1
|
Guo Q, Gan J, Wang EZ, Wei YM, Xu J, Xu Y, Zhang FF, Cui M, Jia MX, Kong MJ, Tang QY, Zhang Z. Electrophysiological characterization of human KCNT1 channel modulators and the therapeutic potential of hydroquinine and tipepidine in KCNT1 mutation-associated epilepsy mouse model. Acta Pharmacol Sin 2025:10.1038/s41401-024-01457-8. [PMID: 39870847 DOI: 10.1038/s41401-024-01457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant. In addition, we confirmed the antitussive drug tipepidine was also a potent inhibitor of the hKCNT1B channel. Subsequently, we proved that these two drugs produced an excellent therapeutic effect on the epileptic model of KCNT1 Y777H mutant male mice; thus, both could be ready-to-use anti-epileptic drugs. On the other hand, we demonstrated that the activation of the KCNT1 channel by loxapine and clozapine was through interacting with pore domain residues to reverse the run-down of the KCNT1 channel. Taken together, our results provide new insights into the mechanism of the modulators in regulating the KCNT1 channel activity as well as important candidates for clinical tests in the treatment of KCNT1 mutant-associated epilepsy.
Collapse
Affiliation(s)
- Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - En-Ze Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ming Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Meng-Xing Jia
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Ming-Jian Kong
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
3
|
Contini D, Holstein GR, Art JJ. Simultaneous recordings from vestibular Type I hair cells and their calyceal afferents in mice. Front Neurol 2024; 15:1434026. [PMID: 39263277 PMCID: PMC11387672 DOI: 10.3389/fneur.2024.1434026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024] Open
Abstract
The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest. The goal of the present study was to investigate electrical coupling between the Type I hair cell and its enveloping calyx in the mouse semicircular canal crista ampullaris. Since there are no gap junctions between these two cells, evidence for electrical communication would necessarily involve other mechanisms. Simultaneous recordings from the two cells of the synaptic pair were used initially to verify the presence of orthodromic quantal synaptic transmission from the hair cell to the calyx, and then to demonstrate bi-directional communication due to the slow accumulation of potassium ions in the synaptic cleft. As a result of this potassium ion accretion, the equilibrium potentials of hair cell conductances facing the synaptic cleft become depolarized to an extent that is adequate for calcium influx into the hair cell, and the calyx inner face becomes depolarized to a level that is near the threshold for spike initiation. Following this, paired recordings were again employed to characterize fast bi-directional electrical coupling between the two cells. In this form of signaling, cleft-facing conductances in both the hair cell and calyx increase, which strengthens their coupling. Because this mechanism relies on the cleft resistance, we refer to it as resistive coupling. We conclude that the same three forms of hair cell-calyceal transmission previously demonstrated in the turtle are present in the mammalian periphery, providing a biophysical basis for the exceptional temporal fidelity of the vestibular system.
Collapse
Affiliation(s)
- Donatella Contini
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J Art
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Li Q, Chen G, Yan J. Transmembrane determinants of voltage-gating differences between BK (Slo1) and Slo3 channels. Biophys J 2024; 123:2154-2166. [PMID: 38637987 PMCID: PMC11309983 DOI: 10.1016/j.bpj.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Voltage-gated potassium channels are critical in modulating cellular excitability, with Slo (slowpoke) channels forming a unique family characterized by their large conductance and dual regulation by electrical signals and intracellular messengers. Despite their structural and evolutionary similarities, Slo1 and Slo3 channels exhibit significant differences in their voltage-gating properties. This study investigates the molecular determinants that differentiate the voltage-gating properties of human Slo1 and mouse Slo3 channels. Utilizing Slo1/Slo3 chimeras, we pinpointed the selectivity filter region as a key factor in the Slo3 channel's reduced conductance at negative voltages. The S6 transmembrane (TM) segment was identified as pivotal for the Slo3 channel's biphasic deactivation kinetics at these voltages. Additionally, the S4 and S6 TM segments were found to be responsible for the gradual slope in the Slo3 channel's conductance-voltage relationship, while multiple TM regions appear to be involved in the Slo3 channel's requirement of strong depolarization for activation. Mutations in the Slo1's S5 and S6 TM segments revealed three residues (I233, L302, and M304) that likely play a crucial role in the allosteric coupling between the voltage sensors and the pore gate.
Collapse
Affiliation(s)
- Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
5
|
Huo X, Wang Y, Liu Z, Liu J, Zhu H, Zhou Y, Man Y, Zhou X, Ma H. Electrophysiological and pharmacological properties of the slowpoke channel in the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105824. [PMID: 38582588 DOI: 10.1016/j.pestbp.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
The slowpoke channel responds to the intracellular calcium concentration and the depolarization of the cell membrane. It plays an important role in maintaining the resting potential and regulating the homeostasis of neurons, but it can also regulate circadian rhythm, sperm capacitation, ethanol tolerance, and other physiological processes in insects. This renders it a potentially useful target for the development of pest control strategies. There are relatively few studies on the slowpoke channels in lepidopteran pests, and their pharmacological properties are still unclear. So, in this study, the slowpoke gene of Plutella xylostella (Pxslo) was heterologous expressed in HEK293T cells, and the I-V curve of the slowpoke channel was measured by whole cell patch clamp recordings. Results showed that the slowpoke channel could be activated at -20 mV with 150 μM Ca2+. The subsequent comparison of the electrophysiological characteristics of the alternative splicing site E and G deletions showed that the deletion of the E site enhances the response of the slowpoke channel to depolarization, while the deletion of the G site weakens the response of the slowpoke channel to depolarization. Meanwhile, the nonspecific inhibitors TEA and 4-AP of the Kv channels, and four pesticides were tested and all showed an inhibition effect on the PxSlo channel at 10 or 100 μM, suggesting that these pesticides also target the slowpoke channel. This study enriches our understanding of the slowpoke channel in Lepidopteran insects and can aid in the development of relevant pest management strategies.
Collapse
Affiliation(s)
- Xiaoyi Huo
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yinna Wang
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China.
| |
Collapse
|
6
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
7
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Cooray A, Kim J, Nirujan BR, Jayathilake NJ, Lee KP. Pharmacological Evidence Suggests That Slo3 Channel Is the Principal K + Channel in Boar Spermatozoa. Int J Mol Sci 2023; 24:ijms24097806. [PMID: 37175513 PMCID: PMC10178124 DOI: 10.3390/ijms24097806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm ion channels are associated with the quality and type of flagellar movement, and their differential regulation is crucial for sperm function during specific phases. The principal potassium ion channel is responsible for the majority of K+ ion flux, resulting in membrane hyperpolarization, and is essential for sperm capacitation-related signaling pathways. The molecular identity of the principal K+ channel varies greatly between different species, and there is a lack of information about boar K+ channels. We aimed to determine the channel identity of boar sperm contributing to the primary K+ current using pharmacological dissection. A series of Slo1 and Slo3 channel modulators were used for treatment. Sperm motility and related kinematic parameters were monitored using a computer-assisted sperm analysis system under non-capacitated conditions. Time-lapse flow cytometry with fluorochromes was used to measure changes in different intracellular ionic concentrations, and conventional flow cytometry was used to determine the acrosome reaction. Membrane depolarization, reduction in acrosome reaction, and motility parameters were observed upon the inhibition of the Slo3 channel, suggesting that the Slo3 gene encodes the main K+ channel in boar spermatozoa. The Slo3 channel was localized on the sperm flagellum, and the inhibition of Slo3 did not reduce sperm viability. These results may aid potential animal-model-based extrapolations and help to ameliorate motility and related parameters, leading to improved assisted reproductive methods in industrial livestock production.
Collapse
Affiliation(s)
- Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beno Ramesh Nirujan
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel. J Neurosci 2023; 43:526-539. [PMID: 36283831 PMCID: PMC9888509 DOI: 10.1523/jneurosci.0482-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.
Collapse
|
10
|
Zhou N, Li H, Xu J, Shen ZS, Tang M, Wang XH, Su WX, Sokabe M, Zhang Z, Tang QY. Two types of peptides derived from the neurotoxin GsMTx4 inhibit a mechanosensitive potassium channel by modifying the mechano-gate. J Biol Chem 2022; 298:102326. [PMID: 35933015 PMCID: PMC9449670 DOI: 10.1016/j.jbc.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans. Current atrial fibrillation antiarrhythmic drugs have limited efficacy and carry the risk of ventricular proarrhythmia. GsMTx4, a mechanosensitive channel–selective inhibitor, has been shown to suppress arrhythmias through the inhibition of stretch-activated channels (SACs) in the heart. The cost of synthesizing this peptide is a major obstacle to clinical use. Here, we studied two types of short peptides derived from GsMTx4 for their effects on a stretch-activated big potassium channel (SAKcaC) from the heart. Type I, a 17-residue peptide (referred to as Pept 01), showed comparable efficacy, whereas type II (i.e., Pept 02), a 10-residue peptide, exerted even more potent inhibitory efficacy on SAKcaC compared with GsMTx4. We identified through mutagenesis important sequences required for peptide functions. In addition, molecular dynamics simulations revealed common structural features with a hydrophobic head followed by a positively charged protrusion that may be involved in peptide channel–lipid interactions. Furthermore, we suggest that these short peptides may inhibit SAKcaC through a specific modification to the mechanogate, as the inhibitory effects for both types of peptides were mostly abolished when tested with a mechano-insensitive channel variant (STREX-del) and a nonmechanosensitive big potassium (mouse Slo1) channel. These findings may offer an opportunity for the development of a new class of drugs in the treatment of cardiac arrhythmia generated by excitatory SACs in the heart.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hui Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mingxi Tang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Taiping Road 25, Luzhou, Sichuan, China
| | - Xiao-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wan-Xin Su
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University. Graduate School of Medicine, Nagoya, Japan; Kanazawa Institute of Technology, Nonoichi, Japan.
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China.
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
11
|
Torrezan-Nitao E, Brown SG, Mata-Martínez E, Treviño CL, Barratt C, Publicover S. [Ca2+]i oscillations in human sperm are triggered in the flagellum by membrane potential-sensitive activity of CatSper. Hum Reprod 2021; 36:293-304. [PMID: 33305795 DOI: 10.1093/humrep/deaa302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration ([Ca2+]i) signals (oscillations) in human sperm generated? SUMMARY ANSWER P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane potential (Vm)-sensitive Ca2+-influx through CatSper channels. WHAT IS KNOWN ALREADY A subset of human sperm display [Ca2+]i oscillations that regulate flagellar beating and acrosome reaction. Although pharmacological manipulations indicate involvement of stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used >20 sperm donors and involved more than 100 separate experiments and analysis of more than 1000 individual cells over a period of 2 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current clamp. MAIN RESULTS AND THE ROLE OF CHANCE P4-induced [Ca2+]i oscillations originated in the flagellum, spreading to the neck and head (latency of 1-2 s). K+-ionophore valinomycin (1 µM) was used to investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium potential (EK) and was rapidly 'reset' upon manipulation of [K+]o. Pre-treatment of sperm with valinomycin ([K+]o = 5.4 mM) had no effect on the P4-induced [Ca2+] transient (P = 0.95; eight experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of oscillating cells (n = 257; P = 5 × 10-55 compared to control) and significantly reduced both the amplitude and frequency of persisting oscillations (P = 0.0001). Upon valinomycin washout, oscillations re-started in most cells. When valinomycin was applied in saline with elevated [K+], the inhibitory effect of valinomycin was reduced and was dependent on EK (P = 10-25). Amplitude and frequency of [Ca2+]i oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P < 0.01). The CatSper inhibitor RU1968 (4.8 and 11 µM) caused immediate and reversible arrest of activity in 36% and 96% of oscillating cells, respectively (P < 10-10). Quinidine (300 µM) which blocks the sperm K+ current (IKsper) completely, inhibited [Ca2+]i oscillations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in-vitro study and caution must be taken when extrapolating these results to in-vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS [Ca2+]i oscillations in human sperm are functionally important and their absence is associated with failed fertilisation at IVF. The data reported here provide new understanding of the mechanisms that underlie the regulation and generation (or failure) of these oscillations. STUDY FUNDING/COMPETING INTEREST(S) E.T.-N. was in receipt of a postgraduate scholarship from the CAPES Foundation (Ministry of Education, Brazil). E.M-M received travel funds from the Programa de Apoyo a los Estudios de Posgrado (Maestria y Doctorado en Ciencias Bioquimicas-Universidad Autonoma de Mexico). SGB and CLRB are recipients of a Chief Scientist Office (NHS Scotland) grant TCS/17/28. The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | - Sean G Brown
- School of Applied Sciences, Division of Health Sciences, Abertay University, Dundee DD11HG, UK
| | - Esperanza Mata-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Christopher Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | | |
Collapse
|
12
|
Delgado-Bermúdez A, Mateo-Otero Y, Llavanera M, Bonet S, Yeste M, Pinart E. HVCN1 but Not Potassium Channels Are Related to Mammalian Sperm Cryotolerance. Int J Mol Sci 2021; 22:ijms22041646. [PMID: 33562049 PMCID: PMC7914938 DOI: 10.3390/ijms22041646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Little data exist about the physiological role of ion channels during the freeze–thaw process in mammalian sperm. Herein, we determined the relevance of potassium channels, including SLO1, and of voltage-gated proton channels (HVCN1) during mammalian sperm cryopreservation, using the pig as a model and through the addition of specific blockers (TEA: tetraethyl ammonium chloride, PAX: paxilline or 2-GBI: 2-guanidino benzimidazole) to the cryoprotective media at either 15 °C or 5 °C. Sperm quality of the control and blocked samples was performed at 30- and 240-min post-thaw, by assessing sperm motility and kinematics, plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and intracellular O2−⁻ and H2O2 levels. General blockade of K+ channels by TEA and specific blockade of SLO1 channels by PAX did not result in alterations in sperm quality after thawing as compared to control samples. In contrast, HVCN1-blocking with 2-GBI led to a significant decrease in post-thaw sperm quality as compared to the control, despite intracellular O2−⁻ and H2O2 levels in 2-GBI blocked samples being lower than in the control and in TEA- and PAX-blocked samples. We can thus conclude that HVCN1 channels are related to mammalian sperm cryotolerance and have an essential role during cryopreservation. In contrast, potassium channels do not seem to play such an instrumental role.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
13
|
Xu J, Ma HH, Liu ZM, Zheng W, Lai XY, Zhu H, Liu J, Zhou Y, Zhou XM. Expression and alternative splicing analysis of a large-conductance calcium-activated potassium channel gene in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21720. [PMID: 32557681 DOI: 10.1002/arch.21720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The large-conductance calcium-activated potassium channel (BKCa ) plays an important role in the regulation of insect neural circuits and locomotion, and thus is a potential target of insecticides. In this study, iberiotoxin, an inhibitor of BKCa , was found to prolong the anesthetic time of ethyl acetate on Plutella xylostella larvae. Therefore, the coding sequence of slowpoke gene coding the alpha subunit of BKCa was cloned to investigate the function of this channel in P. xylostella, and the gene expression profile in the developmental stages and tissues was also characterized. The total length of pxslo DNA was more than 19.9 kb, which harbored four alternative splicing sites (ASP-A, ASP-C, ASP-E, and ASP-G), and the coding sequence of pxslo with the highest frequency of splicing (GenBank ID: MN938456) was 3,405 base pair. The characterized PxSlo protein contained conserved domains previously identified in other insects. Quantitative reverse transcription-polymerase chain reaction analysis showed that pxslo was expressed in all the developmental stages of P. xylostella, with the highest level in adults. In the larval stage, pxslo was mainly expressed in the head and epidermis, while a limited protein was expressed in the midgut. In the adult stage, pxslo was highly expressed in the head, followed by in the ovarian tubule, and was not expressed in the testis or wings. These results suggest that BKCa plays an important physiological role in P. xylostella and provides useful information for the functional study and screening of BKCa inhibitors.
Collapse
Affiliation(s)
- Jie Xu
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha, China
| | - Hai-Hao Ma
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhe-Ming Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei Zheng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiao-Yi Lai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hang Zhu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jia Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiao-Mao Zhou
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
14
|
Achikanu C, Correia J, Guidobaldi HA, Giojalas LC, Barratt CLR, Da Silva SM, Publicover S. Continuous behavioural 'switching' in human spermatozoa and its regulation by Ca2+-mobilising stimuli. Mol Hum Reprod 2020; 25:423-432. [PMID: 31194869 PMCID: PMC6736438 DOI: 10.1093/molehr/gaz034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Human sperm show a variety of different behaviours (types of motility) that have different functional roles. Previous reports suggest that sperm may reversibly switch between these behaviours. We have recorded and analysed the behaviour of individual human sperm (180 cells in total), each cell monitored continuously for 3–3.5 min either under control conditions or in the presence of Ca2+-mobilising stimuli. Switching between different behaviours was assessed visually (1 s bins using four behaviour categories), and was verified by fractal dimension analysis of sperm head tracks. In the absence of stimuli, ~90% of cells showed at least one behavioural transition (mean rate under control conditions = 6.4 ± 0.8 transitions.min−1). Type 1 behaviour (progressive, activated-like motility) was most common, but the majority of cells (>70%) displayed at least three behaviour types. Treatment of sperm with Ca2+-mobilising agonists had negligible effects on the rate of switching but increased the time spent in type 2 and type 3 (hyperactivation-like) behaviours (P < 2*10−8; chi-square). Treatment with 4-aminopyridine under alkaline conditions (pHo = 8.5), a highly-potent Ca2+-mobilising stimulus, was the most effective in increasing the proportion of type 3 behaviour, biasing switching away from type 1 (P < 0.005) and dramatically extending the duration of type 3 events (P < 10−16). Other stimuli, including 300 nM progesterone and 1% human follicular fluid, had qualitatively similar effects but were less potent. We conclude that human sperm observed in vitro constitutively display a range of behaviours and regulation of motility by [Ca2+]i, at the level of the single cell, is achieved not by causing cells to adopt a ‘new’ behaviour but by changing the relative contributions of those behaviours.
Collapse
Affiliation(s)
- Cosmas Achikanu
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joao Correia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Héctor A Guidobaldi
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Laura C Giojalas
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Stephen Publicover
- School of Biosciences, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, University of Birmingham, UK
| |
Collapse
|
15
|
Figueiredo CC, Bisinotto DZ, Chebel RC, Thatcher WW, Arnoult C, Faust MA, Schmitt E, Bisinotto RS. Effects of timing of artificial insemination and treatment of semen with a Slo3 potassium channel blocker on fertility of dairy heifers subjected to the 5-day CIDR-Synch protocol. J Dairy Sci 2020; 103:7462-7471. [PMID: 32534924 DOI: 10.3168/jds.2019-18103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/23/2020] [Indexed: 11/19/2022]
Abstract
Two experiments were conducted to evaluate the effects of the timing of artificial insemination (AI) and incorporation of the Slo3 K+ channel blocker 4-(4-chlorophenyl)butyl-diethyl-heptylammonium to semen extender (CSE) on pregnancy per AI (P/AI) and pregnancy loss in dairy heifers. In experiment 1, Holstein heifers were subjected to the 5-d CIDR-Synch protocol: d -8 GnRH and controlled internal drug-release device (CIDR); d -3 PGF2α and CIDR removal; d -2 PGF2α; d 0 GnRH) and assigned randomly to receive timed AI with control semen on d 0 (72-CON; n = 104), control semen on d -1 (48-CON; n = 100), or CSE-treated semen on d -1 (48-CSE; n = 98). Heifers were fitted with collar-mounted automated estrus detection devices to monitor physical activity and rumination. In experiment 2, Holstein heifers were subjected to the 5-d CIDR-Synch protocol and received a mount detection patch at the first PGF2α injection. Heifers detected in estrus before d 0 were inseminated on the same day, whereas those not detected in estrus received the second GnRH injection and timed AI on d 0. Heifers were assigned randomly to receive AI with control (AI-CON; n = 148) or CSE-treated semen (AI-CSE; n = 110). Four bulls with proven fertility were used in both experiments, and ejaculates from each sire were divided and processed as CON or CSE. Pregnancy was diagnosed by transrectal ultrasonography at 29 and 54 d after AI. Data were analyzed by logistic regression, and statistical models included the fixed effects of treatment and enrollment week. In experiment 1, orthogonal contrasts were built to assess the effects of day of AI (72-CON vs. 48-CON + 48-CSE) and treatment of semen with CSE (48-CON vs. 48-CSE). Pregnancy per AI on d 29 (72-CON = 60.8, 48-CON = 35.2, 48-CSE = 39.8%) and d 54 (72-CON = 58.2, 48-CON = 31.6, 48-CSE = 36.2%) was greater for heifers inseminated on d 0 compared with d -1. However, no effect of semen extender on P/AI was observed in heifers inseminated on d -1. In experiment 2, P/AI tended to be greater for AI-CSE than for AI-CON on d 29 (58.6 vs. 47.3%) and d 54 after AI (55.6 vs. 43.7%). Advancing AI by 24 h decreased the likelihood of pregnancy, and use of CSE was unable to overcome the expected asynchrony between insemination and ovulation. Nevertheless, incorporation of CSE in semen processing tended to improve P/AI when heifers received AI upon detected estrus or timed AI concurrently with the final GnRH of the 5-d CIDR-Synch protocol.
Collapse
Affiliation(s)
- C C Figueiredo
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610
| | - D Z Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610
| | - R C Chebel
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610; Department of Animal Sciences, University of Florida, Gainesville 32608
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - C Arnoult
- Institute for Advanced Biosciences, INSERM 1209, CNRS UMR 5309, University of Grenoble Alpes, La Tronche 38700, France
| | | | - E Schmitt
- IMV Technologies, L'Aigle 61300, France
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610.
| |
Collapse
|
16
|
Wang GM, Zhong ZG, Du XR, Zhang FF, Guo Q, Liu Y, Tang QY, Zhang Z. Cloning and characterization of the rat Slo3 (K Ca 5.1) channel: From biophysics to pharmacology. Br J Pharmacol 2020; 177:3552-3567. [PMID: 32335912 DOI: 10.1111/bph.15078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The Slo3 potassium (KCa 5.1) channel, which is specifically expressed in the testis and sperm, is essential for mammalian male fertilization. The sequence divergence of the bovine, mouse and human Slo3 α-subunit revealed a rapid evolution rate across different species. The rat Slo3 (rSlo3) channel has not been cloned and characterized previously. EXPERIMENTAL APPROACH We used molecular cloning, electrophysiology (inside-out patches and outside-out patches) and mutagenesis to investigate the biophysical properties and pharmacological characteristics of the rSlo3 channel. KEY RESULTS The rat Slo3 channel (rSlo3) is gated by voltage and cytosolic pH rather than intracellular calcium. The characteristics of voltage-dependent, pH-sensitivity and activation kinetics of the rSlo3 channel differ from the characteristics of other Slo3 orthologues. In terms of pharmacology, the 4-AP blockade of the rSlo3 channel also shows properties distinct from its blockade of the mSlo3 channel. Iberiotoxin and progesterone weakly inhibit the rSlo3 channel. Finally, we found that propofol, one of the widely used general anaesthetics, blocks the rSlo3 channel from both intracellular and extracellular sides, whereas ketamine only blocks the rSlo3 channel at the extracellular side. CONCLUSION AND IMPLICATIONS Our findings suggest that the rSlo3 channel possesses unique biophysical and pharmacological properties. Our results provide new insights into the diversities of the Slo3 family of channels, which are valuable for estimating the effects of the use of these drugs to improve sperm quality.
Collapse
Affiliation(s)
- Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Gang Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Yeste M, Llavanera M, Pérez G, Scornik F, Puig-Parri J, Brugada R, Bonet S, Pinart E. Elucidating the Role of K + Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role? Int J Mol Sci 2019; 20:E6330. [PMID: 31847486 PMCID: PMC6940911 DOI: 10.3390/ijms20246330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
This study sought to identify and localize SLO1 channels in boar spermatozoa by immunoblotting and immunofluorescence, and to determine their physiological role during in vitro sperm capacitation. Sperm samples from 14 boars were incubated in a capacitation medium for 300 min in the presence of paxilline (PAX), a specific SLO1-channel blocker, added either at 0 min or after 240 min of incubation. Negative controls were incubated in capacitation medium, and positive controls in capacitation medium plus tetraethyl ammonium (TEA), a general K+-channel blocker, also added at 0 min or after 240 min of incubation. In all samples, acrosome exocytosis was triggered with progesterone after 240 min of incubation. Sperm motility and kinematics, integrity of plasma and acrosome membranes, membrane lipid disorder, intracellular calcium levels and acrosin activity were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. In boar spermatozoa, SLO1 channels were found to have 80 kDa and be localized in the anterior postacrosomal region and the mid and principal piece of the tail; their specific blockage through PAX resulted in altered calcium levels and acrosome exocytosis. As expected, TEA blocker impaired in vitro sperm capacitation, by altering sperm motility and kinematics and calcium levels. In conclusion, SLO1 channels are crucial for the acrosome exocytosis induced by progesterone in in vitro capacitated boar spermatozoa.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Marc Llavanera
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Guillermo Pérez
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
| | - Fabiana Scornik
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
| | - Josep Puig-Parri
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Ramon Brugada
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
- Cardiology Service, Hospital Josep Trueta, E-17003 Girona, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Elisabeth Pinart
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| |
Collapse
|
18
|
Li H, Xu J, Shen ZS, Wang GM, Tang M, Du XR, Lv YT, Wang JJ, Zhang FF, Qi Z, Zhang Z, Sokabe M, Tang QY. The neuropeptide GsMTx4 inhibits a mechanosensitive BK channel through the voltage-dependent modification specific to mechano-gating. J Biol Chem 2019; 294:11892-11909. [PMID: 31201274 DOI: 10.1074/jbc.ra118.005511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiac mechanosensitive BK (Slo1) channels are gated by Ca2+, voltage, and membrane stretch. The neuropeptide GsMTx4 is a selective inhibitor of mechanosensitive (MS) channels. It has been reported to suppress stretch-induced cardiac fibrillation in the heart, but the mechanism underlying the specificity and even the targeting channel(s) in the heart remain elusive. Here, we report that GsMTx4 inhibits a stretch-activated BK channel (SAKcaC) in the heart through a modulation specific to mechano-gating. We show that membrane stretching increases while GsMTx4 decreases the open probability (P o) of SAKcaC. These effects were mostly abolished by the deletion of the STREX axis-regulated (STREX) exon located between RCK1 and RCK2 domains in BK channels. Single-channel kinetics analysis revealed that membrane stretch activates SAKcaC by prolonging the open-time duration (τO) and shortening the closed-time constant (τC). In contrast, GsMTx4 reversed the effects of membrane stretch, suggesting that GsMTx4 inhibits SAKcaC activity by interfering with mechano-gating of the channel. Moreover, GsMTx4 exerted stronger efficacy on SAKcaC under membrane-hyperpolarized/resting conditions. Molecular dynamics simulation study revealed that GsMTx4 appeared to have the ability to penetrate deeply within the bilayer, thus generating strong membrane deformation under the hyperpolarizing/resting conditions. Immunostaining results indicate that BK variants containing STREX are also expressed in mouse ventricular cardiomyocytes. Our results provide common mechanisms of peptide actions on MS channels and may give clues to therapeutic suppression of cardiac arrhythmias caused by excitatory currents through MS channels under hyper-mechanical stress in the heart.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yan-Tian Lv
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jing-Jing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen 361102, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Masahiro Sokabe
- ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan .,Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China .,ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan
| |
Collapse
|
19
|
Zhang YY, Han X, Liu Y, Chen J, Hua L, Ma Q, Huang YYX, Tang QY, Zhang Z. +mRNA expression of LRRC55 protein (leucine-rich repeat-containing protein 55) in the adult mouse brain. PLoS One 2018; 13:e0191749. [PMID: 29370300 PMCID: PMC5784982 DOI: 10.1371/journal.pone.0191749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
LRRC55 (leucine-rich repeat-containing protein 55) protein is an auxiliary γ subunit of BK (Big conductance potassium channel) channels, which leftward shifts GVs of BK channels around 50 mV in the absence of cytosolic Ca2+. LRRC55 protein is also the only γ subunit of BK channels that is expressed in mammalian nervous system. However, the expression pattern of LRRC55 gene in adult mammalian brain remains elusive. In this study, we investigated the distribution of LRRC55 mRNA in the adult mouse brain by using in situ hybridization. We found that LRRC55 mRNA is richly expressed in the adult mouse medial habenula nucleus (MHb), cerebellum and pons. However, the potential role of LRRC55 in MHb and cerebellum could be different based on the function of BK channels in these brain regions.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Han
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lei Hua
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qian Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yang-Yu-Xin Huang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiong-Yao Tang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhe Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
20
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
21
|
Owen B, Reddy R, Grover LM. Nonspecific block of voltage-gated potassium channels has greater effect on distal schaffer collaterals than proximal schaffer collaterals during periods of high activity. Physiol Rep 2017; 5:5/14/e13354. [PMID: 28747510 PMCID: PMC5532488 DOI: 10.14814/phy2.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies established different responses between proximal and distal portions of Schaffer collateral axons during high‐frequency and burst stimulation, with distal axons demonstrating biphasic changes in excitability (hyperexcitability followed by depression), but proximal axons showing only monophasic depression. Voltage‐dependent potassium (KV) channels are important determinants of axonal excitability, and block of KV channels can promote axon hyperexcitability. We therefore hypothesized that block of KV channels should lead to biphasic response changes in proximal Schaffer collaterals, like those seen in distal Schaffer collaterals. To test this hypothesis, we made extracellular recordings of distal Schaffer collateral responses in stratum radiatum of hippocampal area CA1 and proximal Schaffer collateral responses in stratum pyramidale of area CA3 during high‐frequency stimulation (HFS) at 100 Hz and burst stimulation at 200 msec intervals (5 Hz or theta frequency). We then applied a nonselective KV channel blocker, tetraethlylammonium (TEA, 10 mmol/L) or 4‐aminopyridine (4‐AP, 100 μmol/L), and assessed effects on Schaffer collateral responses. Surprisingly, block of KV channels had little or no effect on proximal Schaffer collateral responses during high‐frequency or burst stimulation. In contrast, KV channel blockade caused more rapid depression of distal Schaffer collateral responses during both high‐frequency and burst stimulation. These findings indicate that KV channels are important for maintaining distal, but not proximal, Schaffer collateral excitability during period of sustained high activity. Differential sensitivity of distal versus proximal Schaffer collaterals to KV channel block may reflect differences in channel density, diversity, or subcellular localization.
Collapse
Affiliation(s)
- Benjamin Owen
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Rishi Reddy
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Lawrence M Grover
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| |
Collapse
|
22
|
Wang W, Zhang X, Gao Q, Lawas M, Yu L, Cheng X, Gu M, Sahoo N, Li X, Li P, Ireland S, Meredith A, Xu H. A voltage-dependent K + channel in the lysosome is required for refilling lysosomal Ca 2+ stores. J Cell Biol 2017; 216:1715-1730. [PMID: 28468834 PMCID: PMC5461029 DOI: 10.1083/jcb.201612123] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/05/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Ion-dependent channels and transporters have been identified in lysosomes, including the V-ATPase H+ pump and transient receptor potential mucolipin channels (TRPMLs), the principle Ca2+ release channels in the lysosome, but much less is understood about the roles of Na+ and K+ in lysosomal physiology. Wang et al. describe a voltage-sensitive, Ca2+-activated K+ current in the lysosome (LysoKVCa) and show that LysoKVCa regulates lysosomal membrane potential and refilling of lysosomal Ca2+ stores. The resting membrane potential (Δψ) of the cell is negative on the cytosolic side and determined primarily by the plasma membrane’s selective permeability to K+. We show that lysosomal Δψ is set by lysosomal membrane permeabilities to Na+ and H+, but not K+, and is positive on the cytosolic side. An increase in juxta-lysosomal Ca2+ rapidly reversed lysosomal Δψ by activating a large voltage-dependent and K+-selective conductance (LysoKVCa). LysoKVCa is encoded molecularly by SLO1 proteins known for forming plasma membrane BK channels. Opening of single LysoKVCa channels is sufficient to cause the rapid, striking changes in lysosomal Δψ. Lysosomal Ca2+ stores may be refilled from endoplasmic reticulum (ER) Ca2+ via ER–lysosome membrane contact sites. We propose that LysoKVCa serves as the perilysosomal Ca2+ effector to prime lysosomes for the refilling process. Consistently, genetic ablation or pharmacological inhibition of LysoKVCa, or abolition of its Ca2+ sensitivity, blocks refilling and maintenance of lysosomal Ca2+ stores, resulting in lysosomal cholesterol accumulation and a lysosome storage phenotype.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Maria Lawas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xiping Cheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mingxue Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xinran Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ping Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Stephen Ireland
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Wijerathne TD, Kim J, Yang D, Lee KP. Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BK Ca activator LDD175. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:241-249. [PMID: 28280418 PMCID: PMC5343058 DOI: 10.4196/kjpp.2017.21.2.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/15/2022]
Abstract
Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat–containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical BKCa activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting γ2 subunit, hLRRC52. As previously reported, Slo3 K+ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 K+ current, and internal alkalinization and Ca2+ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 K+ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular Ca2+. In contrast, elevation of intracellular Ca2+ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate Ca2+-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jihyun Kim
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - Kyu Pil Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
25
|
Telles CJ, Decker SE, Motley WW, Peters AW, Mehr AP, Frizzell RA, Forrest JN. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis. Am J Physiol Cell Physiol 2016; 311:C884-C894. [PMID: 27653983 PMCID: PMC5206301 DOI: 10.1152/ajpcell.00030.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022]
Abstract
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.
Collapse
Affiliation(s)
- Connor J Telles
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Sarah E Decker
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - William W Motley
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Alexander W Peters
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Ali Poyan Mehr
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Raymond A Frizzell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N Forrest
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| |
Collapse
|
26
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Xie C, Liu HW, Pan N, Ding JP, Yao J. The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols. Acta Pharmacol Sin 2016; 37:124-33. [PMID: 26725740 DOI: 10.1038/aps.2015.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
AIM KCNQ1 and KCNE1 form a complex in human ventricular cardiomyocytes, which are important in maintaining a normal heart rhythm. In the present study we investigated the effects of a homologous series of 1-alkanols on KCNQ1/KCNE1 channels expressed in Xenopus oocytes. METHODS ECG recording was made in rats injected with ethanol-containing solution (0.3 mL, ip). Human KCNQ1 channel and its auxiliary subunit KCNE1 were heterologously coexpressed in Xenopus oocytes, which were superfused with ND96 solution; 1-alkanols (ethanol, 1-butanol and 1-hexanol) were delivered through a gravity-driven perfusion device. The slow-delayed rectifier potassium currents IKs (KCNQ1/KCNE1 currents) were recorded using a two-electrode voltage clamp method. Site-directed mutations (I257A) were made in KCNQ1. RESULTS In ECG recordings, a low concentration of ethanol (3%, v/v) slightly increased the heart rate of rats, whereas the higher concentrations of ethanol (10%, 50%, v/v) markedly reduced it. In oocytes coexpressing KCNQ1/KCNE1 channels, ethanol, 1-butanol and 1-hexanol dose-dependently inhibited IKs currents with IC50 values of 80, 11 and 2.7 mmol/L, respectively. Furthermore, the 1-alkanols blocked the KCNQ1 channel in both open and closed states, and a four-state model could adequately explain the effects of 1-alkanols on the closed-state channel block. Moreover, the mutation of I257A at the intracellular loop between S4 and S5 in KCNQ1 greatly decreased the sensitivity to 1-alkanols; and the IC50 values of ethanol, 1-butanol and 1-hexanol were increased to 634, 414 and 7.4 mmol/L, respectively. The mutation also caused the ablation of closed-state channel block. CONCLUSION These findings provide new insight into the intricate mechanisms of the blocking effects of ethanol on the KCNQ1 channel.
Collapse
|
28
|
Beltrán C, Treviño CL, Mata-Martínez E, Chávez JC, Sánchez-Cárdenas C, Baker M, Darszon A. Role of Ion Channels in the Sperm Acrosome Reaction. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:35-69. [DOI: 10.1007/978-3-319-30567-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Sánchez-Carranza O, Torres-Rodríguez P, Darszon A, Treviño CL, López-González I. Pharmacology of hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm. Biochem Biophys Res Commun 2015; 466:554-9. [PMID: 26381170 DOI: 10.1016/j.bbrc.2015.09.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/01/2023]
Abstract
Slo3 channels (mSlo3) primarily mediate mouse sperm K(+) currents and are essential for the capacitation-associated hyperpolarization (CAH). Whether Slo3 and/or Slo1, two Slo family K(+) channels are functionally expressed in human sperm is controversial. Our recent pharmacological studies of the human sperm CAH suggested the participation of both. Lack of a detailed pharmacology of heterologously expressed human Slo3 (hSlo3) prevented precisely identifying the K(+) channel(s) involved. In the present report, we compare the pharmacological profile of expressed hSlo3 in CHO cells with that of the CAH to advance this matter. Whole-cell patch-clamp recordings showed that hSlo3 currents are inhibited: significantly by progesterone, Ba(2+) and quinidine; partially by Penitrem A and Charybdotoxin; and poorly by Iberiotoxin and Slotoxin. Surprisingly, hSlo3 currents were resistant to Clofilium and 60 mM TEA(+) which inhibit mSlo3. Pharmacological comparison of the CAH and hSlo3 profiles indicates in addition to hSlo3, other K(+) channels, possibly Slo1, may participate in CAH. The pharmacological profile of heterologously expressed hSlo3 channels differs from that of mSlo3 K(+) channels, consistent with species-specific differences observed among other sperm ion channels. While the pharmacological correlation analysis of the hSlo3 currents and the CAH confirmed the participation of hSlo3 channels, it suggests that additional K(+) channels may be involved, in particular Slo1 channels.
Collapse
Affiliation(s)
- Oscar Sánchez-Carranza
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Paulina Torres-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
30
|
Wrighton DC, Muench SP, Lippiat JD. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol 2015; 172:4355-63. [PMID: 26045093 PMCID: PMC4556473 DOI: 10.1111/bph.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose The Slo3 (KCa5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Experimental Approach Mouse (m) Slo3 (KCa5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Key Results Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Conclusions and Implications Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter.
Collapse
Affiliation(s)
- David C Wrighton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 2015; 58:105-13. [DOI: 10.1016/j.ceca.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
32
|
Yang Y, Chen F, Karasawa T, Ma KT, Guan BC, Shi XR, Li H, Steyger PS, Nuttall AL, Jiang ZG. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles. PLoS One 2015; 10:e0125266. [PMID: 25938437 PMCID: PMC4418701 DOI: 10.1371/journal.pone.0125266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
The resting membrane potential (RP) of vascular smooth muscle cells (VSMCs) is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA), brain arterioles (BA) and mesenteric arteries (MA). We found: 1) RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba(2+) 0.1 mM eliminated their high RP peaks ~-75 mV. 2) Cells with low RP (~-45 mV) hyperpolarized in response to 10 mM extracellular K(+), while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV) displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K(+) typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3) Boltzmann-fit analysis of the Ba(2+)-sensitive inward rectifier K(+) (Kir) whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4) Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5) Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir-based regenerative shifts between two RP states could form a critical mechanism for conduction/spread of vasomotion along the arteriole axis.
Collapse
Affiliation(s)
- Yuqin Yang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Fangyi Chen
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Biology, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Ke-Tao Ma
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Physiology, Shihezi University Medical College, Shihezi, China
| | - Bing-Cai Guan
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Rui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Zhi-Gen Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- * E-mail:
| |
Collapse
|
33
|
Tang QY, Kolanos R, De Felice LJ, Glennon RA. Structural analysis of dopamine- and amphetamine-induced depolarization currents in the human dopamine transporter. ACS Chem Neurosci 2015; 6:551-8. [PMID: 25594379 DOI: 10.1021/cn500282f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amphetamine (AMPH) induces depolarizing currents through the human dopamine transporter (hDAT). Recently we discovered that the S(+) enantiomer of AMPH induces a current through hDAT that persists long after its removal from the external milieu. The persistent current is less prominent for R(-)AMPH and essentially absent for dopamine (DA)-induced currents. Related agents such as methamphetamine also exhibit persistent currents, which are present in both frog oocyte and mammalian HEK expression systems. Here, we study hDAT-expressing Xenopus laevis oocytes voltage-clamped and exposed from outside to DA, S(+)AMPH, R(-)AMPH, and related synthesized compounds, including stereoisomers. The goal of the study was to determine how structural transitioning from dopamine to amphetamine influences hDAT potency and action. At saturating concentrations, S(+)AMPH or R(-)AMPH induce a sharply rising depolarizing current from -60 mV that is comparable in amplitude to DA-induced currents. The magnitude and duration of the currents and the presence or absence of persistent currents depend on the concentration, duration of exposure, and chemical structure and enantiomeric versions of the agents.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Department
of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
- Jiangsu
Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, People’s Republic of China
| | - Renata Kolanos
- Department
of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| | - Louis J De Felice
- Department
of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Richard A Glennon
- Department
of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| |
Collapse
|
34
|
Zeng XH, Navarro B, Xia XM, Clapham DE, Lingle CJ. Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and voltage-activated current in mouse spermatozoa. ACTA ACUST UNITED AC 2014; 142:305-13. [PMID: 23980198 PMCID: PMC3753610 DOI: 10.1085/jgp.201311011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During passage through the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that renders sperm competent to produce fertilization. Capacitation involves a sequence of changes in biochemical and electrical properties, the onset of a hyperactivated swimming behavior, and development of the ability to undergo successful fusion and penetration with an egg. In mouse sperm, the development of hyperactivated motility is dependent on cytosolic alkalization that then results in an increase in cytosolic Ca2+. The elevation of Ca2+ is thought to be primarily driven by the concerted interplay of two alkalization-activated currents, a K+ current (KSPER) composed of pore-forming subunits encoded by the Kcnu1 gene (also termed Slo3) and a Ca2+ current arising from a family of CATSPER subunits. After deletion of any of four CATSPER subunit genes (CATSPER1–4), the major remaining current in mouse sperm is alkalization-activated KSPER current. After genetic deletion of the Slo3 gene, KSPER current is abolished, but there remains a small voltage-activated K+ current hypothesized to reflect monovalent flux through CATSPER. Here, we address two questions. First, does the residual outward K+ current present in the Slo3 −/− sperm arise from CATSPER? Second, can any additional membrane K+ currents be detected in mouse sperm by patch-clamp methods other than CATSPER and KSPER? Here, using mice bred to lack both SLO3 and CATSPER1 subunits, we show conclusively that the voltage-activated outward current present in Slo3 −/− sperm is abolished when CATSPER is also deleted. Any leak currents that may play a role in setting the resting membrane potential in noncapacitated sperm are likely smaller than the pipette leak current and thus cannot be resolved within the limitation of the patch-clamp technique. Together, KSPER and CATSPER appear to be the sole ion channels present in mouse sperm that regulate membrane potential and Ca2+ influx in response to alkalization.
Collapse
Affiliation(s)
- Xu-Hui Zeng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | | | | | | | | |
Collapse
|
35
|
Tang QY, Zhang Z, Meng XY, Cui M, Logothetis DE. Structural determinants of phosphatidylinositol 4,5-bisphosphate (PIP2) regulation of BK channel activity through the RCK1 Ca2+ coordination site. J Biol Chem 2014; 289:18860-72. [PMID: 24778177 DOI: 10.1074/jbc.m113.538033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca(2+)). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca(2+)-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel's activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca(2+) and PIP2 in regulating BK channel activity. In the absence of Ca(2+), RCK1 structural elements limit channel activation through a decrease in the channel's PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca(2+) coordination site (Asp(367) or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys(392) and Arg(393)) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca(2+), the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca(2+) engaging Asp(367). Our results demonstrate that, along with Ca(2+) and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 and the Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, China
| | - Zhe Zhang
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 and the Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, China
| | - Xuan-Yu Meng
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 and
| | - Meng Cui
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 and
| | - Diomedes E Logothetis
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 and
| |
Collapse
|
36
|
López-González I, Torres-Rodríguez P, Sánchez-Carranza O, Solís-López A, Santi CM, Darszon A, Treviño CL. Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod 2014; 20:619-29. [PMID: 24737063 DOI: 10.1093/molehr/gau029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fertilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpolarization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca(2+) concentration, measured also by flow cytometry. We found that sperm membrane hyperpolarization was completely abolished in the presence of a high external K(+) concentration (60 mM), indicating the participation of K(+) channels. In order to identify, which of the potential K(+) channels were involved in this hyperpolarization, we used different K(+) channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K(+) channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K(+) currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 μM). Considered altogether, our data indicate that Slo1 and Slo3 could share the preponderant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the hyperpolarization event.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - P Torres-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - O Sánchez-Carranza
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - A Solís-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - C M Santi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - C L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
37
|
Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ, Kaupp UB, Strünker T. The Ca2+-activated K+ current of human sperm is mediated by Slo3. eLife 2014; 3:e01438. [PMID: 24670955 PMCID: PMC3966514 DOI: 10.7554/elife.01438] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K+ current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca2+. Correspondingly, Vm is strongly regulated by Ca2+ and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca2+ rather than by alkaline pHi; current–voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K+ channel in human sperm that carries the Ca2+-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca2+ influx carried by voltage-gated CatSper channels is limited by Ca2+-controlled hyperpolarization via Slo3. DOI:http://dx.doi.org/10.7554/eLife.01438.001 A sperm that has been ejaculated into the female reproductive tract must complete a number of tasks to pass on its genes to the next generation. First it must travel along a meandering route to encounter an egg, before pushing through a jelly-like coating that surrounds the egg and then, finally, fusing with the egg’s surface membrane. In order to complete these steps and fertilise the egg, a sperm must undergo a process called ‘capacitation’. This process, and a variety of other sperm functions, involves the controlled flux of positive ions into and out of the sperm via specific ion channels that are located in the cell membrane. The properties of the ion channels that allow protons and calcium ions to move into and out of human sperm are well understood, but less is known about the channels that control the movement of potassium ions. In mice, a channel called Slo3 allows potassium ions to flow out of the sperm and makes the membrane voltage of these cells more negative. Also, in mice, this channel is essential for the sperm to function correctly, and for fertilization. However, in humans, it is unclear if the Slo3 channel is present in sperm and if it performs the same role. Now, Brenker et al. have shown that the flow of potassium ions out of human sperm occurs via the Slo3 channel, and that human Slo3 is responsible for setting the membrane voltage of these cells. However, whereas the mouse Slo3 channel is opened in response to a decrease in the concentration of protons within the sperm (i.e., an increase of the pH inside the cell), human Slo3 is largely controlled by changes in the levels of calcium ions. An increase in the calcium concentration within the cell opens the human Slo3 channel, more than a decrease in the proton concentration does. Altogether, Brenker et al. identify Slo3 as the principal potassium channel in human sperm and reveal more fundamental differences between human sperm and mouse sperm. Thereby, this work further stresses the need to be cautious about using mice as a model of male fertility in humans. DOI:http://dx.doi.org/10.7554/eLife.01438.002
Collapse
Affiliation(s)
- Christoph Brenker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mansell SA, Publicover SJ, Barratt CLR, Wilson SM. Patch clamp studies of human sperm under physiological ionic conditions reveal three functionally and pharmacologically distinct cation channels. Mol Hum Reprod 2014; 20:392-408. [PMID: 24442342 PMCID: PMC4004083 DOI: 10.1093/molehr/gau003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whilst fertilizing capacity depends upon a K+ conductance (GK) that allows the spermatozoon membrane potential (Vm) to be held at a negative value, the characteristics of this conductance in human sperm are virtually unknown. We therefore studied the biophysical/pharmacological properties of the K+ conductance in spermatozoa from normal donors held under voltage/current clamp in the whole cell recording configuration. Our standard recording conditions were designed to maintain quasi-physiological, Na+, K+ and Cl− gradients. Experiments that explored the effects of ionic substitution/ion channel blockers upon membrane current/potential showed that resting Vm was dependent upon a hyperpolarizing K+ current that flowed via channels that displayed only weak voltage dependence and limited (∼7-fold) K+ versus Na+ selectivity. This conductance was blocked by quinidine (0.3 mM), bupivacaine (3 mM) and clofilium (50 µM), NNC55-0396 (2 µM) and mibefradil (30 µM), but not by 4-aminopyridine (2 mM, 4-AP). Progesterone had no effect upon the hyperpolarizing K+ current. Repolarization after a test depolarization consistently evoked a transient inward ‘tail current’ (ITail) that flowed via a second population of ion channels with poor (∼3-fold) K+ versus Na+ selectivity. The activity of these channels was increased by quinidine, 4-AP and progesterone. Vm in human sperm is therefore dependent upon a hyperpolarizing K+ current that flows via channels that most closely resemble those encoded by Slo3. Although 0.5 µM progesterone had no effect upon these channels, this hormone did activate the pharmacologically distinct channels that mediate ITail. In conclusion, this study reveals three functionally and pharmacologically distinct cation channels: Ik, ITail, ICatSper.
Collapse
Affiliation(s)
- S A Mansell
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9S, UK
| | | | | | | |
Collapse
|
39
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
40
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
41
|
Loux SC, Crawford KR, Ing NH, González-Fernández L, Macías-García B, Love CC, Varner DD, Velez IC, Choi YH, Hinrichs K. CatSper and the Relationship of Hyperactivated Motility to Intracellular Calcium and pH Kinetics in Equine Sperm1. Biol Reprod 2013; 89:123. [DOI: 10.1095/biolreprod.113.111708] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Hoshi T, Xu R, Hou S, Heinemann SH, Tian Y. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. ACTA ACUST UNITED AC 2013; 142:507-22. [PMID: 24127525 PMCID: PMC3813383 DOI: 10.1085/jgp.201311061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA) at nanomolar concentrations reversibly activate human large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels containing auxiliary β1 or β4 subunits in cell-free patches. Here we examined the action of DHA on the Slo1 channel without any auxiliary subunit and sought to elucidate the biophysical mechanism and the molecular determinants of the DHA sensitivity. Measurements of ionic currents through human Slo1 (hSlo1) channels reveal that the stimulatory effect of DHA does not require activation of the voltage or Ca2+ sensors. Unlike gating of the hSlo1 channel, that of the Drosophila melanogaster Slo1 (dSlo1) channel is unaltered by DHA. Our mutagenesis study based on the differential responses of human and dSlo1 channels to DHA pinpoints that Y318 near the cytoplasmic end of S6 in the hSlo1 channel is a critical determinant of the stimulatory action of DHA. The mutation Y318S in hSlo1, which replaces Y with S as found in dSlo1, greatly diminishes the channel’s response to DHA with a 22-carbon chain whether β1 or β4 is absent or present. However, the responses to α-linolenic acid, an omegea-3 fatty acid with an 18-carbon chain, and to arachidonic acid, an omega-6 fatty acid with a 20-carbon chain, remain unaffected by the mutation. Y318 in the S6 segment of hSlo1 is thus an important determinant of the electrophysiological response of the channel to DHA. Furthermore, the mutation Y318S may prove to be useful in dissecting out the complex lipid-mediated modulation of Slo1 BK channels.
Collapse
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
43
|
Mannowetz N, Naidoo NM, Choo SAS, Smith JF, Lishko PV. Slo1 is the principal potassium channel of human spermatozoa. eLife 2013; 2:e01009. [PMID: 24137539 PMCID: PMC3789364 DOI: 10.7554/elife.01009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa gain competence to fertilize an oocyte as they travel through the female reproductive tract. This process is accompanied by an elevation of sperm intracellular calcium and a membrane hyperpolarization. The latter is evoked by K(+) efflux; however, the molecular identity of the potassium channel of human spermatozoa (hKSper) is unknown. Here, we characterize hKSper, reporting that it is regulated by intracellular calcium but is insensitive to intracellular alkalinization. We also show that human KSper is inhibited by charybdotoxin, iberiotoxin, and paxilline, while mouse KSper is insensitive to these compounds. Such unique properties suggest that the Slo1 ion channel is the molecular determinant for hKSper. We show that Slo1 is localized to the sperm flagellum and is inhibited by progesterone. Inhibition of hKSper by progesterone may depolarize the spermatozoon to open the calcium channel CatSper, thus raising [Ca(2+)] to produce hyperactivation and allowing sperm to fertilize an oocyte. DOI:http://dx.doi.org/10.7554/eLife.01009.001.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Natasha M Naidoo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Seung-A Sara Choo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James F Smith
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
44
|
Zheng LP, Wang HF, Li BM, Zeng XH. Sperm-specific ion channels: targets holding the most potential for male contraceptives in development. Contraception 2013; 88:485-91. [PMID: 23845210 DOI: 10.1016/j.contraception.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/27/2022]
Abstract
There is a global need for an ideal method of male contraception. However, the development of male contraceptives has not been well successful. Research on sperm-specific ion channels, especially the recent advance obtained from electrophysiological studies, has emphasized the conception that those channels are targets with the most potential to develop non-hormonal male contraceptives. While summarizing the general options for male contraception, this review focuses on the properties and functions of sperm ion channels together with the attempts of utilizing these channels to develop male contraceptives. We believe that a deeper insight into the signaling and molecular mechanisms by which ion channels regulate sperm functions will pave the way for developing novel male-based contraceptives.
Collapse
Affiliation(s)
- Li-Ping Zheng
- Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | | | | | | |
Collapse
|
45
|
Chávez JC, de la Vega-Beltrán JL, Escoffier J, Visconti PE, Treviño CL, Darszon A, Salkoff L, Santi CM. Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization. PLoS One 2013; 8:e60578. [PMID: 23577126 PMCID: PMC3618424 DOI: 10.1371/journal.pone.0060578] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/28/2013] [Indexed: 12/15/2022] Open
Abstract
Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K+ and Cl− before capacitation, as well as Na+. The permeability to both K+ and Cl− has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1) elevation of external pH prior to capacitation and 2) capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract. Significantly, other events associated with sperm capacitation, occur in SLO3 mutant sperm and thus proceed independently of hyperpolarization.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - José L. de la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jessica Escoffier
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Pablo E. Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Celia M. Santi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
46
|
Alasmari W, Costello S, Correia J, Oxenham SK, Morris J, Fernandes L, Ramalho-Santos J, Kirkman-Brown J, Michelangeli F, Publicover S, Barratt CLR. Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J Biol Chem 2013; 288:6248-58. [PMID: 23344959 PMCID: PMC3585060 DOI: 10.1074/jbc.m112.439356] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
[Ca2+]i signaling regulates sperm motility, enabling switching between functionally different behaviors that the sperm must employ as it ascends the female tract and fertilizes the oocyte. We report that different behaviors in human sperm are recruited according to the Ca2+ signaling pathway used. Activation of CatSper (by raising pHi or stimulating with progesterone) caused sustained [Ca2+]i elevation but did not induce hyperactivation, the whiplash-like behavior required for progression along the oviduct and penetration of the zona pellucida. In contrast, penetration into methylcellulose (mimicking penetration into cervical mucus or cumulus matrix) was enhanced by activation of CatSper. NNC55-0396, which abolishes CatSper currents in human sperm, inhibited this effect. Treatment with 5 μm thimerosal to mobilize stored Ca2+ caused sustained [Ca2+]i elevation and induced strong, sustained hyperactivation that was completely insensitive to NNC55-0396. Thimerosal had no effect on penetration into methylcellulose. 4-Aminopyridine, a powerful modulator of sperm motility, both raised pHi and mobilized Ca2+ stored in sperm (and from microsomal membrane preparations). 4-Aminopyridine-induced hyperactivation even in cells suspended in Ca2+-depleted medium and also potentiated penetration into methylcellulose. The latter effect was sensitive to NNC55-039, but induction of hyperactivation was not. We conclude that these two components of the [Ca2+]i signaling apparatus have strikingly different effects on sperm motility. Furthermore, since stored Ca2+ at the sperm neck can be mobilized by Ca2+-induced Ca2+ release, we propose that CatSper activation can elicit functionally different behaviors according to the sensitivity of the Ca2+ store, which may be regulated by capacitation and NO from the cumulus.
Collapse
Affiliation(s)
- Wardah Alasmari
- From the Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The vasorelaxant mechanisms of a Rho kinase inhibitor DL0805 in rat thoracic aorta. Molecules 2012; 17:5935-44. [PMID: 22609784 PMCID: PMC6268074 DOI: 10.3390/molecules17055935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/21/2022] Open
Abstract
Rho-kinase has been suggested as a potential therapeutic target in the treatment of cardiovascular diseases. The Rho-kinase signaling pathway is substantially involved in vascular contraction. The aim of the present study was to evaluate the vasorelaxant effects of Rho kinase inhibitor DL0805 in isolated rat aortic rings and to investigate its possible mechanism(s). It was found that DL0805 exerted vasorelaxation in a dose-dependent manner in NE or KCl-induced sustained contraction and partial loss of the vasorelaxation under endothelium-denuded rings. The DL0805-induced vasorelaxation was significantly reduced by the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester, the guanylate cyclase inhibitor methylene blue and the cyclooxygenase inhibitor indomethacin. The voltage-dependent K+ channel blocker 4-aminopyridine remarkably attenuated DL0805-induced relaxations. However, the ATP-sensitive K+ channel blocker glibenclamide and Ca2+-activated K+ channel blocker tetraethylammonium did not affect the DL0805-induced relaxation. In the endothelium-denuded rings, DL0805 also reduced NE-induced transient contraction and inhibited contraction induced by increasing external calcium. These findings suggested that DL0805 is a novel vasorelaxant compound associated with inhibition of Rho/ROCK signaling pathway. The NO-cGMP pathway may be involved in the relaxation of DL0805 in endothelium-intact aorta. The vasorelaxant effect of DL0805 is partially mediated by the opening of the voltage-dependent K+ channels.
Collapse
|
48
|
Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 2011; 74:453-75. [PMID: 22017176 DOI: 10.1146/annurev-physiol-020911-153258] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology.
Collapse
Affiliation(s)
- Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Daniel H. Cox
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
50
|
Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci U S A 2011; 108:5879-84. [PMID: 21427226 DOI: 10.1073/pnas.1100240108] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mouse spermatozoa express a pH-dependent K(+) current (KSper) thought to be composed of subunits encoded by the Slo3 gene. However, the equivalence of KSper and Slo3-dependent current remains uncertain, because heterologous expression of Slo3 results in currents that are less effectively activated by alkalization than are native KSper currents. Here, we show that genetic deletion of Slo3 abolishes all pH-dependent K(+) current at physiological membrane potentials in corpus epididymal sperm. A residual pH-dependent outward current (I(Kres)) is observed in Slo3(-/-) sperm at potentials of >0 mV. Differential inhibition of KSper/Slo3 and I(Kres) by clofilium reveals that the amplitude of I(Kres) is similar in both wild-type (wt) and Slo3(-/-) sperm. The properties of I(Kres) suggest that it likely represents outward monovalent cation flux through CatSper channels. Thus, KSper/Slo3 may account for essentially all mouse sperm K(+) current and is the sole pH-dependent K(+) conductance in these sperm. With physiological ionic gradients, alkalization depolarizes Slo3(-/-) spermatozoa, presumably from CatSper activation, in contrast to Slo3/KSper-mediated hyperpolarization in wt sperm. Slo3(-/-) male mice are infertile, but Slo3(-/-) sperm exhibit some fertility within in vitro fertilization assays. Slo3(-/-) sperm exhibit a higher incidence of morphological abnormalities accentuated by hypotonic challenge and also exhibit deficits in motility in the absence of bicarbonate, revealing a role of KSper under unstimulated conditions. Together, these results show that KSper/Slo3 is the primary spermatozoan K(+) current, that KSper may play a critical role in acquisition of normal morphology and sperm motility when faced with hyperosmotic challenges, and that Slo3 is critical for fertility.
Collapse
|