse
|
19
|
Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Sci Rep 2020; 10:11329. [PMID: 32647229 PMCID: PMC7347552 DOI: 10.1038/s41598-020-68187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer accounts for approximately 13.5% of all newly diagnosed male cancer cases. Significant clinical burdens remain in terms of ineffective prognostication, with overtreatment of insignificant disease. Additionally, the pathobiology underlying disease heterogeneity remains poorly understood. As the role of cancer stem cells in the perpetuation of aggressive carcinoma is being substantiated by experimental evidence, it is crucially important to understand the molecular mechanisms, which regulate key features of cancer stem cells. We investigated two methods for in vitro cultivation of putative prostate cancer stem cells based on ‘high-salt agar’ and ‘monoclonal cultivation’. Data demonstrated ‘monoclonal cultivation’ as the superior method. We demonstrated that ‘holoclones’ expressed canonical stem markers, retained the exclusive ability to generate poorly differentiated tumours in NOD/SCID mice and possessed a unique mRNA-miRNA gene signature. miRNA:Target interactions analysis visualised potentially critical regulatory networks, which are dysregulated in prostate cancer holoclones. The characterisation of this tumorigenic population lays the groundwork for this model to be used in the identification of proteomic or small non-coding RNA therapeutic targets for the eradication of this critical cellular population. This is significant, as it provides a potential route to limit development of aggressive disease and thus improve survival rates.
Collapse
|
20
|
Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R, Sonveaux P. Mitochondria Participate in Chemoresistance to Cisplatin in Human Ovarian Cancer Cells. Mol Cancer Res 2020; 18:1379-1391. [PMID: 32471883 DOI: 10.1158/1541-7786.mcr-19-1145] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/16/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is an aggressive disease that affects about 300,000 patients worldwide, with a yearly death count of about 185,000. Following surgery, treatment involves adjuvant or neoadjuvant administration of taxane with platinum compounds cisplatin or carboplatin, which alkylate DNA through the same chemical intermediates. However, although platinum-based therapy can cure patients in a number of cases, a majority of them discontinues treatment owing to side effects and to the emergence of resistance. In this study, we focused on resistance to cisplatin and investigated whether metabolic changes could be involved. As models, we used matched pairs of cisplatin-sensitive (SKOV-3 and COV-362) and cisplatin-resistant (SKOV-3-R and COV-362-R) human ovarian carcinoma cells that were selected in vitro following exposure to increasing doses of the chemotherapy. Metabolic comparison revealed that resistant cells undergo a shift toward a more oxidative metabolism. The shift goes along with a reorganization of the mitochondrial network, with a generally increased mitochondrial compartment. More functional mitochondria in cisplatin-resistant compared with cisplatin-sensitive cells were associated to enzymatic changes affecting either the electron transport chain (SKOV-3/SKOV-3-R model) or mitochondrial coupling (COV-362/COV-362-R model). Our findings further indicate that the preservation of functional mitochondria in these cells could be due to an increased mitochondrial turnover rate, suggesting mitophagy inhibition as a potential strategy to tackle cisplatin-resistant human ovarian cancer progression. IMPLICATIONS: Besides classical mechanisms related to drug efflux and target modification, we report that preserving functional mitochondria is a strategy used by human ovarian cancer cells to resist to cisplatin chemotherapy.
Collapse
Affiliation(s)
- Luca X Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC imaging platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Davide Brusa
- IREC Flow Cytometry and Cell Sorting Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
21
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
22
|
Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020; 17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Bladder cancer - the tenth most frequent cancer worldwide - has a heterogeneous natural history and clinical behaviour. The predominant histological subtype, urothelial bladder carcinoma, is characterized by high recurrence rates, progression and both primary and acquired resistance to platinum-based therapy, which impose a considerable economic burden on health-care systems and have substantial effects on the quality of life and the overall outcomes of patients with bladder cancer. The incidence of urothelial tumours is increasing owing to population growth and ageing, so novel therapeutic options are vital. Based on work by The Cancer Genome Atlas project, which has identified targetable vulnerabilities in bladder cancer, immune checkpoint inhibitors (ICIs) have arisen as an effective alternative for managing advanced disease. However, although ICIs have shown durable responses in a subset of patients with bladder cancer, the overall response rate is only ~15-25%, which increases the demand for biomarkers of response and therapeutic strategies that can overcome resistance to ICIs. In ICI non-responders, cancer cells use effective mechanisms to evade immune cell antitumour activity; the overlapping Warburg effect machinery of cancer and immune cells is a putative determinant of the immunosuppressive phenotype in bladder cancer. This energetic interplay between tumour and immune cells leads to metabolic competition in the tumour ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. Thus, molecular hallmarks of cancer cell metabolism are potential therapeutic targets, not only to eliminate malignant cells but also to boost the efficacy of immunotherapy. In this sense, integrating the targeting of tumour metabolism into immunotherapy design seems a rational approach to improve the therapeutic efficacy of ICIs.
Collapse
|
23
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
24
|
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE, Essmann F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis 2019; 10:851. [PMID: 31699970 PMCID: PMC6838053 DOI: 10.1038/s41419-019-2081-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.
Collapse
Affiliation(s)
- Markus Kleih
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Kathrin Böpple
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Meng Dong
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Simon Heine
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Walter E Aulitzky
- Department of Hematology and Oncology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Frank Essmann
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany.
| |
Collapse
|
25
|
A Shifty Target: Tumor-Initiating Cells and Their Metabolism. Int J Mol Sci 2019; 20:ijms20215370. [PMID: 31661927 PMCID: PMC6862122 DOI: 10.3390/ijms20215370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-initiating cells (TICs), or cancer stem cells, constitute highly chemoresistant, asymmetrically dividing, and tumor-initiating populations in cancer and are thought to play a key role in metastatic and chemoresistant disease. Tumor-initiating cells are isolated from cell lines and clinical samples based on features such as sphere formation in stem cell medium and expression of TIC markers, typically a set of outer membrane proteins and certain transcription factors. Although both bulk tumor cells and TICs show an adaptive metabolic plasticity, TIC metabolism is thought to differ and likely in a tumor-specific and growth condition-dependent pattern. In the context of some common solid tumor diseases, we here review reports on how TIC isolation methods and markers associate with metabolic features, with some focus on oxidative metabolism, including fatty acid and lipid metabolism. These have emerged as significant factors in TIC phenotypes, and in tumor biology as a whole. Other sections address mitochondrial biogenesis and dynamics in TICs, and the influence of the tumor microenvironment. Further elucidation of the complex biology of TICs and their metabolism will require advanced methodologies.
Collapse
|
26
|
Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, Romero A, Franco F, Calvo V, Alfaro C, Acosta PM, Salas C, Garcia JM, Provencio M. Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med 2019; 135:167-181. [PMID: 30880247 DOI: 10.1016/j.freeradbiomed.2019.03.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Platinum-based chemotherapy remains the standard of care for most lung cancer cases. However chemoresistance is often developed during the treatment, limiting clinical utility of this drug. Recently, the ability of tumor cells to adapt their metabolism has been associated to resistance to therapies. In this study, we first described the metabolic reprogramming of Non-Small Cell Lung Cancer (NSCLC) in response to cisplatin treatment. METHODS Cisplatin-resistant versions of the A549, H1299, and H460 cell lines were generated by continuous drug exposure. The long-term metabolic changes, as well as, the early response to cisplatin treatment were analyzed in both, parental and cisplatin-resistant cell lines. In addition, four Patient-derived xenograft models treated with cisplatin along with paired pre- and post-treatment biopsies from patients were studied. Furthermore, metabolic targeting of these changes in cell lines was performed downregulating PGC-1α expression through siRNA or using OXPHOS inhibitors (metformin and rotenone). RESULTS Two out of three cisplatin-resistant cell lines showed a stable increase in mitochondrial function, PGC1-α and mitochondrial mass with reduced glycolisis, that did not affect the cell cycle. This phenomenon was confirmed in vivo. Post-treatment NSCLC tumors showed an increase in mitochondrial mass, PGC-1α, and a decrease in the GAPDH/MT-CO1 ratio. In addition, we demonstrated how a ROS-mediated metabolism reprogramming, involving PGC-1α and increased mitochondrial mass, is induced during short-time cisplatin exposure. Moreover, we tested how cells with increased PGC-1a induced by ZLN005 treatment, showed reduced cisplatin-driven apoptosis. Remarkably, the long-term metabolic changes, as well as the metabolic reprogramming during short-time cisplatin exposure can be exploited as an Achilles' heel of NSCLC cells, as demonstrated by the increased sensitivity to PGC-1α interference or OXPHOS inhibition using metformin or rotenone. CONCLUSION These results describe a new cisplatin resistance mechanism in NSCLC based on a metabolic reprogramming that is therapeutically exploitable through PGC-1α downregulation or OXPHOS inhibitors.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
| | - Raquel Laza-Briviesca
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Ramiro J Vicente-Blanco
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Aránzazu García-Grande
- Flow Cytometry Core Facility, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Maria José Coronado
- Confocal Microscopy Core Facility, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Disease Laboratory, Instituto de Investigación Hospital "12 de Octubre" (i+12), Madrid, Spain
| | - Sara Palacios-Zambrano
- Departamento de Bioquimica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina UAM, Madrid, Spain
| | - M Rocío Moreno-Villa
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Asunción Martin Ruiz-Valdepeñas
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Cristina Lendinez
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Atocha Romero
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Fernando Franco
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Virginia Calvo
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Cristina Alfaro
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Paloma Martin Acosta
- Department of Pathology, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Clara Salas
- Department of Pathology, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - José Miguel Garcia
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
| |
Collapse
|
27
|
Domínguez-Ríos R, Sánchez-Ramírez DR, Ruiz-Saray K, Oceguera-Basurto PE, Almada M, Juárez J, Zepeda-Moreno A, Del Toro-Arreola A, Topete A, Daneri-Navarro A. Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids Surf B Biointerfaces 2019; 178:199-207. [PMID: 30856589 DOI: 10.1016/j.colsurfb.2019.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 01/15/2023]
Abstract
The conventional treatment (cytoreduction combined with cisplatin/carboplatin and taxane drugs) of ovarian cancer has a high rate of failure and recurrence despite a favorable initial response. This lack of success is usually attributed to the development of multidrug resistance mechanisms by cancer cells and avoidance of the anti-growth effects of monoclonal targeted therapeutic antibodies. The disease, like other cancers, is characterized by the overexpression of molecular markers, including HER2 receptors. Preclinical and clinical studies with trastuzumab, a HER2-targeted therapeutic antibody, reveal a low improvement of the outcomes of HER2 positive ovarian cancer patients. Therefore, here, we propose a cisplatin-loaded, HER2 targeted poly(lactic-co-glycolic) nanoplatform, a system capable to escape the drug-efflux effect and to take advantage of the overexpressed HER2 receptors, using them as docks for targeted chemotherapy. The NP/trastuzumab ratio was determined after fluorescein labeling of antibodies and quantification of fluorescence in NPs. The system was also characterized in terms of size, zeta potential, drug release kinetics, cytotoxicity and cellular internalization in the epithelial ovarian cancer cell line SKOV-3, and compared with the HER2 negative breast cancer cell line HCC70. Our results show an increased cytotoxicity of NPs as compared to free cisplatin, and moreover, an enhanced internalization and cytotoxicity due to the bionfunctionalization of NPs with the monoclonal antibody.
Collapse
Affiliation(s)
- Rossina Domínguez-Ríos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Dante R Sánchez-Ramírez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Kassandra Ruiz-Saray
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Paola E Oceguera-Basurto
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, Sonora C.P. 85880, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora, 83000, Mexico
| | - Abraham Zepeda-Moreno
- Instituto de Investigación en Cáncer de la Infancia y la Adolescencia (INICIA), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico.
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| |
Collapse
|
28
|
Ko YH, Niedźwiecka K, Casal M, Pedersen PL, Ułaszewski S. 3-Bromopyruvate as a potent anticancer therapy in honor and memory of the late Professor André Goffeau. Yeast 2018; 36:211-221. [PMID: 30462852 DOI: 10.1002/yea.3367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023] Open
Abstract
3-Bromopyruvate (3BP) is a small, highly reactive molecule formed by bromination of pyruvate. In the year 2000, the antitumor properties of 3BP were discovered. Studies using animal models proved its high efficacy for anticancer therapy with no apparent side effects. This was also found to be the case in a limited number of cancer patients treated with 3BP. Due to the "Warburg effect," most tumor cells exhibit metabolic changes, for example, increased glucose consumption and lactic acid production resulting from mitochondrial-bound overexpressed hexokinase 2. Such alterations promote cell migration, immortality via inhibition of apoptosis, and less dependence on the availability of oxygen. Significantly, these attributes also make cancer cells more sensitive to agents, such as 3BP that inhibits energy production pathways without harming normal cells. This selectivity of 3BP is mainly due to overexpressed monocarboxylate transporters in cancer cells. Furthermore, 3BP is not a substrate for any pumps belonging to the ATP-binding cassette superfamily, which confers resistance to a variety of drugs. Also, 3BP has the capacity to induce multiple forms of cell death, by, for example, ATP depletion resulting from inactivation of both glycolytic and mitochondrial energy production pathways. In addition to its anticancer property, 3BP also exhibits antimicrobial activity. Various species of microorganisms are characterized by different susceptibility to 3BP inhibition. Among tested strains, the most sensitive was found to be the pathogenic yeast-like fungus Cryptococcus neoformans. Significantly, studies carried out in our laboratories have shown that 3BP exhibits a remarkable capacity to eradicate cancer cells, fungi, and algae.
Collapse
Affiliation(s)
- Young H Ko
- KoDiscovery, LLC, University of Maryland BioPark, Baltimore, Maryland, USA
| | | | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Peter L Pedersen
- Department of Biological Chemistry and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Wang Y, Zong X, Mitra S, Mitra AK, Matei D, Nephew KP. IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells. JCI Insight 2018; 3:122360. [PMID: 30518684 PMCID: PMC6328027 DOI: 10.1172/jci.insight.122360] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
In high-grade serous ovarian cancer (OC), chemotherapy eliminates the majority of tumor cells, leaving behind residual tumors enriched in OC stem cells (OCSC). OCSC, defined as aldehyde dehydrogenase-positive (ALDH+), persist and contribute to tumor relapse. Inflammatory cytokine IL-6 is elevated in residual tumors after platinum treatment, and we hypothesized that IL-6 plays a critical role in platinum-induced OCSC enrichment. We demonstrate that IL-6 regulates stemness features of OCSC driven by ALDH1A1 expression and activity. We show that platinum induces IL-6 secretion by cancer-associated fibroblasts in the tumor microenvironment, promoting OCSC enrichment in residual tumors after chemotherapy. By activating STAT3 and upregulating ALDH1A1 expression, IL-6 treatment converted non-OCSC to OCSC. Having previously shown altered DNA methylation in OCSC, we show here that IL-6 induces DNA methyltransferase 1 (DNMT1) expression and the hypomethylating agent (HMA) guadecitabine induced differentiation of OCSC and reduced - but did not completely eradicate - OCSC. IL-6 neutralizing antibody (IL-6-Nab) combined with HMA fully eradicated OCSC, and the combination blocked IL-6/IL6-R/pSTAT3-mediated ALDH1A1 expression and eliminated OCSC in residual tumors that persisted in vivo after chemotherapy. We conclude that IL-6 signaling blockade combined with an HMA can eliminate OCSC after platinum treatment, supporting this strategy to prevent tumor recurrence after standard chemotherapy.
Collapse
Affiliation(s)
- Yinu Wang
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Indiana University Bloomington (IUB), Bloomington, Indiana, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingyue Zong
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Indiana University Bloomington (IUB), Bloomington, Indiana, USA
| | - Sumegha Mitra
- Department of Obstetrics and Gynecology, Indiana University School of Medicine
| | - Anirban Kumar Mitra
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Indiana University Bloomington (IUB), Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Cancer Center, and
- Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth P. Nephew
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Indiana University Bloomington (IUB), Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Cancer Center, and
- Department of Cellular and Integrative Physiology Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B. Ovarian cancer stem cell: A potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 2018; 234:3238-3253. [PMID: 30317560 DOI: 10.1002/jcp.26768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Iraj Mohebbi
- Department of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Identification of hub genes and analysis of prognostic values in pancreatic ductal adenocarcinoma by integrated bioinformatics methods. Mol Biol Rep 2018; 45:1799-1807. [PMID: 30173393 DOI: 10.1007/s11033-018-4325-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in the world, and more molecular mechanisms should be illuminated to meet the urgent need of developing novel detection and therapeutic strategies. We analyzed the related microarray data to find the possible hub genes and analyzed their prognostic values using bioinformatics methods. The mRNA microarray datasets GSE62452, GSE15471, GSE102238, GSE16515, and GSE62165 were finally chosen and analyzed using GEO2R. The overlapping genes were found by Venn Diagrams, functional and pathway enrichment analyses were performed using the DAVID database, and the protein-protein interaction (PPI) network was constructed by STRING and Cytoscape. OncoLnc, which was linked to TCGA survival data, was used to investigate the prognostic values. In total, 179 differentially expressed genes (DEGs) were found in PDAC, among which, 130 were up-regulated genes and 49 were down-regulated. DAVID showed that the up-regulated genes were significantly enriched in extracellular matrix and structure organization, collagen catabolic and metabolic process, while the down-regulated genes were mainly involved in proteolysis, reactive oxygen species metabolic process, homeostatic process and cellular response to starvation. From the PPI network, the 21 nodes with the highest degree were screened as hub genes. Based on Molecular Complex Detection (MCODE) plug-in, the top module was formed by ALB, TGM, PLAT, PLAU, EGF, MMP7, MMP1, LAMC2, LAMA3, LAMB3, COLA1, FAP, CDH11, COL3A1, ITGA2, and VCAN. OncoLnc survival analysis showed that, high expression of ITGA2, MMP7, ITGB4, ITGA3, VCAN and PLAU may predict poor survival results in PDAC. The present study identified hub genes and pathways in PDAC, which may be potential targets for its diagnosis, treatment, and prognostic prediction.
Collapse
|
32
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC. Cancer Lett 2018; 428:117-126. [PMID: 29653268 DOI: 10.1016/j.canlet.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide. While partial or complete tumor regression can be achieved in patients, particularly with cisplatin-based strategies, these initial responses are frequently short-lived and are followed by tumor relapse and chemoresistance. Identifying the root of cisplatin resistance in NSCLC and elucidating the mechanism(s) of tumor relapse, is of critical importance in order to determine the point of therapeutic failure, which in turn, will aid the discovery of novel therapeutics, new combination strategies and a strategy to enhance the efficacy of current chemotherapeutics. It has been hypothesized that cancer stem cells (CSCs) may be the initiating factor of resistance. We have previously identified and characterized an aldehyde dehydrogenase 1 CSC subpopulation in cisplatin resistant NSCLC. BBI608 is a small molecule STAT3 inhibitor known to suppress cancer relapse, progression and metastasis. Here, we show that BBI608 can inhibit stemness gene expression, deplete CSCs and overcome cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Facility, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland; Medical Oncology, St. James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland; Department of Histopathology, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland; Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College, Dublin, Ireland.
| |
Collapse
|
33
|
Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemp Oncol (Pozn) 2018; 22:48-55. [PMID: 29628794 PMCID: PMC5885077 DOI: 10.5114/wo.2018.73885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSLCs) are defined as cancer cells with stem cell characteristics. Although CSLCs constitute no more than a few percent of the tumor mass, they play important roles in cancer chemo-resistance, metastasis and disease recurrence. Ovarian cancer (OC) is considered the most aggressive gynecological malignancy in which the role of CSLCs is of major significance, although it remains to be specified. The studies describing ovarian CSLC phenotype vary in the definition of the molecular pattern of expression of the main markers such as CD133, CD44, CD117, and CD24. Stem-like features of OC have been shown to correlate with the clinical course of the disease and permit diagnosis, prognosis and treatment outcome to be improved. Identification of CSLC markers could provide hallmarks which, related to the chemo-resistance of the disease, will facilitate treatment selection. This review describes recent advances in research on stem-like cell status in OC, mainly focusing on surface markers of CSLCs and their clinical relevance.
Collapse
|
34
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
35
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|
36
|
Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J Clin Med 2017; 7:jcm7010001. [PMID: 29271928 PMCID: PMC5791009 DOI: 10.3390/jcm7010001] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) plays a central role in both normal physiological events (e.g., embryonic development) and abnormal pathological events (e.g., tumor formation and metastasis). The processes that occur in embryonic development are often reactivated under pathological conditions such as oncogenesis. Therefore, defining the regulatory networks (both gene and protein levels) involved in the EMT during embryonic development will be fundamental in understanding the regulatory networks involved in tumor development, as well as metastasis. There are many molecules, factors, mediators and signaling pathways that are involved in the EMT process. Although the EMT is a very old topic with numerous publications, recent new technologies and discoveries give this research area some new perspective and direction. It is now clear that these important processes are controlled by a network of transcriptional and translational regulators in addition to post-transcriptional and post-translational modifications that amplify the initial signals. In this review article, we will discuss some key concepts, historical findings, as well as some recent progresses in the EMT research field.
Collapse
|
37
|
Soyama H, Miyamoto M, Takano M, Aoyama T, Matsuura H, Sakamoto T, Takasaki K, Kuwahara M, Kato K, Yoshikawa T, Iwahashi H, Tsuda H, Furuya K. Ovarian serous carcinomas acquire cisplatin resistance and increased invasion through downregulation of the high-temperature-required protein A2 (HtrA2), following repeated treatment with cisplatin. Med Oncol 2017; 34:201. [DOI: 10.1007/s12032-017-1058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023]
|
38
|
MacDonagh L, Gallagher MF, Ffrench B, Gasch C, Breen E, Gray SG, Nicholson S, Leonard N, Ryan R, Young V, O'Leary JJ, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Targeting the cancer stem cell marker, aldehyde dehydrogenase 1, to circumvent cisplatin resistance in NSCLC. Oncotarget 2017; 8:72544-72563. [PMID: 29069808 PMCID: PMC5641151 DOI: 10.18632/oncotarget.19881] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for a large proportion of cancer deaths and is characterized by low treatment response rates and poor overall prognosis. In the absence of specific treatable mutations, cisplatin-based chemotherapy plays an important role in the treatment of this disease. Unfortunately, the development of resistance has become a major therapeutic challenge in the use of this cytotoxic drug. Elucidating the mechanisms underlying this resistance phenotype, may result in the development of novel agents that enhance sensitivity to cisplatin in lung cancer patients. In this study, targeting the cancer stem cell activity of aldehyde dehydrogenase 1 (ALDH1) was investigated as a strategy to overcome chemoresistance in NSCLC. Tumors from NSCLC patients showed an increase in their profile of pluripotent stemness genes. Cisplatin exposure induced the emergence or expansion of an ALDH1-positive subpopulation in cisplatin sensitive and resistant NSCLC cell lines, respectively, further enhancing cisplatin resistance. Using the Aldefluor assay and FACS analysis, ALDH1 subpopulations were isolated and evaluated in terms of stem cell characteristics. Only ALDH1-positive cells exhibited asymmetric division, cisplatin resistance and increased expression of stem cell factors in vitro. Xenograft studies in NOD/SCID mice demonstrated efficient tumorigenesis from low cell numbers of ALDH1-positive and ALDH1-negative subpopulations. Targeting ALDH1 with Diethylaminobenzaldehyde (DEAB) and Disulfiram, significantly re-sensitized resistant lung cancer cells to the cytotoxic effects of cisplatin. Our data demonstrate the existence of a lung CSC population and suggest a role for targeting ALDH1 as a potential therapeutic strategy in re-sensitizing NSCLC cells to the cytotoxic effects of cisplatin.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Michael F Gallagher
- Histopathology Department, Trinity College Dublin, Sir Patrick Dun Laboratories & Central Pathology Laboratory, St. James's Hospital, Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Brendan Ffrench
- Histopathology Department, Trinity College Dublin, Sir Patrick Dun Laboratories & Central Pathology Laboratory, St. James's Hospital, Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Claudia Gasch
- Histopathology Department, Trinity College Dublin, Sir Patrick Dun Laboratories & Central Pathology Laboratory, St. James's Hospital, Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Facility, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | | | - Niamh Leonard
- Histopathology Department, St. James's Hospital, Dublin, Ireland
| | - Ronan Ryan
- Department of Cardiothoracic Surgery, St. James's Hospital, Dublin, Ireland
| | - Vincent Young
- Department of Cardiothoracic Surgery, St. James's Hospital, Dublin, Ireland
| | - John J O'Leary
- Histopathology Department, Trinity College Dublin, Sir Patrick Dun Laboratories & Central Pathology Laboratory, St. James's Hospital, Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland.,Histopathology Department, St. James's Hospital, Dublin, Ireland
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland.,Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To provide examples of mitochondria-specific metabolic events that influence tumor cell biology, and of metabolism-related mitochondrial biomarkers and therapeutic targets in cancer cells. RECENT FINDINGS Cancer cell mitochondria are rewired to optimally serve the cancer cell under various conditions of cellular stress. The nonexhaustive list of mitochondrial alterations that support cancer cell proliferation, survival, and/or progression includes upregulation of oxidative metabolism and use of alternative substrates, oncometabolites, increased superoxide production, mutated mitochondrial DNA, and altered mitochondrial morphology and dynamics. Potential therapeutic targets include fatty acid oxidation, voltage-dependent anion channel-1, the pyruvate dehydrogenase complex, and Complex I. SUMMARY Some phenotypical traits, for example, chemoresistance and metastasis, are likely regulated by a fine-tuned balance between several metabolic processes and events that are upregulated in parallel and are also dependent on microenvironmental cues. Many metabolism-related mitochondrial biomarkers show prognostic value, but the biological interpretation of the data may be confounded by the overall metabolic status and context. Understanding metabolic regulation of stemness is important for targeting cancer stem cells. Therapeutic targeting of cancer cell mitochondria remains experimental but promising, and more predictive markers will be needed for metabolism-based treatments and personalized medicine.
Collapse
|
40
|
miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 2017; 6:e326. [PMID: 28459431 PMCID: PMC5525454 DOI: 10.1038/oncsis.2017.25] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial ovarian cancer is the most lethal gynecological cancer mainly due to late diagnosis, easy spreading and rapid development of chemoresistance. Cancer stem cells are considered to be one of the main mechanisms for chemoresistance, as well as metastasis and recurrent disease. To explore the stemness characteristics of ovarian cancer stem cells, we successfully enriched ovarian cancer stem-like cells from an established ovarian cancer cell line (SKOV-I6) and a fresh ovarian tumor-derived cell line (OVS1). These ovarian cancer stem-like cells possess important cancer stemness characteristics including sphere-forming and self-renewing abilities, expressing important ovarian cancer stem cell and epithelial–mesenchymal transition markers, as well as increased drug resistance and potent tumorigenicity. Microarray analysis of OVS1-derived sphere cells revealed increased expression of amphiregulin (AREG) and decreased expression of its conserved regulatory microRNA, miR-34c-5p, when compared with the OVS1 parental cells. Overexpression of AREG and decreased miR-34c-5p expression in SKOV-I6 and OVS1 sphere cells were confirmed by quantitative real-time PCR analysis. Luciferase reporter assay and mutant analysis confirmed that AREG is a direct target of miR-34c-5p. Furthermore, AREG-mediated increase of sphere formation, drug resistance toward docetaxel and carboplatin, as well as tumorigenicity of SKOV-I6 and OVS1 cells could be abrogated by miR-34c-5p. We further demonstrated that miR-34c-5p inhibited ovarian cancer stemness through downregulation of the AREG-EGFR-ERK pathway. Overexpression of AREG was found to be correlated with advanced ovarian cancer stages and poor prognosis. Taken together, our data suggest that AREG promotes ovarian cancer stemness and drug resistance via the AREG-EGFR-ERK pathway and this is inhibited by miR-34c-5p. Targeting AREG, miR-34c-5p could be a potential strategy for anti-cancer-stem cell therapy in ovarian cancer.
Collapse
|
41
|
Dong BW, Qin GM, Luo Y, Mao JS. Metabolic enzymes: key modulators of functionality in cancer stem-like cells. Oncotarget 2017; 8:14251-14267. [PMID: 28009990 PMCID: PMC5355174 DOI: 10.18632/oncotarget.14041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.
Collapse
Affiliation(s)
- Bo-Wen Dong
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Ming Qin
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Luo
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Shan Mao
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Kanamoto A, Ninomiya I, Harada S, Tsukada T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi H, Oyama K, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma. Int J Oncol 2016; 49:1859-1869. [PMID: 27826618 PMCID: PMC5063503 DOI: 10.3892/ijo.2016.3712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.
Collapse
Affiliation(s)
- Ayako Kanamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Seisho Sakai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
43
|
A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget 2016; 6:40005-25. [PMID: 26503466 PMCID: PMC4741876 DOI: 10.18632/oncotarget.5552] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023] Open
Abstract
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.
Collapse
|
44
|
Brisson L, Bański P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, Van Hée VF, Vazeille T, Tardy M, Falces J, Bouzin C, Porporato PE, Frédérick R, Michiels C, Copetti T, Sonveaux P. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell 2016; 30:418-431. [PMID: 27622334 DOI: 10.1016/j.ccell.2016.08.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/13/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023]
Abstract
Metabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy. We report that lactate sustains autophagy in cancer. In cancer cells preferentially to normal cells, lactate dehydrogenase B (LDHB), catalyzing the conversion of lactate and NAD(+) to pyruvate, NADH and H(+), controls lysosomal acidification, vesicle maturation, and intracellular proteolysis. LDHB activity is necessary for basal autophagy and cancer cell proliferation not only in oxidative cancer cells but also in glycolytic cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Piotr Bański
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Martina Sboarina
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Coralie Dethier
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Pierre Danhier
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Marie-Joséphine Fontenille
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Thibaut Vazeille
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Morgane Tardy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Jorge Falces
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Paolo E Porporato
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | | | - Tamara Copetti
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium.
| |
Collapse
|
45
|
The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016; 48:349-62. [PMID: 27457582 DOI: 10.1007/s10863-016-9670-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Collapse
|
46
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Lung cancer stem cells: The root of resistance. Cancer Lett 2016; 372:147-56. [PMID: 26797015 DOI: 10.1016/j.canlet.2016.01.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Core Facility, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland; Department of Histopathology, St. James's Hospital and Trinity College Dublin, Ireland
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland.
| |
Collapse
|
47
|
Ho N, Morrison J, Silva A, Coomber BL. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep 2016; 36:e00299. [PMID: 26740252 PMCID: PMC4759612 DOI: 10.1042/bsr20150267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation.
Collapse
Affiliation(s)
- Nelson Ho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jodi Morrison
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andreza Silva
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
48
|
Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016; 3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and the third leading cause of cancer-related deaths worldwide. In patients with unresectable disease, loco-regional catheter-based intra-arterial therapies (IAT) can achieve selective tumor control while minimizing systemic toxicity. As molecular features of tumor growth and microenvironment are better understood, new targets arise for selective anticancer therapy. Particularly, antiglycolytic drugs that exploit the hyperglycolytic cancer cell metabolism - also known as the 'Warburg effect' - have emerged as promising therapeutic options. Thus, future developments will combine the selective character of loco-regional drug delivery platforms with highly specific molecular targeted antiglycolytic agents. This review will exemplify literature on antiglycolytic approaches and particularly focus on intra-arterial delivery methods.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Gregor Duwe
- Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | | |
Collapse
|
49
|
Downregulation of the cancer susceptibility protein WRAP53β in epithelial ovarian cancer leads to defective DNA repair and poor clinical outcome. Cell Death Dis 2015; 6:e1892. [PMID: 26426684 PMCID: PMC4632285 DOI: 10.1038/cddis.2015.250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
Alterations in the scaffold protein WRAP53β have previously been linked to carcinogenesis and, in particular, associated with an increased risk for epithelial ovarian cancer. Here, we investigated the pathogenic impact and prognostic significance of WRAP53β in connection with epithelial ovarian cancer and examined the underlying mechanisms. We find that reduced expression of WRAP53β in ovarian tumors correlated with attenuated DNA damage response and poor patient survival. Furthermore, in ovarian cancer cell lines, WRAP53β was rapidly recruited to DNA double-strand breaks, where it orchestrated the recruitment of repair factors involved in homologous recombination and non-homologous end joining, including RNF168, 53BP1, BRCA1 and RAD51. Mechanistically, WRAP53β accomplishes this by facilitating the necessary ubiquitinylation at DNA breaks. Finally, we demonstrate that loss of WRAP53β significantly impairs the repair of DNA double-strand breaks, resulting in their accumulation. Our findings establish WRAP53β as a regulator of homologous recombination and non-homologous end joining repair in ovarian cancer cells, suggesting that loss of this protein contributes to the development and/or progression of ovarian tumors. Moreover, our current observations identify the nuclear levels of WRAP53β as a promising biomarker for the survival of patients with ovarian cancer.
Collapse
|
50
|
Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 2015; 6:25677-95. [PMID: 26259240 PMCID: PMC4694858 DOI: 10.18632/oncotarget.4499] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/29/2015] [Indexed: 02/04/2023] Open
Abstract
Many cancer cells rely on aerobic glycolysis for energy production and targeting of this pathway is a potential strategy to inhibit cancer cell growth. In this study, inhibition of five glycolysis pathway molecules (GLUT1, HKII, PFKFB3, PDHK1 and LDH) using 9 inhibitors (Phloretin, Quercetin, STF31, WZB117, 3PO, 3-bromopyruvate, Dichloroacetate, Oxamic acid, NHI-1) was investigated in panels of breast and ovarian cancer cell line models. All compounds tested blocked glycolysis as indicated by increased extracellular glucose and decreased lactate production and also increased apoptosis. Sensitivity to several inhibitors correlated with the proliferation rate of the cell lines. Seven compounds had IC50 values that were associated with each other consistent with a shared mechanism of action. A synergistic interaction was revealed between STF31 and Oxamic acid when combined with the antidiabetic drug metformin. Sensitivity to glycolysis inhibition was also examined under a range of O2 levels (21% O2, 7% O2, 2% O2 and 0.5% O2) and greater resistance to the inhibitors was found at low oxygen conditions (7% O2, 2% O2 and 0.5% O2) relative to 21% O2 conditions. These results indicate growth of breast and ovarian cancer cell lines is dependent on all the targets examined in the glycolytic pathway with increased sensitivity to the inhibitors under normoxic conditions.
Collapse
Affiliation(s)
- Chrysi Xintaropoulou
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Carol Ward
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Alan Wise
- IOMET Pharma, Nine, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
| | - Hugh Marston
- IOMET Pharma, Nine, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
- Current Address: Eli Lilly Research and Development, Windlesham, Surrey, GU20 6PH, UK
| | - Arran Turnbull
- Breakthrough Breast Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Simon P. Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|