1
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Doppelt-Flikshtain O, Asbi T, Younis A, Ginesin O, Cohen Z, Tamari T, Berg T, Yanovich C, Aran D, Zohar Y, Assaraf YG, Zigdon-Giladi H. Inhibition of osteosarcoma metastasis in vivo by targeted downregulation of MMP1 and MMP9. Matrix Biol 2024; 134:48-58. [PMID: 39278602 DOI: 10.1016/j.matbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Osteosarcoma (OS) mortality stems from lung metastases. Matrix metalloproteinases (MMPs) facilitate metastatic dissemination by degrading extracellular matrix components. Herein we studied the impact of targeted MMP downregulation on OS metastasis. Differential gene expression analysis of human OS cell lines revealed high MMP9 expression in the majority of OS cell lines. Furthermore, 143B, a metastatic OS cell line, exhibited increased MMP1 and MMP9 mRNA levels. Gene set enrichment analysis on metastatic and non-metastatic OS patient specimens indicated epithelial-mesenchymal transition as the most enriched gene set, with MMP9 displaying strong association to genes in this network. Using the same dataset, Kaplan-Meier analysis revealed a correlation between MMP1 expression and dismal patient survival. Hence, we undertook targeted suppression of MMP1 and MMP9 gene expression in OS cell lines. The ability of OS cells to migrate and form colonies was markedly reduced upon MMP1 and MMP9 downregulation, whereas their cell proliferation capacity remained intact. MMP9 downregulation decreased tumor growth and lung metastases area in an orthotopic mouse OS model. Consistently, human OS lung metastasis specimens displayed marked MMP9 protein expression. Our findings highlight the role of MMP1 and MMP9 in OS metastasis, warranting further exploration of simultaneous inhibition of MMPs for future OS therapeutics.
Collapse
Affiliation(s)
- Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Thabet Asbi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Amin Younis
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ofir Ginesin
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ziv Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Tal Berg
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Chen Yanovich
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dvir Aran
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
3
|
Supruniuk E, Baczewska M, Żebrowska E, Maciejczyk M, Lauko KK, Dajnowicz-Brzezik P, Milewska P, Knapp P, Zalewska A, Chabowski A. Redox Biomarkers and Matrix Remodeling Molecules in Ovarian Cancer. Antioxidants (Basel) 2024; 13:200. [PMID: 38397798 PMCID: PMC10885995 DOI: 10.3390/antiox13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Ovarian cancer (OC) has emerged as the leading cause of death due to gynecological malignancies among women. Oxidative stress and metalloproteinases (MMPs) have been shown to influence signaling pathways and afflict the progression of carcinogenesis. Therefore, the assessment of matrix-remodeling and oxidative stress intensity can determine the degree of cellular injury and often the severity of redox-mediated chemoresistance. The study group comprised 27 patients with serous OC of which 18% were classified as Federation of Gynecology and Obstetrics (FIGO) stages I/II, while the rest were diagnosed grades III/IV. The control group comprised of 15 ovarian tissue samples. The results were compared with genetic data from The Cancer Genome Atlas. Nitro-oxidative stress, inflammation and apoptosis biomarkers were measured colorimetrically/fluorometrically or via real-time PCR in the primary ovarian tumor and healthy tissue. Stratification of patients according to FIGO stages revealed that high-grade carcinoma exhibited substantial alterations in redox balance, including the accumulation of protein glycoxidation and lipid peroxidation products. TCGA data demonstrated only limited prognostic usefulness of the studied genes. In conclusion, high-grade serous OC is associated with enhanced tissue oxidative/nitrosative stress and macromolecule damage that could not be overridden by the simultaneously augmented measures of antioxidant defense. Therefore, it can be assumed that tumor cells acquire adaptive mechanisms that enable them to withstand the potential toxic effects of elevated reactive oxygen species.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Marta Baczewska
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland; (M.B.); (P.K.)
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland;
| | - Kamil Klaudiusz Lauko
- Students’ Scientific Club ‘Biochemistry of Civilization Diseases’ at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland;
| | - Patrycja Dajnowicz-Brzezik
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, Waszyngtona 13 Street, 15-269 Bialystok, Poland;
| | - Paweł Knapp
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland; (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| |
Collapse
|
4
|
Dwivedi PSR, Shastry CS. The cytotoxic potential of sinapic acid on luminal A breast cancer; a computational and experimental pharmacology approach. J Biomol Struct Dyn 2023; 42:13216-13231. [PMID: 37904539 DOI: 10.1080/07391102.2023.2274980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023]
Abstract
Breast cancer is a highly concerning and prevalent disease that impacts a significant proportion of women worldwide, whose repeated exposure to therapies leads to resistance for drugs; making it alarming to identify novel chemotherapeutic agents. Sinapic acid is a phenolic acid that occurs naturally and is known to exhibit cytotoxic action in a variety of cancer cell types. In the present study, we utilized cell cytotoxicity assays to assess the cytotoxic potential of sinapic acid on various breast cancer subtypes. In addition, we assessed the cell migration rate, cell apoptosis, and cell cycle phases. Moreover, we utilized multiple system biology tools to predict the potential targets, and molecular docking was performed on the hub targets followed by molecular dynamic (MD) simulations. Cytotoxicity assay was performed on cell lines MCF7, T47D, MDA-MB-468, and SKBR3 at different time exposures of 24, 48, and 96 h. Our results revealed sinapic acid to be potent on MCF7 and T47D cell lines. The cell cycle analysis and cell apoptotic assays revealed sinapic acid to cause cell death by apoptosis majorly in the G0/G1 phase. Computational biology revealed KIF18B and VKORC1 to possess the highest binding affinity of -6.5 and -7.5 kcal/mol; displayed stable trajectories on MD run. The cytotoxicity of sinapic acid on luminal A cell lines may be due to the modulation of VKORC1 and KIF18B with major cell death in the G0/G1 phase. However, the mechanism has been proposed via in silico tools, which need further validation using wet lab protocols.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - C S Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| |
Collapse
|
5
|
Therapeutic Potential of Deflamin against Colorectal Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14246182. [PMID: 36551666 PMCID: PMC9776913 DOI: 10.3390/cancers14246182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.
Collapse
|
6
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
7
|
Wang Y, Sha L, Mao H, Zhao J, Tu M. Metal-organic framework-encapsulated micellar silver nanoparticles for tumor microenvironment-adaptive electrochemical determination of matrix metalloproteinase-2. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Vijver SV, Singh A, Mommers-Elshof ETAM, Meeldijk J, Copeland R, Boon L, Langermann S, Flies D, Meyaard L, Ramos MIP. Collagen Fragments Produced in Cancer Mediate T Cell Suppression Through Leukocyte-Associated Immunoglobulin-Like Receptor 1. Front Immunol 2021; 12:733561. [PMID: 34691040 PMCID: PMC8529287 DOI: 10.3389/fimmu.2021.733561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023] Open
Abstract
The tumor microenvironment (TME) is a complex structure comprised of tumor, immune and stromal cells, vasculature, and extracellular matrix (ECM). During tumor development, ECM homeostasis is dysregulated. Collagen remodeling by matrix metalloproteinases (MMPs) generates specific collagen fragments, that can be detected in the circulation of cancer patients and correlate with poor disease outcome. Leukocyte-Associated Immunoglobulin-like Receptor-1 (LAIR-1) is an inhibitory collagen receptor expressed on immune cells in the TME and in the circulation. We hypothesized that in addition to ECM collagen, collagen fragments produced in cancer can mediate T cell immunosuppression through LAIR-1. Our analyses of TCGA datasets show that cancer patients with high tumor mRNA expression of MMPs, collagen I and LAIR-1 have worse overall survival. We show that in vitro generated MMP1 or MMP9 collagen I fragments bind to and trigger LAIR-1. Importantly, LAIR-1 triggering by collagen I fragments inhibits CD3 signaling and IFN-γ secretion in a T cell line. LAIR-2 is a soluble homologue of LAIR-1 with higher affinity for collagen and thereby acts as a decoy receptor. Fc fusion proteins of LAIR-2 have potential as cancer immunotherapeutic agents and are currently being tested in clinical trials. We demonstrate that collagen fragment-induced inhibition of T cell function could be reversed by LAIR-2 fusion proteins. Overall, we show that collagen fragments produced in cancer can mediate T cell suppression through LAIR-1, potentially contributing to systemic immune suppression. Blocking the interaction of LAIR-1 with collagen fragments could be an added benefit of LAIR-1-directed immunotherapy.
Collapse
Affiliation(s)
- Saskia V Vijver
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Akashdip Singh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Eline T A M Mommers-Elshof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | | | | | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - M Inês Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
9
|
Habič A, Novak M, Majc B, Lah Turnšek T, Breznik B. Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. J Histochem Cytochem 2021; 69:775-794. [PMID: 34310223 DOI: 10.1369/00221554211035192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor microenvironment niches. In this review, we briefly summarize the significance of proteases in regulating CSC activities with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted roles of proteases should be thoroughly investigated.
Collapse
Affiliation(s)
- Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
10
|
|
11
|
Fletcher EK, Wang Y, Flynn LK, Turner SE, Rade JJ, Kimmelstiel CD, Gurbel PA, Bliden KP, Covic L, Kuliopulos A. Deficiency of MMP1a (Matrix Metalloprotease 1a) Collagenase Suppresses Development of Atherosclerosis in Mice: Translational Implications for Human Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:e265-e279. [PMID: 33761760 PMCID: PMC8062306 DOI: 10.1161/atvbaha.120.315837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| | - Yanling Wang
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| | - Laura K Flynn
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| | - Susan E Turner
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| | - Jeffrey J Rade
- Interventional Cardiology, Division of Cardiology, University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Worcester (J.J.R.)
| | - Carey D Kimmelstiel
- Adult Interventional Cardiology, Division of Cardiology, Tufts Medical Center, Boston, MA (C.D.K.)
| | - Paul A Gurbel
- Inova Center for Thrombosis Research and Translational Medicine, Inova Fairfax Hospital, Falls Church, VA (P.A.G., K.P.B.)
- Sinai Hospital of Baltimore, MD (P.A.G., K.P.B.)
| | - Kevin P Bliden
- Inova Center for Thrombosis Research and Translational Medicine, Inova Fairfax Hospital, Falls Church, VA (P.A.G., K.P.B.)
- Sinai Hospital of Baltimore, MD (P.A.G., K.P.B.)
| | - Lidija Covic
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| | - Athan Kuliopulos
- Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (E.K.F., Y.W., L.K.F, S.E.T., L.C., A.K.)
| |
Collapse
|
12
|
Laskaratos FM, Levi A, Schwach G, Pfragner R, Hall A, Xia D, von Stempel C, Bretherton J, Thanapirom K, Alexander S, Ogunbiyi O, Watkins J, Luong TV, Toumpanakis C, Mandair D, Caplin M, Rombouts K. Transcriptomic Profiling of In Vitro Tumor-Stromal Cell Paracrine Crosstalk Identifies Involvement of the Integrin Signaling Pathway in the Pathogenesis of Mesenteric Fibrosis in Human Small Intestinal Neuroendocrine Neoplasms. Front Oncol 2021; 11:629665. [PMID: 33718208 PMCID: PMC7943728 DOI: 10.3389/fonc.2021.629665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aim Analysis of the pathophysiology of mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs) in an in vitro paracrine model and in human SI-NET tissue samples. Methods An indirect co-culture model of SI-NET cells KRJ-I and P-STS with stromal cells HEK293 was designed to evaluate the paracrine effects on cell metabolic activity, gene expression by RT2 PCR Profilers to analyse cancer and fibrosis related genes, and RNA sequencing. The integrin signaling pathway, a specific Ingenuity enriched pathway, was further explored in a cohort of human SI-NET tissues by performing protein analysis and immunohistochemistry. Results RT Profiler array analysis demonstrated several genes to be significantly up- or down-regulated in a cell specific manner as a result of the paracrine effect. This was further confirmed by employing RNA sequencing revealing multiple signaling pathways involved in carcinogenesis and fibrogenesis that were significantly affected in these cell lines. A significant upregulation in the expression of various integrin pathway – related genes was identified in the mesenteric mass of fibrotic SI-NET as confirmed by RT-qPCR and immunohistochemistry. Protein analysis demonstrated downstream activation of the MAPK and mTOR pathways in some patients with fibrotic SI-NETs. Conclusion This study has provided the first comprehensive analysis of the crosstalk of SI-NET cells with stromal cells. A novel pathway – the integrin pathway – was identified and further validated and confirmed in a cohort of human SI-NET tissue featured by a dual role in fibrogenesis/carcinogenesis within the neoplastic fibrotic microenvironment.
Collapse
Affiliation(s)
- Faidon-Marios Laskaratos
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom.,Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Gert Schwach
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Roswitha Pfragner
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrew Hall
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, University of London, London, United Kingdom
| | - Conrad von Stempel
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Josephine Bretherton
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Sarah Alexander
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Olagunju Ogunbiyi
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Watkins
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Tu Vinh Luong
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
13
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
14
|
Li Q, Yang W, Lu M, Zhang R. Identification of a 6-Gene Signature Associated with Resistance to Tyrosine Kinase Inhibitors: Prognosis for Clear Cell Renal Cell Carcinoma. Med Sci Monit 2020; 26:e927078. [PMID: 33296352 PMCID: PMC7734882 DOI: 10.12659/msm.927078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are used to treat metastatic disease associated with clear cell renal cell carcinoma (ccRCC); however, most patients develop resistance after 6 to 15 months. As such, identifying biomarkers of TKI resistance may be useful for prognosis. Material/Methods We analyzed ChIP-seq data related to TKI resistance from the Gene Expression Omnibus and RNA-Seq and clinical data from The Cancer Genome Atlas database. We used univariate Cox analysis and Cox regression/Lasso analysis to determine a risk score. The Kaplan-Meier estimate and receiver operating characteristic curve verified the risk score’s sensitivity and specificity. The stratified analysis and the univariate and multivariate analyses revealed its predictive power. We predicted survival time by constructing a nomogram. Results Of the 32 differentially expressed genes (DEGs) related to TKI resistance, 6 (ACE2, MMP24, SLC44A4, C1R, C1ORF194, ADAMTS15) were used to establish a risk score. Kaplan-Meier analysis showed that high-risk patients had shorter median survival times than low-risk patients, notably among those with metastatic disease (1.51 vs. 4.55 years). The stratified analysis revealed that patients with advanced disease had relatively higher risk scores than patients at early stages (P<0.001). Univariate analysis independently associated the 6-DEGs signature with the prognosis of metastatic ccRCC (hazard ratio, 1.217; 95% confidence interval, 1.090–1.358). The nomogram we constructed based on 6-DEGs signature and clinical parameters predicted survival time accurately. Conclusions We identified a 6-DEGs signature that permitted us to establish a risk score related to TKI resistance that can serve as a reliable biomarker for predicting the survival of patients with ccRCC.
Collapse
Affiliation(s)
- Qinke Li
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Wenbo Yang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Maoqing Lu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
15
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1132] [Impact Index Per Article: 226.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
16
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Expression pattern of EEF1A2 in brain tumors: Histological analysis and functional role as a promoter of EMT. Life Sci 2020; 246:117399. [PMID: 32032648 DOI: 10.1016/j.lfs.2020.117399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
AIMS Glioblastomas are highly aggressive brain tumors with a very poor survival rate. EEF1A2, the proto-oncogenic isoform of the EEF1A translation factor family, has been found to be overexpressed and promoting tumorigenesis in multiple cancers. Interestingly, recent studies reported reduced expression of this protein in brain tumors, drawing our attention to find the functional role and mechanism of this protein in brain tumor progression. MAIN METHODS Using representative cell line as models, the role of EEF1A2 in cell proliferation, migration and invasion were assessed using MTS assay, scratch wound-healing assay, transwell migration and invasion assay, respectively. Activation of key signaling pathways was assessed using western blots and real-time PCR. Finally, using immunohistochemistry we checked the protein levels of EEF1A2 in CNS tumors. KEY FINDINGS EEF1A2 was found to increase the proliferative, migratory and invasive properties of cell lines of both glial and neuronal origin. PI3K activation directly correlated with EEF1A2 levels. Protein levels of key EMT markers viz. Twist, Snail, and Slug were increased upon ectopic EEF1A2 expression. Furthermore, EEF1A2 was found to affect the expression levels of key inflammatory cytokines, growth factors and matrix metalloproteases. IHC analysis showed that EEF1A2 is upregulated in tumor tissues compared to normal tissue. SIGNIFICANCE EEF1A2 acts as an oncogene in both neuronal and glial cells and triggers an EMT program via PI3K pathway. However, it shows enhanced expression in neuronal cells of the brain than the glial cells, which could explain the previously reported anomaly.
Collapse
|
18
|
Impact of proteolysis on cancer stem cell functions. Biochimie 2019; 166:214-222. [DOI: 10.1016/j.biochi.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
19
|
Wolf M, Clay SM, Oldenburg CE, Rose-Nussbaumer J, Hwang DG, Chan MF. Overexpression of MMPs in Corneas Requiring Penetrating and Deep Anterior Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2019; 60:1734-1747. [PMID: 31022731 PMCID: PMC6485316 DOI: 10.1167/iovs.18-25961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases involved in wound healing processes, including neovascularization and fibrosis. We assessed MMP protein expression levels in diseased corneas of patients requiring penetrating and deep anterior lamellar keratoplasty. The purpose of this study was to test the hypothesis that upregulation of MMPs in diseased corneas is positively associated with clinical levels of corneal neovascularization and fibrosis. Methods Protein expression levels of nine individual MMPs were quantified simultaneously in human corneal lysates by using the Bio-Plex Pro Human MMP 9-Plex Panel and the MAGPIX technology. Measurements of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12, and MMP13 were performed on diseased specimens from 21 patients undergoing corneal transplantation (17 for penetrating keratoplasty and 4 for deep anterior lamellar keratoplasty) and 6 normal control corneas. Results Luminex-based expression analysis revealed a significant overexpression of four of the nine MMPs tested (MMP2, MMP8, MMP12, and MMP13) in patient samples compared to control. Significant overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 was observed in diseased corneas with neovascularization compared with diseased corneas without neovascularization. Overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 also corresponded with the levels of corneal fibrosis. Finally, reduced expression of MMP3 was detected in keratoconus patients. Conclusions Multiple MMPs are expressed in the corneas of patients with chronic disease requiring keratoplasty even when the pathologic process appears to be clinically inactive. In particular, the expression of several MMPs (MMP2, MMP8, MMP12, and MMP13) is positively associated with increased levels corneal fibrosis and neovascularization.
Collapse
Affiliation(s)
- Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Selene M Clay
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Catherine E Oldenburg
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Jennifer Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| |
Collapse
|
20
|
Afratis NA, Sagi I. Novel Approaches for Extracellular Matrix Targeting in Disease Treatment. Methods Mol Biol 2019; 1952:261-275. [PMID: 30825181 DOI: 10.1007/978-1-4939-9133-4_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) macromolecules, apart from structural role for the surrounding tissue, have also been defined as crucial mediators in several cell mechanisms. The proteolytic and cross-linking cascades of ECM have fundamental importance in health and disease, which is increasingly becoming acknowledged. However, formidable challenges remain to identify the diverse and novel role of ECM molecules, especially with regard to their distinct biophysical, biochemical, and structural properties. Considering the heterogeneous, dynamic, and hierarchical nature of ECM, the characterization of 3D functional molecular view of ECM in atomic detail will be very useful for further ECM-related studies. Nowadays, the creation of a pioneer ECM multidisciplinary integrated platform in order to decipher ECM homeostasis is more possible than ever. The access to cutting-edge technologies, such as optical imaging and electron and atomic force microscopies, along with diffraction and X-ray-based spectroscopic methods can integrate spanning wide ranges of spatial and time resolutions. Subsequently, ECM image-guided site-directed proteomics can reveal molecular compositions in defined native and reconstituted ECM microenvironments. In addition, the use of highly selective ECM enzyme inhibitors enables the comparative molecular analyses within pre-classified remodeled ECM microenvironments. Mechanistic information which will be derived can be used to develop novel protein-based inhibitors for effective diagnostic and/or therapeutic modalities targeting ECM reactions within tissue microenvironment.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Abstract
Extracellular vesicles (EVs) are small particles that mediate intercellular communications in local and distant microenvironments. Due to their ability to carry bioactive materials such as proteins, nucleic acids, and lipids, and to transfer their cargo into target cells, EVs are thought to be crucial mediators under pathological and physiological conditions. Recent investigations of their protein profiles have revealed the presence of metalloproteinases such as matrix metalloproteinases (MMPs) in EVs from various cell types and body fluids. Although information regarding the biological and clinical significance of MMPs in EVs is still limited, EV-associated MMPs can alter EV cargo by ectodomain shedding, exerting proteolytic activity following uptake by target cells, or directly contributing to degradation of extracellular matrix proteins surrounding cells. This review focuses on recent findings regarding EV-associated MMPs, and we further discuss their potential involvement in human diseases.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
23
|
Van Roten A, Barakat AZAZ, Wouters A, Tran TA, Mouton S, Noben JP, Gentile L, Smeets K. A carcinogenic trigger to study the function of tumor suppressor genes in Schmidtea mediterranea. Dis Model Mech 2018; 11:dmm032573. [PMID: 29967069 PMCID: PMC6176991 DOI: 10.1242/dmm.032573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
Planarians have been long known for their regenerative ability, which hinges on pluripotency. Recently, however, the planarian model has been successfully established for routine toxicological screens aimed to assess overproliferation, mutagenicity and tumorigenesis. In this study, we focused on planarian tumor suppressor genes (TSGs) and their role during chemically induced carcinogenic stress in Schmidtea mediterranea Combining in silico and proteomic screens with exposure to human carcinogen type 1A agent cadmium (Cd), we showed that many TSGs have a function in stem cells and that, in general, exposure to Cd accelerated the onset and increased the severity of the observed phenotype. This suggested that the interaction between environmental and genetic factors plays an important role in tumor development in S. mediterranea Therefore, we further focused on the synergistic effects of Cd exposure and p53 knockdown (KD) at the cellular and molecular levels. Cd also produced a specific proteomic landscape in homeostatic animals, with 172 proteins differentially expressed, 43 of which were downregulated. Several of these proteins have tumor suppressor function in human and other animals, namely Wilms Tumor 1 Associated Protein (WT1), Heat Shock Protein 90 (HSP90), Glioma Pathogenesis-Related Protein 1 (GLIPR1) and Matrix Metalloproteinase B (Smed-MMPB). Both Glipr1 and MmpB KD produced large outgrowths, epidermal lesions and epidermal blisters. The epidermal blisters that formed as a consequence of Smed-MmpB KD were populated by smedwi1+ cells, many of which were actively proliferating, while large outgrowths contained ectopically differentiated structures, such as photoreceptors, nervous tissue and a small pharynx. In conclusion, Smed-MmpB is a planarian TSG that prevents stem cell proliferation and differentiation outside the proper milieu.
Collapse
Affiliation(s)
- Andromeda Van Roten
- Zoology: Biodiversity and Toxicology, Hasselt University-Campus Diepenbeek, Agoralaan 1, Gebouw D, 3590, Diepenbeek, Belgium
| | - Amal Zohir Abo-Zeid Barakat
- Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, von Esmarch-str. 54, 48149, Münster, Germany
| | - Annelies Wouters
- Zoology: Biodiversity and Toxicology, Hasselt University-Campus Diepenbeek, Agoralaan 1, Gebouw D, 3590 Diepenbeek, Belgium
| | - Thao Anh Tran
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713, Groningen, The Netherlands
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University and Transnationale Universiteit Limburg, School of Life Sciences, 3590, Diepenbeek, Belgium
| | - Luca Gentile
- Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, von Esmarch-str. 54, 48149, Münster, Germany
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Hasselt University-Campus Diepenbeek, Agoralaan 1, Gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
24
|
Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:673-684. [PMID: 30184794 DOI: 10.1016/j.msec.2018.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022]
Abstract
Curcumin was employed to prepare anticancer nanoparticles (size 175 ± 15 nm) using anti-inflammatory enzyme serratiopeptidase by desolvation method. Here serratiopeptidase acted as a carrier as well as bioactive molecule in the nanoformulations. The Cur-SPD NPs (curcumin loaded serratiopeptidase nanoparticles) were characterized using DLS, FESEM and FTIR. The in vitro release behavior depicted biphasic pattern at 37 °C (pH 7.4) and release of 95% of both molecules occurred in 24 h. Serratiopeptidase not only provided stability to curcumin but also increased its effectiveness against cancer cells. These nanoparticles had anti-cancer activity in MCF-7 and HeLa cell lines as shown by cytotoxicity assay, DAPI nuclear staining, ROS production and DNA damage. The immunomodulatory tests showed that Cur-SPD NPs reduce level of IL-6 but increase TNFα level in THP1 cell lines. Structural similarity of serratiopeptidase to matrix metallo proteases (MMPs), particularly MMP8, have been found (based on low RMSD values) to induce TNFα production and play tumour suppressive role in certain cancers. Thus anti-cancer properties of Cur-SPD NPs may be attributed to synergistic effect of curcumin and serratiopeptidase. Thus results in present investigation provide an insight on role of serratiopeptidase in development of co-delivery of multifunctional nanoparticles with anti-cancer properties introduction.
Collapse
|
25
|
Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin α vβ 3 axis with multispecific N-TIMP2-based antagonists for cancer therapy. J Biol Chem 2018; 293:13310-13326. [PMID: 29986882 DOI: 10.1074/jbc.ra118.004406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions of the signaling molecules matrix metalloproteinase-14 (MMP-14) and integrin αvβ3 in various types of cancer are believed to derive from their collaborative activity in promoting invasion, metastasis, and angiogenesis, as shown in vitro and in vivo The two effectors act in concert in a cell-specific manner through the localization of pro-MMP-2 to the cell surface, where it is processed to intermediate and matured MMP-2. The matured MMP-2 product is localized to the cell surface via its binding to integrin αvβ3 The MMP-14/MMP-2/integrin αvβ3 axis thus constitutes an attractive putative target for therapeutic interventions, but the development of inhibitors that target this axis remains an unfulfilled task. To address the lack of such multitarget inhibitors, we have established a combinatorial approach that is based on flow cytometry screening of a yeast-displayed N-TIMP2 (N-terminal domain variant of tissue inhibitor of metalloproteinase-2) mutant library. On the basis of this screening, we generated protein monomers and a heterodimer that contain monovalent and bivalent binding epitopes to MMP-14 and integrin αvβ3 Among these proteins, the bi-specific heterodimer, which bound strongly to both MMP-14 and integrin αvβ3, exhibited superior ability to inhibit MMP-2 activation and displayed the highest inhibitory activity in cell-based models of a MMP-14-, MMP-2-, and integrin αvβ3-dependent glioblastoma and of endothelial cell invasiveness and endothelial capillary tube formation. These assays enabled us to show the superiority of the combined target effects of the inhibitors and to investigate separately the role each of the three signaling molecules in various malignant processes.
Collapse
Affiliation(s)
- Gal Yosef
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Valeria Arkadash
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Böckelman C, Beilmann-Lehtonen I, Kaprio T, Koskensalo S, Tervahartiala T, Mustonen H, Stenman UH, Sorsa T, Haglund C. Serum MMP-8 and TIMP-1 predict prognosis in colorectal cancer. BMC Cancer 2018; 18:679. [PMID: 29929486 PMCID: PMC6013876 DOI: 10.1186/s12885-018-4589-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Almost all of the extracellular matrix (ECM) components can be degraded by the endoproteinases matrix metalloproteinases (MMPs). Important regulators of MMPs, and thereby of the extracellular environment, are tissue inhibitors of metalloproteinases (TIMPs), and especially TIMP-1. Early tumor development, as well as distant metastasis, may be results of an MMP/TIMP ratio imbalance altering the ECM. MMPs are elevated in several inflammatory conditions. Our aim is to investigate the prognostic role of MMP-8, - 9, and TIMP-1 in colorectal cancer (CRC) and their relationship to inflammation. METHODS We included 337 colorectal cancer patients and 47 controls undergoing surgery at Helsinki University Hospital in Finland, 1998-2011. Serum levels of MMP-8 and plasma levels of C-reactive protein (CRP) were determined with a time-resolved immunofluorometric assay (IFMA), and MMP-9 and TIMP-1 with commercial enzyme-linked immunosorbent assay (ELISA) kits. Association and correlation analyses were performed with the Mann-Whitney U, Kruskal-Wallis, and Spearman rank correlation tests. Survival curves were constructed according to the Kaplan-Meier method and compared with the log-rank test. RESULTS Among patients with advanced disease, serum levels of MMP-8 and TIMP-1 were elevated. CRC patients with high MMP-8 (HR (hazard ratio) 1.72, 95% confidence interval (CI) 1.17-2.52, P = 0.005) and those with high TIMP-1 (HR 1.80, 95% CI 1.23-2.64, P = 0.002) had worse prognoses. MMP-9 level failed to serve as a prognostic factor. In multivariable survival analysis, Dukes stage, and low MMP-9/TIMP-1 molar ratio (HR 0.46, 95% CI 0.33-0.98, P = 0.042) were independently predicted prognosis. A weak correlation between CRP and MMP-8 (rS = 0.229, P < 0.001), and TIMP-1 (rS = 0.280, P < 0.001) was noted. Among patients showing no systemic inflammatory response, MMP-8 (HR 1.66, 95% CI 1.10-2.53, P = 0.017) and TIMP-1 (HR 1.59, 95% CI 1.05-2.42, P = 0.029) were prognostic factors. CONCLUSIONS MMP-8 and TIMP-1 in serum, but not MMP-9, identified CRC patients with bad prognosis. Among patients showing no systemic inflammatory response, MMP-8 and TIMP-1 may associate with poor prognosis.
Collapse
Affiliation(s)
- Camilla Böckelman
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland. .,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.
| | - Ines Beilmann-Lehtonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Selja Koskensalo
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, P.O. Box 63, Haartmaninkatu 8, 2nd floor, FIN-00014, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, P.O. Box 700, FIN-00029 HUS, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, P.O. Box 63, Haartmaninkatu 8, 2nd floor, FIN-00014, Helsinki, Finland.,Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| |
Collapse
|
27
|
Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation. J Cell Physiol 2017; 233:4530-4545. [PMID: 29115666 DOI: 10.1002/jcp.26259] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
During embryo implantation, crosstalk between the endometrial epithelium and the blastocyst, especially the trophoblasts, is a prerequisite for successful implantation. During this crosstalk, various molecular and functional changes occur to promote synchrony between the embryo and the endometrium as well as the uterine cavity microenvironment. In the past few years, growing evidence has shown that endometrium-derived exosomes play pivotal roles in the embryonic-maternal crosstalk during implantation, although the exact mechanism of this crosstalk has yet to be determined. The presence of metalloproteinases has been reported in endometrium-derived exosomes, implying the importance of these enzymes in exosome-based crosstalk. Thus, in this review, we describe the potential roles of the metalloproteinases of endometrium-derived exosomes in promoting embryo attachment and implantation. This study could provide a better understanding of the potential roles of exosomal metalloproteinases in embryo implantation and pave the way for developing novel exosome-based regulatory agents to support early pregnancy.
Collapse
Affiliation(s)
- Zeinab Latifi
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ranjbaran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| |
Collapse
|
28
|
Polymorphisms in matrix metalloproteinases 2, 3, and 8 increase recurrence and mortality risk by regulating enzyme activity in gastric adenocarcinoma. Oncotarget 2017; 8:105971-105983. [PMID: 29285307 PMCID: PMC5739694 DOI: 10.18632/oncotarget.22516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
The association of polymorphisms in matrix metalloproteinases (MMPs) with clinical outcomes of gastric adenocarcinoma has not been examined. Ten polymorphisms in MMP1, 2, 3, 7, 8, 9, 12, and 13 were genotyped and investigated, and patients were followed for an average of 58 months. The activities of MMP2, 3, and 8 were measured. Recurrence risk increased in patients with the MMP2 rs2285053 CC genotype (hazard ratio [HR], 1.85), MMP3 rs679620 AA genotype (HR, 2.15), and MMP8 rs1940475 TT genotype (HR, 2.22) on recurrence free survival (RFS). Co-presence of the unfavorable MMP2 rs2285053 CC and MMP8 rs1940475 TT genotypes resulted in an additional increased risk of recurrence (RFS: HR, 4.42; 95% confidence interval [CI], 2.15-9.09; p<0.0001) and risk of death (overall survival ( OS) : HR, 6.59; 95% CI, 3.15-13.19; p<0.0001). Theoretical survival tree analysis revealed that recurrence-free survival significantly varied from 15.5 to 87 months among patients with different polymorphisms in MMP2, 3, and 8. The enzymatic activities of MMP2 and MMP3 increased (MMP2 rs2285053 CC: 888.60 vs. CT: 392.00, p <0.0001; MMP3 rs679620 AA: 131.10 vs. GG: 107.74, p=0.015), whereas those of MMP8 decreased (MMP8 rs1940475 TT: 133.78 vs. CC: 147.54, p=0.011) in gastric cancer tissues. These results suggest that polymorphisms in MMP2, 3, and 8 may increase cancer recurrence and patient death by increasing or decreasing enzyme activity in patients with gastric adenocarcinoma.
Collapse
|
29
|
Lei D, Zhang F, Yao D, Xiong N, Jiang X, Zhao H. Galangin increases ERK1/2 phosphorylation to decrease ADAM9 expression and prevents invasion in A172 glioma cells. Mol Med Rep 2017; 17:667-673. [PMID: 29115634 DOI: 10.3892/mmr.2017.7920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Galangin (3,5,7‑trihydroxyflavone), is a natural flavonoid present in plants. Galangin is reported to exhibit anti‑cancer properties against various cancer types. The aim of the present study was to display the effects of galangin on glioma and its mechanism of action in A172 human glioma cancer cells. The results clearly indicated that treatment of galangin inhibited A172 cell migration and invasion under non‑toxic doses. A human proteinase array assay was conducted to elucidate the potential effects of galangin, and the obtained results demonstrated that treatment of galangin inhibited ADAM9 protein expression and mRNA expression, that are known to contribute to cancer progression. Sustained extracellular signal‑regulated kinase (Erk)1/2 activation was also monitored, which contributed to ADAM9 protein expression and mRNA inhibition as investigated using western blotting analysis and reverse transcription‑quantitative polymerase chain reaction experiment. Erk1/2 inhibition by inhibitor or small interfering (si)Erk transfection markedly terminated galangin‑inhibited A172 migration and invasion via an Erk1/2 activation mechanism. Collective results suggested that galangin may act as an effective chemotherapeutic agent for glioma cancer depending on its ability to bring about ADAM9 and Erk1/2 activation.
Collapse
Affiliation(s)
- Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nanxiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
30
|
Santibanez JF, Obradović H, Kukolj T, Krstić J. Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn 2017; 247:382-395. [PMID: 28722327 DOI: 10.1002/dvdy.24554] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic factor that acts as a tumor suppressor in the early stages, while it exerts tumor promoting activities in advanced stages of cancer development. One of the hallmarks of cancer progression is the capacity of cancer cells to migrate and invade surrounding tissues with subsequent metastasis to different organs. Matrix metalloproteinases (MMPs) together with urokinase-type plasminogen activator (uPA) and its receptor (uPAR), whose main original function described is the proteolytic degradation of the extracellular matrix, play key cellular roles in the enhancement of cell malignancy during cancer progression. TGF-β tightly regulates the expression of several MMPs and uPA/uPAR in cancer cells, which in return can participate in TGF-β activation, thus contributing to tumor malignancy. TGF-β is one of the master factors in the induction of cancer-associated epithelial to mesenchymal transition (EMT), and recently both MMPs and uPA/uPAR have also been shown to be implicated in the cancer-associated EMT process. In this review, we analyze the main molecular mechanisms underlying MMPs and uPA/uPAR regulation by TGF-β, as well as their mutual implication in the development of EMT in cancer cells. Developmental Dynamics 247:382-395, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Arora M, Bagi P, Strongin A, Heimall J, Zhao X, Lawrence MG, Trivedi A, Henderson C, Hsu A, Quezado M, Kleiner DE, Venkatesan AM, Holland SM, Freeman AF, Heller T. Gastrointestinal Manifestations of STAT3-Deficient Hyper-IgE Syndrome. J Clin Immunol 2017; 37:695-700. [PMID: 28803389 DOI: 10.1007/s10875-017-0429-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE STAT 3 deficiency (autosomal dominant hyper immunoglobulin E syndrome (AD-HIES)) is a primary immunodeficiency disorder with multi-organ involvement caused by dominant negative signal transducer and activator of transcription gene 3 (STAT3) mutations. We sought to describe the gastrointestinal (GI) manifestations of this disease. METHODS Seventy subjects aged five to 60 years with a molecular diagnosis of AD-HIES were evaluated at the National Institutes of Health (NIH). Data collection involved a GI symptom questionnaire and retrospective chart review. RESULTS In our cohort of 70 subjects, we found that 60% had GI symptoms (42/70). The most common manifestations were gastroesophageal reflux disease (GERD) observed in 41%, dysphagia in 31%, and abdominal pain in 24%. The most serious complications were food impaction in 13% and colonic perforation in 6%. Diffuse esophageal wall thickening in 74%, solid stool in the right colon in 50% (12/24), and hiatal hernia in 26% were the most prevalent radiologic findings. Esophagogastroduodenoscopy (EGD) demonstrated esophageal tortuosity in 35% (8/23), esophageal ulceration in 17% (4/23), esophageal strictures requiring dilation in 9% (2/23), and gastric ulceration in 17% (4/23). Esophageal eosinophilic infiltration was an unexpected histologic finding seen in 65% (11/17). CONCLUSION The majority of AD-HIES subjects develop GI manifestations as part of their disease. Most notable are the symptoms and radiologic findings of GI dysmotility, as well as significant eosinophilic infiltration, concerning for a secondary eosinophilic esophagitis. These findings suggest that the STAT3 pathway may be implicated in a new mechanism for the pathogenesis of several GI disorders.
Collapse
Affiliation(s)
- Manish Arora
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Preet Bagi
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Anna Strongin
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Jennifer Heimall
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA
| | - Xiongce Zhao
- Office of Director, NIDDK, NIH, Bethesda, MD, USA
| | - Monica G Lawrence
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA
| | - Apurva Trivedi
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Carolyn Henderson
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA
| | - Amy Hsu
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA
| | | | | | | | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA.
| | - Theo Heller
- Liver Diseases Branch, NIDDK, NIH, 10 Center Drive, Bldg 10, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
33
|
Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28636874 DOI: 10.1016/j.bbamcr.2017.06.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic proteolysis of cell surface proteins and extracellular matrix (ECM) is critical for tissue homeostasis and cell signaling. These proteolytic activities are mediated predominantly by a family of proteases termed matrix metalloproteinases (MMPs). The growing evidence in recent years that ECM and non-ECM bioactive molecules (e.g., growth factors, cytokines, chemokines, on top of matrikines and matricryptins) have versatile functions redefines our view on the roles matrix remodeling enzymes play in many physiological and pathological processes, and underscores the notion that ECM proteolytic reaction mechanisms represent master switches in the regulation of critical biological processes and govern cell behavior. Accordingly, MMPs are not only responsible for direct degradation of ECM molecules but are also key modulators of cardinal bioactive factors. Many attempts were made to manipulate ECM degradation by targeting MMPs using small peptidic and organic inhibitors. However, due to the high structural homology shared by these enzymes, the majority of the developed compounds are broad-spectrum inhibitors affecting the proteolytic activity of various MMPs and other zinc-related proteases. These inhibitors, in many cases, failed as therapeutic agents, mainly due to the bilateral role of MMPs in pathological conditions such as cancer, in which MMPs have both pro- and anti-tumorigenic effects. Despite the important role of MMPs in many human diseases, none of the broad-range synthetic MMP inhibitors that were designed have successfully passed clinical trials. It appears that, designing highly selective MMP inhibitors that are also effective in vivo, is not trivial. The challenges related to designing selective and effective metalloprotease inhibitors, are associated in part with the aforesaid high structural homology and the dynamic nature of their protein scaffolds. Great progress was achieved in the last decade in understanding the biochemistry and biology of MMPs activity. This knowledge, combined with lessons from the past has drawn new "boundaries" for the development of the next-generation MMP inhibitors. These novel agents are currently designed to be highly specific, capable to discriminate between the homologous MMPs and ideally administered as a short-term topical treatment. In this review we discuss the latest progress in the fields of MMP inhibitors in terms of structure, function and their specific activity. The development of novel highly specific inhibitors targeting MMPs paves the path to study complex biological processes associated with ECM proteolysis in health and disease. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Maxim Levin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
34
|
Zhang T, Suryawanshi YR, Szymczyna BR, Essani K. Neutralization of matrix metalloproteinase-9 potentially enhances oncolytic efficacy of tanapox virus for melanoma therapy. Med Oncol 2017; 34:129. [PMID: 28593604 DOI: 10.1007/s12032-017-0988-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs), which are involved in degradation of extracellular matrix, are critical regulators in tumor progression, metastasis and angiogenesis. Although induction of MMPs is frequently observed during the viral infection, the effect of MMPs on viral replication varies between viruses. MMP-9, for instance, is upregulated and promotes the replication of some viruses, such as herpes simplex virus, but inhibits the replication of others. Here, we report that infection with tanapox virus (TPV) promotes the expression of MMP-9 in the melanoma cells. In addition, we show that MMP-9 exerts an anti-viral effect on TPV replication and plays a protective role in TPV-infected melanoma cells in vitro. Moreover, the neutralization of MMP-9 in melanoma cells remarkably enhances the TPV infection and leads to a significant reduction in cell survival. In summary, this study contributes to understanding of the role played by MMP-9 in TPV infectivity and provides more insights for using TPV as cancer virotherapy in future studies. Since TPV has shown substantial oncolytic efficacy in promoting melanoma tumor regression in animal models, identifying mechanisms that suppress MMP-9 expression upon TPV infection can potentially improve its use as a melanoma virotherapy.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Yogesh R Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Blair R Szymczyna
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
35
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
36
|
Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, Ustaoglu A, Sarker SJ, Marshall J, Edwards DR, Jones JL. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 2017; 19:33. [PMID: 28330493 PMCID: PMC5363009 DOI: 10.1186/s13058-017-0822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal myoepithelial cells (MECs) play an important tumour-suppressor role in the breast but display an altered phenotype in ductal carcinoma in situ (DCIS), gaining tumour-promoter functions. Matrix metalloproteinase-8 (MMP-8) is expressed by normal MECs but is lost in DCIS. This study investigated the function of MMP-8 in MECs and the impact of its loss in DCIS. METHODS Primary normal and DCIS-associated MECs, and normal (N-1089) and DCIS-modified myoepithelial (β6-1089) cell lines, were used to assess MMP-8 expression and function. β6-1089 lacking MMP-8 were transfected with MMP-8 WT and catalytically inactive MMP-8 EA, and MMP-8 in N-1089 MEC was knocked down with siRNA. The effect on adhesion and migration to extracellular matrix (ECM), localisation of α6β4 integrin to hemidesmosomes (HD), TGF-β signalling and gelatinase activity was measured. The effect of altering MEC MMP-8 expression on tumour cell invasion was investigated in 2D and 3D organotypic models. RESULTS Assessment of primary cells and MEC lines confirmed expression of MMP-8 in normal MEC and its loss in DCIS-MEC. Over-expression of MMP-8 WT but not MMP-8 EA in β6-1089 cells increased adhesion to ECM proteins and reduced migration. Conversely, knock-down of MMP-8 in N-1089 reduced adhesion and increased migration. Expression of MMP-8 WT in β6-1089 led to greater localisation of α6β4 to HD and reduced retraction fibre formation, this being reversed by MMP-8 knock-down in N-1089. Over-expression of MMP-8 WT reduced TGF-β signalling and gelatinolytic activity. MMP-8 knock-down enhanced TGF-β signalling and gelatinolytic activity, which was reversed by blocking MMP-9 by knock-down or an inhibitor. MMP-8 WT but not MMP-8 EA over-expression in β6-1089 reduced breast cancer cell invasion in 2D and 3D invasion assays, while MMP-8 knock-down in N-1089 enhanced cancer cell invasion. Staining of breast cancer cases for MMP-8 revealed a statistically significant loss of MMP-8 expression in DCIS with invasion versus pure DCIS (p = 0.001). CONCLUSIONS These data indicate MMP-8 is a vital component of the myoepithelial tumour-suppressor function. It restores MEC interaction with the matrix, opposes TGF-β signalling and MMP-9 proteolysis, which contributes to inhibition of tumour cell invasion. Assessment of MMP-8 expression may help to determine risk of DCIS progression.
Collapse
Affiliation(s)
- Muge Sarper
- Translational Cancer Discovery Team, CRUK Cancer Therapeutics Unit, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jenny Gomm
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Linda Haywood
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Decock
- Cancer Research Centre, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| | - Sally Thirkettle
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ahsen Ustaoglu
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shah-Jalal Sarker
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Marshall
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
37
|
Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation. Sci Rep 2017; 7:43849. [PMID: 28262842 PMCID: PMC5338350 DOI: 10.1038/srep43849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells.
Collapse
|
38
|
Internalization of Collagen: An Important Matrix Turnover Pathway in Cancer. EXTRACELLULAR MATRIX IN TUMOR BIOLOGY 2017. [DOI: 10.1007/978-3-319-60907-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Rouanet-Mehouas C, Czarny B, Beau F, Cassar-Lajeunesse E, Stura EA, Dive V, Devel L. Zinc–Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity. J Med Chem 2016; 60:403-414. [DOI: 10.1021/acs.jmedchem.6b01420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cecile Rouanet-Mehouas
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Bertrand Czarny
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Fabrice Beau
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Evelyne Cassar-Lajeunesse
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Enrico A. Stura
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Vincent Dive
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| | - Laurent Devel
- Service d’Ingénierie
Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif/Yvette F-91191, France
| |
Collapse
|
40
|
Bordenave T, Helle M, Beau F, Georgiadis D, Tepshi L, Bernes M, Ye Y, Levenez L, Poquet E, Nozach H, Razavian M, Toczek J, Stura EA, Dive V, Sadeghi MM, Devel L. Synthesis and in Vitro and in Vivo Evaluation of MMP-12 Selective Optical Probes. Bioconjug Chem 2016; 27:2407-2417. [PMID: 27564088 DOI: 10.1021/acs.bioconjchem.6b00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.
Collapse
Affiliation(s)
- Thomas Bordenave
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Marion Helle
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Fabrice Beau
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens , Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Livia Tepshi
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mylène Bernes
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Laure Levenez
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Enora Poquet
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Hervé Nozach
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Enrico A Stura
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Vincent Dive
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Laurent Devel
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| |
Collapse
|
41
|
Gao Y, Gao J, Li M, Zheng Y, Wang Y, Zhang H, Wang W, Chu Y, Wang X, Xu M, Cheng T, Ju Z, Yuan W. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia. J Hematol Oncol 2016; 9:36. [PMID: 27071307 PMCID: PMC4830070 DOI: 10.1186/s13045-016-0264-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/03/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. METHODS The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. RESULTS We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. CONCLUSIONS Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.
Collapse
Affiliation(s)
- Yanan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Juan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Minghao Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yajie Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Hongyan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China.
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Zhenyu Ju
- Institute of Aging, Hangzhou Normal University, Hangzhou, 310036, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China.
| |
Collapse
|
42
|
Hahlbrock A, Goesswein D, Künzel J, Wünsch D, Stauber RH. Threonine Aspartase1: An unexplored protease with relevance for oral oncology? Oral Oncol 2016; 54:e10-2. [PMID: 26777068 DOI: 10.1016/j.oraloncology.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/03/2015] [Accepted: 12/19/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Angelina Hahlbrock
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Dorothee Goesswein
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Julian Künzel
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Désirée Wünsch
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Roland H Stauber
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| |
Collapse
|
43
|
Sun Z, Yin Z, Liu C, Liang H, Jiang M, Tian J. IL-1β promotes ADAMTS enzyme-mediated aggrecan degradation through NF-κB in human intervertebral disc. J Orthop Surg Res 2015; 10:159. [PMID: 26438479 PMCID: PMC4594913 DOI: 10.1186/s13018-015-0296-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Background The purpose of this study is to investigate IL-1β regulation of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5) expression through nuclear factor kappa B (NF-κB) in human nucleus pulposus (NP) cells. Methods qRT-PCR and Western blot were used to measure ADAMTS expression. Transfections and gene silencing were used to determine the role of NF-κB on cytokine-mediated ADAMTS expression and its role in aggrecan degradation. Results IL-1β increased ADAMTS expression in NP cells. Treatment with NF-κB inhibitors abolished the inductive effect of the cytokines on ADAMTS expression. Silencing of p65 confirmed their role in IL-1β-dependent ADAMTS-4 and ADAMTS-5 expression and aggrecan degradation. Conclusions By controlling the activation of NF-κB signaling, IL-1β modulates the expression of ADAMTS in NP cells. To our knowledge, this is the first study that shows the contribution of both ADAMTS-4 and ADAMTS-5 to aggrecan degradation in human NP cells.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Zhanmin Yin
- Spine and Joint Surgery, Central Hospital of Tai An, Shandong, China.
| | - Chao Liu
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - He Liang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Minbo Jiang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Jiwei Tian
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
44
|
|
45
|
Chen CM, Hsieh YH, Hwang JM, Jan HJ, Hsieh SC, Lin SH, Lai CY. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2. Tumour Biol 2014; 36:3407-15. [DOI: 10.1007/s13277-014-2975-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
|
46
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Huang HC, Tsai LL, Tsai JP, Hsieh SC, Yang SF, Hsueh JT, Hsieh YH. Licochalcone A inhibits the migration and invasion of human lung cancer cells via inactivation of the Akt signaling pathway with downregulation of MMP-1/-3 expression. Tumour Biol 2014; 35:12139-49. [PMID: 25149157 DOI: 10.1007/s13277-014-2519-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/15/2014] [Indexed: 11/28/2022] Open
Abstract
Licochalcone A (LicA), a major phenolic constituent of Glycyrrhiza inflata, has been reported to exhibit anti-tumor, anti-inflammatory, and anti-metastatic properties in various cancer cells and animal models. The aim of this study was to determine the anti-tumor effects of LicA on lung cancer cells. The results indicated that LicA exhibited effective inhibition of cell migration and invasion of A549 and H460 cells under non-cytotoxic concentrations. Furthermore, LicA was also found to significantly inhibit the proteins and messenger RNA (mRNA) expression of MMP-1 and MMP-3 in A549 cells. Moreover, treatment of A549 cells with LicA-inhibited activation of the phosphorylation of Akt and inhibition of Akt by LY294002 (PI3K inhibitor) or transfection with the constitutive active-Akt (CA-Akt) expression vector significantly abolished the LicA-inhibited migration and invasion through activation of the Akt pathway. Further mechanistic studies revealed that LicA inhibits Akt signaling pathways and downstream transcription factors Sp1 expression. These findings imply a critical role for Akt inhibition in the LicA-inhibited migration and invasion of lung cancer cells. Thus, LicA might be used as an anti-invasive agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Hung-Che Huang
- Visiting staff, Division of General thoracic Surgery, Department of surgery, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
49
|
Prosdócimi FC, Rodini CO, Sogayar MC, Sousa SCOM, Xavier FCA, Paiva KBS. Calcifying Cystic Odontogenic Tumour: immunohistochemical expression of matrix metalloproteinases, their inhibitors (TIMPs and RECK) and inducer (EMMPRIN). J Oral Pathol Med 2014; 43:545-53. [PMID: 24484176 DOI: 10.1111/jop.12154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Calcifying cyst odontogenic tumour (CCOT) is a rare benign cystic neoplasm of odontogenic origin. MMPs are responsible for extracellular matrix remodelling and, together their inhibitors and inducer, determinate the level of its turnover in pathological processes, leading to an auspicious microenvironment for tumour development. Thus, our goal was to evaluate matrix metalloproteinases (MMPs-2, -7, -9 and -14), their inhibitors (TIMPs-2, -3, -4 and RECK) and its inductor (EMMPRIN) expression in CCOT. MATERIALS AND METHODS We used 18 cases of CCOT submitted to immunolocalization of the target proteins and analysed in both neoplastic odontogenic epithelial and stromal compartments. RESULTS All molecules evaluated were expressed in both compartments in CCOT. In epithelial layer, immunostaining for MMPs, TIMPs, RECK and EMMPRIN was found in basal, suprabasal spindle and stellate cells surrounding ghost cells and ghost cells themselves, except for MMP-9 and TIMP-2 which were only expressed by ghost cells. In stromal compartment, extracellular matrix, mesenchymal (MC) and endothelial cells (EC) were positive for MMP-2, -7, TIMP-3 and -4, while MMP-9, TIMP-2 and RECK were positive only in MC and MMP-14 only in EC. Statistical significance difference was found between both compartments for MMP-9 (P < 0.001), RECK (P = 0.004) and EMMPRIN (P < 0.001), being more expressed in epithelium than in stroma. Positive correlation between both stromal EMMPRIN and RECK expression was found (R = 0.661, P = 0.003). CONCLUSIONS We concluded that these proteins/enzymes are differentially expressed in both epithelium and stroma of CCOT, suggesting an imbalance between MMPs and their inducer/inhibitors may contribute on the tumour behaviour.
Collapse
Affiliation(s)
- Fábio C Prosdócimi
- Department of Oral Pathology, Dental School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation. PLoS One 2014; 9:e103282. [PMID: 25072246 PMCID: PMC4114787 DOI: 10.1371/journal.pone.0103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT) 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE) cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT) reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M) induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.
Collapse
|