1
|
Manara V, Radoani M, Belli R, Peroni D, Destefanis F, Angheben L, Tome G, Tebaldi T, Bellosta P. NOC1 is a direct MYC target, and its protein interactome dissects its activity in controlling nucleolar function. Front Cell Dev Biol 2023; 11:1293420. [PMID: 38213308 PMCID: PMC10782387 DOI: 10.3389/fcell.2023.1293420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The nucleolus is a subnuclear compartment critical in ribosome biogenesis and cellular stress responses. These mechanisms are governed by a complex interplay of proteins, including NOC1, a member of the NOC family of nucleolar proteins responsible for controlling rRNA processing and ribosomal maturation. This study reveals a novel relationship between NOC1 and MYC transcription factor, known for its crucial role in controlling ribosomal biogenesis, cell growth, and proliferation. Here, we demonstrate that NOC1 functions as a direct target of MYC, as it is transcriptionally induced through a functional MYC-binding E-box sequence in the NOC1 promoter region. Furthermore, protein interactome analysis reveals that NOC1-complex includes the nucleolar proteins NOC2 and NOC3 and other nucleolar components such as Nucleostemin1 Ns1 transporters of ribosomal subunits and components involved in rRNA processing and maturation. In response to MYC, NOC1 expression and localization within the nucleolus significantly increase, suggesting a direct functional link between MYC activity and NOC1 function. Notably, NOC1 over-expression leads to the formation of large nuclear granules and enlarged nucleoli, which co-localize with nucleolar fibrillarin and Ns1. Additionally, we demonstrate that NOC1 expression is necessary for Ns1 nucleolar localization, suggesting a role for NOC1 in maintaining nucleolar structure. Finally, the co-expression of NOC1 and MYC enhances nucleolus size and maintains their co-localization, outlining another aspect of the cooperation between NOC1 and MYC in nucleolar dynamics. This study also reveals an enrichment with NOC1 with few proteins involved in RNA processing, modification, and splicing. Moreover, proteins such as Ythdc1, Flacc, and splenito are known to mediate N6-methyladenosine (m6A) methylation of mRNAs in nuclear export, revealing NOC1's potential involvement in coordinating RNA splicing and nuclear mRNA export. In summary, we uncovered novel roles for NOC1 in nucleolar homeostasis and established its direct connection with MYC in the network governing nucleolar structure and function. These findings also highlight NOC1's interaction with proteins relevant to specific RNA functions, suggesting a broader role in addition to its control of nucleolar homeostasis and providing new insight that can be further investigated.
Collapse
Affiliation(s)
- Valeria Manara
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Marco Radoani
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Romina Belli
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Daniele Peroni
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Francesca Destefanis
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Angheben
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Gabriele Tome
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Paola Bellosta
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
2
|
Ding L, Zhao C, Xu Y, Zhang Z, Nie Y, Liao K, Chen Y, Tu B, Zhang X. Mutations in DNA binding domain of p53 impede RSL1D1-p53 interaction to escape from degradation in human colorectal cancer cells. Exp Cell Res 2022; 417:113211. [PMID: 35597299 DOI: 10.1016/j.yexcr.2022.113211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Different from the nucleolus-specific localization in some types of cancer cells, ribosomal L1 domain-containing protein 1 (RSL1D1) distributes throughout the nucleus in human colorectal cancer (CRC) cells. RSL1D1 directly interacts with DNA binding domain (aa 93-292) of wild-type p53 (p53-WT) and thereby recruits p53 to HDM2. The ensuing formation of RSL1D1/HDM2/p53 complex enhances p53 ubiquitination and decreases the protein level of p53 in CRC cells. In this study, we investigated the interaction between RSL1D1 and mutant p53 proteins. We first corroborated that aa 93-224 of p53 is a more precise domain for RSL1D1 binding and mutation in either aa 93-224 or aa 225-292 domain of p53 affects RSL1D1-p53 interaction. R175H mutated p53 does not interact with RSL1D1, whereas R273H mutated p53 still can bind to RSL1D1 but showing a remarkably decreased affinity than p53-WT. Although p53-R273H retained a weakened binding affinity with RSL1D1, it can hardly be recruited to HDM2 by RSL1D1 in HCT116 CRC cells. Accordingly, RSL1D1 lost its capacity to negatively regulate either R175H or R273H p53 mutant via directly interaction in HCT116 cells, thereby facilitating p53 mutants to accumulate and gain oncogenic function. Our findings help explain why mutant p53 proteins are more stable than p53-WT in CRC cells.
Collapse
Affiliation(s)
- Li Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chenhong Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yujie Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yesen Nie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuerou Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Beibei Tu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University (26116120), Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
3
|
Ding L, Zhang Z, Zhao C, Chen L, Chen Z, Zhang J, Liu Y, Nie Y, He Y, Liao K, Zhang X. Ribosomal L1 domain-containing protein 1 coordinates with HDM2 to negatively regulate p53 in human colorectal Cancer cells. J Exp Clin Cancer Res 2021; 40:245. [PMID: 34362424 PMCID: PMC8344204 DOI: 10.1186/s13046-021-02057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal L1 domain-containing protein 1 (RSL1D1) is a nucleolar protein that is essential in cell proliferation. In the current opinion, RSL1D1 translocates to the nucleoplasm under nucleolar stress and inhibits the E3 ligase activity of HDM2 via direct interaction, thereby leading to stabilization of p53. METHODS Gene knockdown was achieved in HCT116p53+/+, HCT116p53-/-, and HCT-8 human colorectal cancer (CRC) cells by siRNA transfection. A lentiviral expression system was used to establish cell strains overexpressing genes of interest. The mRNA and protein levels in cells were evaluated by qRT-PCR and western blot analyses. Cell proliferation, cell cycle, and cell apoptosis were determined by MTT, PI staining, and Annexin V-FITC/PI double staining assays, respectively. The level of ubiquitinated p53 protein was assessed by IP. The protein-RNA interaction was investigated by RIP. The subcellular localization of proteins of interest was determined by IFA. Protein-protein interaction was investigated by GST-pulldown, BiFC, and co-IP assays. The therapeutic efficacy of RSL1D1 silencing on tumor growth was evaluated in HCT116 tumor-bearing nude mice. RESULTS RSL1D1 distributed throughout the nucleus in human CRC cells. Silencing of RSL1D1 gene induced cell cycle arrest at G1/S and cell apoptosis in a p53-dependent manner. RSL1D1 directly interacted with and recruited p53 to HDM2 to form a ternary RSL1D1/HDM2/p53 protein complex and thereby enhanced p53 ubiquitination and degradation, leading to a decrease in the protein level of p53. Destruction of the ternary complex increased the level of p53 protein. RSL1D1 also indirectly decreased the protein level of p53 by stabilizing HDM2 mRNA. Consequently, the negative regulation of p53 by RSL1D1 facilitated cell proliferation and survival and downregulation of RSL1D1 remarkably inhibited the growth of HCT116p53+/+ tumors in a nude mouse model. CONCLUSION We report, for the first time, that RSL1D1 is a novel negative regulator of p53 in human CRC cells and more importantly, a potential molecular target for anticancer drug development.
Collapse
Affiliation(s)
- Li Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chenhong Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lei Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiqiang Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yaxian Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yesen Nie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanzhi He
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University (26116120), Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Jung JH, Lee H, Zeng SX, Lu H. RBM10, a New Regulator of p53. Cells 2020; 9:cells9092107. [PMID: 32947864 PMCID: PMC7563659 DOI: 10.3390/cells9092107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor p53 acts as a transcription factor that regulates the expression of a number of genes responsible for DNA repair, cell cycle arrest, metabolism, cell migration, angiogenesis, ferroptosis, senescence, and apoptosis. It is the most commonly silenced or mutated gene in cancer, as approximately 50% of all types of human cancers harbor TP53 mutations. Activation of p53 is detrimental to normal cells, thus it is tightly regulated via multiple mechanisms. One of the recently identified regulators of p53 is RNA-binding motif protein 10 (RBM10). RBM10 is an RNA-binding protein frequently deleted or mutated in cancer cells. Its loss of function results in various deformities, such as cleft palate and malformation of the heart, and diseases such as lung adenocarcinoma. In addition, RBM10 mutations are frequently observed in lung adenocarcinomas, colorectal carcinomas, and pancreatic ductal adenocarcinomas. RBM10 plays a regulatory role in alternative splicing. Several recent studies not only linked this splicing regulation of RBM10 to cancer development, but also bridged RBM10's anticancer function to the p53 pathway. This review will focus on the current progress in our understanding of RBM10 regulation of p53, and its role in p53-dependent cancer prevention.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Alternative Splicing
- Apoptosis/genetics
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Checkpoints/genetics
- Cell Movement
- Cell Proliferation
- Cellular Senescence
- Cleft Palate/genetics
- Cleft Palate/metabolism
- Cleft Palate/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Humans
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: or (J.H.J.); (H.L.); Tel.: +82-10-961-9597 (J.H.J.); +1-504-988-5293 (H.L.)
| | - Hyemin Lee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: or (J.H.J.); (H.L.); Tel.: +82-10-961-9597 (J.H.J.); +1-504-988-5293 (H.L.)
| |
Collapse
|
5
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
6
|
Lin T, Lin TC, McGrail DJ, Bhupal PK, Ku YH, Zhang W, Meng L, Lin SY, Peng G, Tsai RYL. Nucleostemin reveals a dichotomous nature of genome maintenance in mammary tumor progression. Oncogene 2019; 38:3919-3931. [PMID: 30692636 PMCID: PMC6525051 DOI: 10.1038/s41388-019-0710-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
A defective homologous recombination (HR) repair program increases tumor incidence as well as providing a survival advantage in patients with breast and ovarian cancers. Here, we hypothesize that the tumor-promoting side of genome maintenance programs may be contributed by a self-renewal protein, nucleostemin (NS). To address this issue, we established its functional importance in mammary tumor progression in mice and showed that mammary tumor cells become highly susceptible to replicative DNA damage following NS depletion and are protected from hydroxyurea-induced damage by NS overexpression. Breast cancer cells with basal-like characters display more reliance on NS for genome maintenance than those with luminal characters. Mechanistically, NS-deficient cells demonstrate a significantly reduced HR repair activity. TCGA analyses of human breast cancers revealed that NS is co-enriched positively with HR repair proteins and that high NS expression correlates with low HR defects and predicts poor progression-free survival and resistance to knockdown of cell cycle checkpoint genes in triple-negative/basal-like breast cancers. This work indicates that NS constitutes a tumor-promoting genome maintenance program required for mammary tumor progression.
Collapse
Affiliation(s)
- Tao Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tsung-Chin Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Daniel J McGrail
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Parnit K Bhupal
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Hsuan Ku
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Wen Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Lingjun Meng
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
8
|
Kavyasudha C, Joel JP, Devi A. Differential expression of nucleostemin in the cytoplasm and nuclei of normal and cancerous cell lines. Turk J Biol 2018; 42:250-258. [PMID: 30814887 DOI: 10.3906/biy-1712-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Studies conducted in the past decade have reported nucleostemin (NS) as a nucleolar protein that has a role in self-renewal and cell cycle regulation in cancer/stem cells, but is absent in differentiated cells. The localization and expression patterns of NS have always been disputed, as reports indicate its varied levels among tissues and cells. This study evaluates the expression and localization pattern of NS in normal cells, cancer cell lines, and stem cells. Our findings revealed that the expression of NS was high in cancers originating from the skin and liver compared to the normal cell lines. NS knockdown effects the proliferation of normal cell lines, similar to cancerous cell lines. The localization pattern of NS was analyzed by immunofluorescence, which showed that NS was localized in the nuclei of normal cell lines but is present both in the nucleus and the cytoplasm of cancerous/stem cell lines. Interestingly, we observed that siNS cancerous cell lines had lower NS in the cytoplasm, which did not salvage the reduction in proliferation caused by siNS. We postulate that the loss of NS in the nucleus inhibits the proliferative ability of both normal and cancerous cells at similar rates, although the role of NS in the cytoplasm apart from proliferation needs to be further explored.
Collapse
Affiliation(s)
- Chavali Kavyasudha
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| | - Joseph P Joel
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| |
Collapse
|
9
|
Núñez Villacís L, Wong MS, Ferguson LL, Hein N, George AJ, Hannan KM. New Roles for the Nucleolus in Health and Disease. Bioessays 2018; 40:e1700233. [PMID: 29603296 DOI: 10.1002/bies.201700233] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.
Collapse
Affiliation(s)
- Lorena Núñez Villacís
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Mei S Wong
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Center, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Laura L Ferguson
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Amee J George
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, 4067, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Australia
| | - Katherine M Hannan
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Department of Biochemistry, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
10
|
Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E, Lee Y, Li C, Wang S, Zhang L, Tao L. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: Role of ribosomal biogenesis. J Mol Cell Cardiol 2017; 108:106-113. [PMID: 28549781 DOI: 10.1016/j.yjmcc.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023]
Abstract
Diabetes is a major health problem worldwide. As well-known, diabetes greatly increases cardiac vulnerability to ischemia/reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Nucleostemin (NS) is a nucleolar protein that controls ribosomal biogenesis and exerts cardioprotective effects against I/R injury. However, whether NS-mediated ribosomal biogenesis regulates ischemic vulnerability of diabetic hearts remains unanswered. Utilizing myocardial I/R mouse models, we found that cardiac NS expression significantly increased in response to I/R in normal diet (ND)-fed mice. Surprisingly, cardiac NS failed to be upregulated in high fat diet (HFD)-induced diabetic mice, accompanied by obvious ribosomal dysfunction. Compared with ND group, cardiac specific overexpression of NS by adenovirus (AV) injection significantly restored I/R-induced ribosomal function enhancement, reduced cardiomyocyte apoptosis, improved cardiac function, and decreased infarct sizes in diabetic mice. Notably, co-treatment of homoharringtonine (HHT), a selective inhibitor of ribosomal function, totally blocked NS-mediated cardioprotective effects against I/R injury. Furthermore, in cultured cardiomyocytes, saturated fatty acids treatment, but not high glucose exposure, significantly inhibited simulated I/R-induced NS upregulation and ribosomal function improvement. In conclusion, these data for the first time demonstrate that NS dysregulation induced by saturated fatty acids exposure might be an important cause of increased ischemic vulnerability to I/R injury in diabetic hearts. Targeting NS dysregulation and subsequent ribosomal dysfunction could be a promising therapeutic strategy for diabetic I/R injury management.
Collapse
Affiliation(s)
- Shihao Zhao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China; Department of Physiology, the Fourth Military Medical University, China; Department of Cardiology, the 201st Hospital of People's Liberation Army, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, United States
| | - Yan Lee
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China.
| |
Collapse
|
11
|
Xie N, Ma L, Zhu F, Zhao W, Tian F, Yuan F, Fu J, Huang D, Lv C, Tong T. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress. Sci Rep 2016; 6:36171. [PMID: 27811966 PMCID: PMC5095888 DOI: 10.1038/srep36171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
Nucleolar proteins play an important role in the regulation of the MDM2-p53 pathway, which coordinates cellular response to stress. However, the mechanism underlying this regulation remains poorly understood. Here, we report that the nucleolar protein CSIG is a novel and crucial regulator of the MDM2-p53 pathway. We demonstrate that CSIG translocates from the nucleolus to the nucleoplasm in response to nucleolar stress. Moreover, knockdown of CSIG attenuates the induction of p53 and abrogates G1 phase arrest in response to nucleolar stress. CSIG interacts directly with the MDM2 RING finger domain and inhibits MDM2 E3 ubiquitin ligase activity, thus resulting in a decrease in MDM2-mediated p53 ubiquitination and degradation. Our results suggest that the CSIG-MDM2-p53 regulatory pathway plays an important role in the cellular response to nucleolar stress.
Collapse
Affiliation(s)
- Nan Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Liwei Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Wenhui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Fuwen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Jingxuan Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Daoyuan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Cuicui Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| | - Tanjun Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing 100191, PR China
| |
Collapse
|
12
|
Pirlot C, Thiry M, Trussart C, Di Valentin E, Piette J, Habraken Y. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:581-95. [DOI: 10.1016/j.bbamcr.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
|
13
|
Sia PI, Wood JP, Chidlow G, Sharma S, Craig J, Casson RJ. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review. Clin Exp Ophthalmol 2016; 44:188-95. [PMID: 26427048 DOI: 10.1111/ceo.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 01/20/2023]
Abstract
The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed.
Collapse
Affiliation(s)
- Paul I Sia
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jamie Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Yuan F, Cheng Q, Li G, Tong T. Nucleostemin Knockdown Sensitizes Hepatocellular Carcinoma Cells to Ultraviolet and Serum Starvation-Induced Apoptosis. PLoS One 2015; 10:e0141678. [PMID: 26517370 PMCID: PMC4627730 DOI: 10.1371/journal.pone.0141678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Nucleostemin (NS) is a GTP-binding protein that is predominantly expressed in embryonic and adult stem cells but not in terminally differentiated cells. NS plays an essential role in maintaining the continuous proliferation of stem cells and some types of cancer cells. However, the role of NS in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to clarify the role of NS in HCC. First, we demonstrated high expression of NS in most HCC cell lines and liver cancer tissues. NS knockdown induced a severe decline in cell viability of MHCC97H cells as detected by MTT and cell proliferation assays. Next, we used ultraviolet (UV) and serum starvation-induced apoptosis models to investigate whether NS suppression or up-regulation affects HCC cell apoptosis. After UV treatment or serum starvation, apoptosis was strongly enhanced in MHCC97H and Bel7402 cells transfected with small interfering RNA against NS, whereas NS overexpression inhibited UV- and serum-induced apoptosis of HCC cells. Furthermore, after UV irradiation, inhibition of NS increased the expression of pro-apoptosis protein caspase 3 and decreased the expression of anti-apoptosis protein Bcl-2. A caspase 3 inhibitor could obviously prevent NS knockdown-induced apoptosis. In conclusion, our study demonstrated overexpression of NS in most HCC tissues compared with their matched surrounding tissues, and silencing NS promoted UV- and serum starvation-induced apoptosis of MHCC97H and Bel7402 cells. Therefore, the NS gene might be a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Qian Cheng
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Jeon Y, Park YJ, Cho HK, Jung HJ, Ahn TK, Kang H, Pai HS. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6297-310. [PMID: 26163696 PMCID: PMC4588883 DOI: 10.1093/jxb/erv337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Yong-Joon Park
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Kyu Ahn
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
16
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
17
|
Datta D, Anbarasu K, Rajabather S, Priya RS, Desai P, Mahalingam S. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21 Cip1/Waf1. J Biol Chem 2015. [PMID: 26203195 DOI: 10.1074/jbc.m115.637280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21(Cip-1/Waf1) expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RB(Ser-780)) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RB(Ser-780) levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21(Cip-1/Waf1) pathway.
Collapse
Affiliation(s)
- Debduti Datta
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Kumaraswamy Anbarasu
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Suryaraja Rajabather
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Rangasamy Sneha Priya
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Pavitra Desai
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
18
|
Tin AS, Park AH, Sundar SN, Firestone GL. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. BMC Biol 2014; 12:72. [PMID: 25209720 PMCID: PMC4180847 DOI: 10.1186/s12915-014-0072-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Nucleostemin is a nucleolus residing GTPase that is considered to be an important cancer stem/progenitor cell marker protein due to its high expression levels in breast cancer stem cells and its role in tumor-initiation of human mammary tumor cells. It has been proposed that nucleostemin may represent a valuable therapeutic target for breast cancer; however, to date evidence supporting the cellular mechanism has not been elucidated. RESULTS Expression of exogenous HER2, a member of the EGF receptor gene family, in the human MCF-10AT preneoplastic mammary epithelial cell line formed a new breast cancer cell line, 10AT-Her2, which is highly enriched in cells with stem/progenitor cell-like character. 10AT-Her2 cells display a CD44+/CD24-/low phenotype with high levels of the cancer stem/progenitor cell marker proteins nucleostemin, and active aldehyde dehydrogenase-1. The overall expression pattern of HER2 protein and the stem/progenitor cell marker proteins in the 10AT-Her2 cell population is similar to that of the luminal HER2+ SKBR3 human breast cancer cell line, whereas, both MCF-7 and MDA-MB-231 cells display reduced levels of nucleostemin and no detectable expression of ALDH-1. Importantly, in contrast to the other well-established human breast cancer cell lines, 10AT-Her2 cells efficiently form tumorspheres in suspension cultures and initiate tumor xenograft formation in athymic mice at low cell numbers. Furthermore, 10AT-Her2 cells are highly sensitive to the anti-proliferative apoptotic effects of indole-3-carbinol (I3C), a natural anti-cancer indolecarbinol from cruciferous vegetables of the Brassica genus such as broccoli and cabbage. I3C promotes the interaction of nucleostemin with MDM2 (Murine Double Mutant 2), an inhibitor of the p53 tumor suppressor, and disrupts the MDM2 interaction with p53. I3C also induced nucleostemin to sequester MDM2 in a nucleolus compartment, thereby freeing p53 to mediate its apoptotic activity. siRNA knockdown of nucleostemin functionally documented that nucleostemin is required for I3C to trigger its cellular anti-proliferative responses, inhibit tumorsphere formation, and disrupt MDM2-p53 protein-protein interactions. Furthermore, expression of an I3C-resistant form of elastase, the only known target protein for I3C, prevented I3C anti-proliferative responses in cells and in tumor xenografts in vivo, as well as disrupt the I3C stimulated nucleostemin-MDM2 interactions. CONCLUSIONS Our results provide the first evidence that a natural anti-cancer compound mediates its cellular and in vivo tumor anti-proliferative responses by selectively stimulating cellular interactions of the stem/progenitor cell marker nucleostemin with MDM2, which frees p53 to trigger its apoptotic response. Furthermore, our study provides a new mechanistic template that can be potentially exploited for the development of cancer stem/progenitor cell targeted therapeutic strategies.
Collapse
|
19
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
20
|
Lo D, Zhang Y, Dai MS, Sun XX, Zeng SX, Lu H. Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF. Oncogene 2014; 34:1688-97. [PMID: 24769896 PMCID: PMC4212020 DOI: 10.1038/onc.2014.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/02/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Up-regulated expression of nucleolar GTPase Nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear since imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor suppressor activity. It also remains in questions if aberrant NS levels might play a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the Alternative Reading Frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase ULF and elongated its half-life, while knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and NPM to serve as an alternative tumor suppressor surveillance, preventing potential cellular transformation resulting from the growth inducing effects of NS overexpression.
Collapse
Affiliation(s)
- D Lo
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Y Zhang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - M-S Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - X-X Sun
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - S X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - H Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
21
|
Transcript level of nucleostemin in newly diagnosed acute myeloid leukemia patients. Leuk Res 2013; 37:1636-41. [DOI: 10.1016/j.leukres.2013.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 12/30/2022]
|
22
|
Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W. Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 2013; 51:46-56. [PMID: 23747016 DOI: 10.1016/j.molcel.2013.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/18/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
ARF suppresses aberrant cell growth upon c-Myc overexpression by activating p53 responses. Nevertheless, the precise mechanism by which ARF specifically restrains the oncogenic potential of c-Myc without affecting its normal physiological function is not well understood. Here, we show that low levels of c-Myc expression stimulate cell proliferation, whereas high levels inhibit by activating the ARF/p53 response. Although the mRNA levels of ARF are induced in both scenarios, the accumulation of ARF protein occurs only when ULF-mediated degradation of ARF is inhibited by c-Myc overexpression. Moreover, the levels of ARF are reduced through ULF-mediated ubiquitination upon DNA damage. Blocking ARF degradation by c-Myc overexpression dramatically stimulates the apoptotic responses. Our study reveals that ARF stability control is crucial for differentiating normal (low) versus oncogenic (high) levels of c-Myc expression and suggests that differential effects on ULF- mediated ARF ubiquitination by c-Myc levels act as a barrier in oncogene-induced stress responses.
Collapse
Affiliation(s)
- Delin Chen
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
23
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
24
|
Qin JJ, Nag S, Voruganti S, Wang W, Zhang R. Natural product MDM2 inhibitors: anticancer activity and mechanisms of action. Curr Med Chem 2013; 19:5705-25. [PMID: 22830335 DOI: 10.2174/092986712803988910] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
The mdm2 oncogene has recently been suggested to be a valuable target for cancer therapy and prevention. Overexpression of mdm2 is often seen in various human cancers and correlates with high-grade, late-stage, and more treatment-resistant tumors. The MDM2-p53 auto-regulatory loop has been extensively investigated and is an attractive cancer target, which indeed has been the main focus of anti-MDM2 drug discovery. Much effort has been expended in the development of small molecule MDM2 antagonists targeting the MDM2-p53 interaction, and a few of these have advanced into clinical trials. However, MDM2 exerts its oncogenic activity through both p53-dependent and -independent mechanisms. Recently, there is an increasing interest in identifying natural MDM2 inhibitors; some of them have been shown to decrease MDM2 expression and activity in vitro and in vivo. These identified natural MDM2 inhibitors include a plethora of diverse chemical frameworks, ranging from flavonoids, steroids, and sesquiterpenes to alkaloids. In addition to a brief review of synthetic MDM2 inhibitors, this review focuses on natural product MDM2 inhibitors, summarizing their biological activities in vitro and in vivo and the underlying molecular mechanisms of action, targeting MDM2 itself, regulators of MDM2, and/or the MDM2-p53 interaction. These MDM2 inhibitors can be used alone or in combination with conventional treatments, improving the prospects for cancer therapy and prevention. Their complex and unique molecular architectures may provide a stimulus for developing synthetic analogs in the future.
Collapse
Affiliation(s)
- J-J Qin
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
25
|
Russo A, Esposito D, Catillo M, Pietropaolo C, Crescenzi E, Russo G. Human rpL3 induces G₁/S arrest or apoptosis by modulating p21 (waf1/cip1) levels in a p53-independent manner. Cell Cycle 2012; 12:76-87. [PMID: 23255119 DOI: 10.4161/cc.22963] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is now largely accepted that ribosomal proteins may be implicated in a variety of biological functions besides that of components of the translation machinery. Many evidences show that a subset of ribosomal proteins are involved in the regulation of the cell cycle and apoptosis through modulation of p53 activity. In addition, p53-independent mechanisms of cell cycle arrest in response to alterations of ribosomal proteins availability have been described. Here, we identify human rpL3 as a new regulator of cell cycle and apoptosis through positive regulation of p21 expression in a p53-independent system. We demonstrate that the rpL3-mediated p21 upregulation requires the specific interaction between rpL3 and Sp1. Furthermore, in our experimental system, p21 overexpression leads to a dual outcome, activating the G₁/S arrest of the cell cycle or the apoptotic pathway through mitochondria, depending on its intracellular levels. It is noteworthy that depletion of p21 abrogates both effects. Taken together, our findings unravel a novel extraribosomal function of rpL3 and reinforce the proapoptotic role of p21 in addition to its widely reported ability as an inhibitor of cell proliferation.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche; Università Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nucleoli are the sites where synthesis of rRNA and ribosomal assembly take place. Along with these "traditional" roles, the nucleolus controls cellular physiology and homeostasis. The cellular and molecular alterations associated with impaired nucleolar activity ("nucleolar stress") have just started to be systematically explored in the nervous system taking advantage of newly available animal models lacking rRNA synthesis in specific neurons. These studies showed that nucleolar function is necessary for neuronal survival and that its modality of action differs between and within cell types. Nucleolar function is also crucial in pathology as it controls mitochondrial activity and critical stress signaling pathways mimicking hallmarks of human neurodegenerative diseases. This mini-review will focus on the modes of action of nucleolar stress and discuss how the manipulation of nucleolar activity might underscore novel strategies to extend neuronal function and survival.
Collapse
Affiliation(s)
- Rosanna Parlato
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld, 581, 69120, Heidelberg, Germany.
| | | |
Collapse
|
27
|
Naidu SR, Lakhter AJ, Androphy EJ. PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle 2012; 11:2717-28. [PMID: 22751435 DOI: 10.4161/cc.21091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a "binary death signal" to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14(ARF) inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.
Collapse
Affiliation(s)
- Samisubbu R Naidu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | |
Collapse
|
28
|
Lo D, Dai MS, Sun XX, Zeng SX, Lu H. Ubiquitin- and MDM2 E3 ligase-independent proteasomal turnover of nucleostemin in response to GTP depletion. J Biol Chem 2012; 287:10013-10020. [PMID: 22318725 DOI: 10.1074/jbc.m111.335141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein essential for ribosomal biogenesis, proliferation, and animal embryogenesis. It remains largely unclear how this protein is regulated. While working on its role in suppression of MDM2 and activation of p53, we observed that NS protein (but not mRNA) levels decreased drastically in response to GTP depletion. When trying to further elucidate the molecular mechanism(s) underlying this unusual phenomenon, we found that NS was degraded independently of ubiquitin and MDM2 upon GTP depletion. First, depletion of GTP by treating cells with mycophenolic acid decreased the level of NS without apparently affecting the levels of other nucleolar proteins. Second, mutant NS defective in GTP binding and exported to the nucleoplasm was much less stable than wild-type NS. Although NS was ubiquitinated in cells, its polyubiquitination was independent of Lys-48 or Lys-63 in the ubiquitin molecule. Inactivation of E1 in E1 temperature-sensitive mouse embryonic fibroblast (MEF) cells failed to prevent the proteasomal degradation of NS. The proteasomal turnover of NS was also MDM2-independent, as its half-life in p53/MDM2 double knock-out MEF cells was the same as that in wild-type MEF cells. Moreover, NS ubiquitination was MDM2-independent. Mycophenolic acid or doxorubicin induced NS degradation in various human cancerous cells regardless of the status of MDM2. Hence, these results indicate that NS undergoes a ubiquitin- and MDM2-independent proteasomal degradation when intracellular GTP levels are markedly reduced and also suggest that ubiquitination of NS may be involved in regulation of its function rather than stability.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and.
| |
Collapse
|
29
|
Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Steelman LS, McCubrey JA. Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget 2012; 2:610-26. [PMID: 21881167 PMCID: PMC3248208 DOI: 10.18632/oncotarget.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Escape from cellular senescence induction is a potent mechanism for chemoresistance. Cellular senescence can be induced in breast cancer cell lines by the removal of estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by the chemotherapeutic drug doxorubicin. Long term culturing of the hormone-sensitive breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways. To determine if active Akt-1 and Raf-1 can influence drug-induced senescence, we stably introduced activated ΔAkt-1(CA) and ΔRaf-1(CA) into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-active Raf-1 construct resulted in higher baseline senescence, indicating these cells possessed the ability to undergo oncogene-induced-senescence. Constitutive activation of the Akt pathway significantly decreased drug-induced senescence in response to doxorubicin but not tamoxifen in MCF-7 cells. However, constitutive Akt-1 activation in drug-resistant cells containing high levels of active ERK completely escaped cellular senescence induced by doxorubicin and tamoxifen. These results indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance by diminishing cell senescence in response to chemotherapy. Understanding how breast cancers containing certain oncogenic mutations escape cell senescence in response to chemotherapy and hormonal based therapies may provide insights into the design of more effective drug combinations for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jackson R Taylor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | |
Collapse
|
30
|
Zwolinska AK, Heagle Whiting A, Beekman C, Sedivy JM, Marine JC. Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency. Oncogene 2011; 31:3311-21. [PMID: 22081066 DOI: 10.1038/onc.2011.507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleostemin (NS), a nucleolar GTPase, is highly expressed in stem/progenitor cells and in most cancer cells. However, little is known about the regulation of its expression. Here, we identify the NS gene as a novel direct transcriptional target of the c-Myc oncoprotein. We show that Myc overexpression enhances NS transcription in cultured cells and in pre-neoplastic B cells from Eμ-myc transgenic mice. Consistent with NS being downstream of Myc, NS expression parallels that of Myc in a large panel of human cancer cell lines. Using chromatin immunoprecipitation we show that c-Myc binds to a well-conserved E-box in the NS promoter. Critically, we show NS haploinsufficiency profoundly delays Myc-induced cancer formation in vivo. NS+/-Eμ-myc transgenic mice have much slower rates of B-cell lymphoma development, with life spans twice that of their wild-type littermates. Moreover, we demonstrate that NS is essential for the proliferation of Myc-overexpressing cells in cultured cells and in vivo: impaired lymphoma development was associated with a drastic decrease of c-Myc-induced proliferation of pre-tumoural B cells. Finally, we provide evidence that in cell culture NS controls cell proliferation independently of p53 and that NS haploinsufficiency significantly delays lymphomagenesis in p53-deficient mice. Together these data indicate that NS functions downstream of Myc as a rate-limiting regulator of cell proliferation and transformation, independently from its putative role within the p53 pathway. Targeting NS is therefore expected to compromise early tumour development irrespectively of the p53 status.
Collapse
Affiliation(s)
- A K Zwolinska
- Laboratory for Molecular Cancer Biology, Department of Biomedical Molecular Biology, VIB-UGent, Technologiepark, Ghent, Belgium
| | | | | | | | | |
Collapse
|
31
|
Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 2011; 10:3176-88. [PMID: 21900752 PMCID: PMC3218624 DOI: 10.4161/cc.10.18.17436] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023] Open
Abstract
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.
Collapse
|
32
|
Goldsmith AD, Sarin S, Lockery S, Hobert O. Developmental control of lateralized neuron size in the nematode Caenorhabditis elegans. Neural Dev 2010; 5:33. [PMID: 21122110 PMCID: PMC3014911 DOI: 10.1186/1749-8104-5-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023] Open
Abstract
Background Nervous systems are generally bilaterally symmetric on a gross structural and organizational level but are strongly lateralized (left/right asymmetric) on a functional level. It has been previously noted that in vertebrate nervous systems, symmetrically positioned, bilateral groups of neurons in functionally lateralized brain regions differ in the size of their soma. The genetic mechanisms that control these left/right asymmetric soma size differences are unknown. The nematode Caenorhabditis elegans offers the opportunity to study this question with single neuron resolution. A pair of chemosensory neurons (ASEL and ASER), which are bilaterally symmetric on several levels (projections, synaptic connectivity, gene expression patterns), are functionally lateralized in that they express distinct chemoreceptors and sense distinct chemosensory cues. Results We describe here that ASEL and ASER also differ substantially in size (soma volume, axonal and dendritic diameter), a feature that is predicted to change the voltage conduction properties of the two sensory neurons. This difference in size is not dependent on sensory input or neuronal activity but developmentally programmed by a pathway of gene regulatory factors that also control left/right asymmetric chemoreceptor expression of the two ASE neurons. This regulatory pathway funnels via the DIE-1 Zn finger transcription factor into the left/right asymmetric distribution of nucleoli that contain the rRNA regulator Fibrillarin/FIB-1, a RNA methyltransferase implicated in the non-hereditary immune disease scleroderma, which we find to be essential to establish the size differences between ASEL and ASER. Conclusions Taken together, our findings reveal a remarkable conservation of the linkage of functional lateralization with size differences across phylogeny and provide the first insights into the developmentally programmed regulatory mechanisms that control neuron size lateralities.
Collapse
Affiliation(s)
- Andrew D Goldsmith
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|