1
|
Amen R, Havenstein K, Kirschbaum F, Tiedemann R. Diet in phenotypically divergent sympatric species of African weakly electric fish (genus: Campylomormyrus)-A hybrid capture/HTS metabarcoding approach. Mol Ecol 2024; 33:e17248. [PMID: 38126927 DOI: 10.1111/mec.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Ecological speciation within the mormyrid genus Campylomormyrus resulted in sympatric species exhibiting divergence in their feeding apparatus and electric organ discharge (EOD). This study documents the overall diet of the genus Campylomormyrus and examines the hypothesis that the Campylomormyrus radiation is caused by adaptation to different food sources. We performed diet assessment of five sympatric Campylomormyrus species (C. alces, C. compressirostris, C. curvirostris, C. tshokwe, C. numenius) and their sister taxon Gnathonemus petersii with markedly different snout morphologies and EODs using hybrid capture/HTS DNA metabarcoding of their stomach contents. Our approach allowed for high taxonomic resolution of prey items, including benthic invertebrates, allochthonous invertebrates and vegetation. Comparisons of the diet compositions using quantitative measures and diet overlap indices revealed that all species are able to exploit multiple food niches in their habitats, that is fauna at the bottom, the water surface and the water column. A major part of the diet is larvae of aquatic insects, such as dipterans, coleopterans and trichopterans, known to occur in holes and interstitial spaces of the substrate. The results indicate that different snout morphologies and the associated divergence in the EOD could translate into different prey spectra. This suggests that the diversification in EOD and/or morphology of the feeding apparatus could be under functional adaptation.
Collapse
Affiliation(s)
- Rahma Amen
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Katja Havenstein
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Hauser FE, Xiao D, Van Nynatten A, Brochu-De Luca KK, Rajakulendran T, Elbassiouny AE, Sivanesan H, Sivananthan P, Crampton WGR, Lovejoy NR. Ecologically mediated differences in electric organ discharge drive evolution in a sodium channel gene in South American electric fishes. Biol Lett 2024; 20:20230480. [PMID: 38412964 PMCID: PMC10898970 DOI: 10.1098/rsbl.2023.0480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.
Collapse
Affiliation(s)
- Frances E. Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dawn Xiao
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
| | - Kristen K. Brochu-De Luca
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
- School of Chemistry, Environmental and Life Sciences, University of The Bahamas, Oakes Field Campus, Nassau, New Providence, The Bahamas
| | - Thanara Rajakulendran
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Ahmed E. Elbassiouny
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
| | - Harunya Sivanesan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Pradeega Sivananthan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - William G. R. Crampton
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL 32816, USA
| | - Nathan R. Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
3
|
Cheng F, Dennis AB, Baumann O, Kirschbaum F, Abdelilah-Seyfried S, Tiedemann R. Gene and Allele-Specific Expression Underlying the Electric Signal Divergence in African Weakly Electric Fish. Mol Biol Evol 2024; 41:msae021. [PMID: 38410843 PMCID: PMC10897887 DOI: 10.1093/molbev/msae021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.
Collapse
Affiliation(s)
- Feng Cheng
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alice B Dennis
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Cheng F, Dennis AB, Osuoha JI, Canitz J, Kirschbaum F, Tiedemann R. A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha. BMC Genomics 2023; 24:129. [PMID: 36941548 PMCID: PMC10029256 DOI: 10.1186/s12864-023-09196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. RESULTS A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. CONCLUSIONS We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.
Collapse
Affiliation(s)
- Feng Cheng
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alice B Dennis
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, Namur, Belgium
| | - Josephine Ijeoma Osuoha
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Julia Canitz
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Intergenus F1-hybrids of African weakly electric fish (Mormyridae: Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:355-371. [PMID: 35119505 PMCID: PMC9123046 DOI: 10.1007/s00359-022-01542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Hybridisation is an important element of adaptive radiation in fish but data are limited in weakly electric mormyrid fish in this respect. Recently, it has been shown that intragenus hybrids (Campylomormyrus) are fertile and are able to produce F2-fish. In this paper, we demonstrate that even intergenus hybrids (Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. Three artificial reproduction (AR) trials, with an average fertilisation rate of ca. 23%, yielded different numbers of survivals (maximally about 50%) of the F1-hybrids. The complete ontogenetic development of these hybrids is described concerning their morphology and electric organ discharge (EOD). Two EOD types emerged at the juvenile stage, which did not change up to adulthood. Type I consisted of four phases and Type II was triphasic. The minimum body length at sexual maturity was between 10 and 11 cm. Malformations, growth and mortality rates are also described.
Collapse
|
6
|
Koenig LA, Gallant JR. Sperm competition, sexual selection and the diverse reproductive biology of Osteoglossiformes. JOURNAL OF FISH BIOLOGY 2021; 99:740-754. [PMID: 33973234 DOI: 10.1111/jfb.14779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Osteoglossiformes are an order of "bony tongue" fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade-offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.
Collapse
Affiliation(s)
- Lauren A Koenig
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Jason R Gallant
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Borghezan EDA, Pires THDS, Ikeda T, Zuanon J, Kohshima S. A Review on Fish Sensory Systems and Amazon Water Types With Implications to Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.589760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Amazon has the highest richness of freshwater organisms in the world, which has led to a multitude of hypotheses on the mechanisms that generated this biodiversity. However, most of these hypotheses focus on the spatial distance of populations, a framework that fails to provide an explicit mechanism of speciation. Ecological conditions in Amazon freshwaters can be strikingly distinct, as it has been recognized since Alfred Russel Wallace’s categorization into black, white, and blue (= clear) waters. Water types reflect differences in turbidity, dissolved organic matter, electrical conductivity, pH, amount of nutrients and lighting environment, characteristics that directly affect the sensory abilities of aquatic organisms. Since natural selection drives evolution of sensory systems to function optimally according to environmental conditions, the sensory systems of Amazon freshwater organisms are expected to vary according to their environment. When differences in sensory systems affect chances of interbreeding between populations, local adaptations may result in speciation. Here, we briefly present the limnologic characteristics of Amazonian water types and how they are expected to influence photo-, chemical-, mechano-, and electro-reception of aquatic organisms, focusing on fish. We put forward that the effect of different water types on the adaptation of sensory systems is an important mechanism that contributed to the evolution of fish diversity. We point toward underexplored research perspectives on how divergent selection may act on sensory systems and thus contribute to the origin and maintenance of the biodiversity of Amazon aquatic environments.
Collapse
|
8
|
Mukweze Mulelenu C, Katemo Manda B, Decru E, Chocha Manda A, Vreven E. The Cyphomyrus Myers 1960 (Osteoglossiformes: Mormyridae) of the Lufira basin (Upper Lualaba: DR Congo): A generic reassignment and the description of a new species. JOURNAL OF FISH BIOLOGY 2020; 96:1123-1141. [PMID: 31856294 DOI: 10.1111/jfb.14237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Within a comparative morphological framework, Hippopotamyrus aelsbroecki, only known from the holotype originating from Lubumbashi, most probably the Lubumbashi River, a left bank subaffluent of the Luapula River, is reallocated to the genus Cyphomyrus. This transfer is motivated by the fact that H. aelsbroecki possesses a rounded or vaulted predorsal profile, an insertion of the dorsal fin far anterior to the level of the insertion of the anal fin, and a compact, laterally compressed and deep body. In addition, a new species of Cyphomyrus is described from the Lufira basin, Cyphomyrus lufirae. Cyphomyrus lufirae was collected in large parts of the Middle Lufira, upstream of the Kyubo Falls and just downstream of these falls in the lower Lufira and its nearby left bank affluent, the Luvilombo River. The new species is distinguished from all its congeners, that is, firstly, from C. aelsbroecki, C. cubangoensis and C. discorhynchus, by a low number of dorsal fin rays, 27-32 (vs. higher, 36 (37), 34 (33-41) an 38 (38-40), respectively) and, secondly, from C. aelsbroecki, C. cubangoensis, and C. discorhynchus by a large prepelvic distance, 41.0-43.8% LS (vs. shorter, 39.7%, 38.9-39.1% and 37.0-41.0% LS , respectively). The description of yet another new species for the Upemba National Park and the Kundelungu National Park further highlights their importance for fish protection and conservation in the area. Hence, there is an urgent need for the full integration of fish into the management plans of these parks.
Collapse
Affiliation(s)
- Christian Mukweze Mulelenu
- Département de Zootechnie, Faculté des Sciences Agronomiques, Université de Kolwezi, Kolwezi, Democratic Republic of the Congo
- Département de Gestion des Ressources Naturelles Renouvelables, Unité de recherche en Biodiversité et Exploitation durable des Zones Humides, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Bauchet Katemo Manda
- Département de Gestion des Ressources Naturelles Renouvelables, Unité de recherche en Biodiversité et Exploitation durable des Zones Humides, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Eva Decru
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Auguste Chocha Manda
- Département de Gestion des Ressources Naturelles Renouvelables, Unité de recherche en Biodiversité et Exploitation durable des Zones Humides, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Emmanuel Vreven
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Picq S, Sperling J, Cheng CJ, Carlson BA, Gallant JR. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae. Evolution 2020; 74:911-935. [PMID: 32187650 PMCID: PMC7816287 DOI: 10.1111/evo.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.
Collapse
Affiliation(s)
- Sophie Picq
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| | - Joshua Sperling
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Catherine J. Cheng
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Bruce A. Carlson
- Washington University in St. Louis Department of Biology, St. Louis, MO 63130 USA
| | - Jason R. Gallant
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| |
Collapse
|
10
|
Amen R, Nagel R, Hedt M, Kirschbaum F, Tiedemann R. Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractUnder an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype–environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.
Collapse
|
11
|
Moulton TL, Chapman LJ, Krahe R. Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish Marcusenius victoriae. JOURNAL OF FISH BIOLOGY 2020; 96:496-505. [PMID: 31845335 DOI: 10.1111/jfb.14234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Environmental hypoxia has effected numerous and well-documented anatomical, physiological and behavioural adaptations in fishes. Comparatively little is known about hypoxia's impacts on sensing because it is difficult to quantify sensory acquisition in vivo. Weakly electric fishes, however, rely heavily on an easily-measurable sensory modality-active electric sensing-whereby individuals emit and detect electric organ discharges (EODs). In this study, hypoxia tolerance of a mormyrid weakly electric fish, Marcusenius victoriae, was assessed by examining both its metabolic and EOD rates using a critical threshold (pcrit ) paradigm. The routine metabolic rate was 1.42 mg O2 h-1 , and the associated critical oxygen tension was 14.34 mmHg. Routine EOD rate was 5.68 Hz with an associated critical tension of 15.14 mmHg. These metabolic indicators of hypoxia tolerance measured in this study were consistent with those in previous studies on M. victoriae and other weakly electric fishes. Furthermore, our results suggest that some aerobic processes may be reduced in favour of maintaining the EOD rate under extreme hypoxia. These findings underscore the importance of the active electrosensory modality to these hypoxia-tolerant fish.
Collapse
Affiliation(s)
- Tyler L Moulton
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Biology, Hamilton College, Clinton, New York, USA
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
13
|
Gallant JR, Losilla M, Tomlinson C, Warren WC. The Genome and Adult Somatic Transcriptome of the Mormyrid Electric Fish Paramormyrops kingsleyae. Genome Biol Evol 2017; 9:3525-3530. [PMID: 29240929 PMCID: PMC5751062 DOI: 10.1093/gbe/evx265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Several studies have begun to elucidate the genetic and developmental processes underlying major vertebrate traits. Few of these traits have evolved repeatedly in vertebrates, preventing the analysis of molecular mechanisms underlying these traits comparatively. Electric organs have evolved multiple times among vertebrates, presenting a unique opportunity to understand the degree of constraint and repeatability of the evolutionary processes underlying novel vertebrate traits. As there is now a completed genome sequence representing South American electric eels, we were motivated to obtain genomic sequence from a linage that independently evolved electric organs to facilitate future comparative analyses of the evolution and development of electric organs. We report here the sequencing and de novo assembly of the genome of the mormyrid Paramormyrops kingsleyae using short-read sequencing. In addition, we have completed a somatic transcriptome from 11 tissues to construct a gene expression atlas of predicted genes from this assembly, enabling us to identify candidate housekeeping genes as well as genes differentially expressed in the major somatic tissues of the mormyrid electric fish. We anticipate that this resource will greatly facilitate comparative studies on the evolution and development of electric organs and electroreceptors.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Integrative Biology, Michigan State University
| | | | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St Louis
| | | |
Collapse
|
14
|
Bierbach D, Arias-Rodriguez L, Plath M. Intrasexual competition enhances reproductive isolation between locally adapted populations. Curr Zool 2017; 64:125-133. [PMID: 29492045 PMCID: PMC5809038 DOI: 10.1093/cz/zox071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, México
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Levin BA, Golubtsov AS. New insights into the molecular phylogeny and taxonomy of mormyrids (Osteoglossiformes, Actinopterygii) in northern East Africa. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boris A. Levin
- Institute of Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl District Russia
- Cherepovets State University; Vologda Region Cherepovets Russia
| | - Alexander S. Golubtsov
- Institute of Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl District Russia
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
16
|
Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. ACTA ACUST UNITED AC 2017; 110:273-280. [PMID: 28108417 DOI: 10.1016/j.jphysparis.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
Abstract
Karyotyping is a basic method to investigate chromosomal evolution and genomic rearrangements. Sixteen genera within the basal teleost order Osteoglossiformes are currently described cytogenetically. Our study adds information to this chromosomal dataset by determining the karyotype of Campylomormyrus compressirostris, a genus of African weakly electric fish that has not been previously examined. Our results indicate a diploid chromosome number of 2n=48 (4sm+26m+18a) with a fundamental number of FN=72. This chromosome number is identical to the number documented for the sister taxon of the genus Campylomormyrus, i.e., Gnathonemus petersii (2n=48). These results support the close relationship of Campylomormyrus and Gnathonemus. However, the karyotype formula of C. compressirostris is different from Gnathonemus petersii, thereby confirming the high variability of karyotype formulae within the Mormyridae. We infer that the differences in chromosome number and formula of Campylomormyrus relative to other mormyrids may be caused by Robertsonian fusion and pericentric inversion. In addition to the karyotype description and classification of Campylomormyrus, a ChromEvol analysis was used to determine the ancestral haploid chromosome number of osteoglossiform taxa. Our results indicate a relatively conservative haploid chromosome number of n=24 for the most recent common ancestor of Osteoglossiformes and for most of the internal nodes of osteoglossiform phylogeny. Hence, we presume that the high chromosome variability evolved recently on multiple independent occasions. Furthermore, we suggest that the most likely ancestral chromosome number of Mormyridae is either n=24 or n=25. To the best of our knowledge this is the first attempt to determine and classify the karyotype of the weakly electric fish genus Campylomormyrus and to analyze chromosomal evolution within the Osteoglossiformes based on Maximum Likelihood and Bayesian Inference analyses.
Collapse
|
17
|
Donati E, Worm M, Mintchev S, van der Wiel M, Benelli G, von der Emde G, Stefanini C. Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, Mormyrus rume, through a biomimetic Robotic Dummy Fish. BIOINSPIRATION & BIOMIMETICS 2016; 11:066009. [PMID: 27906686 DOI: 10.1088/1748-3190/11/6/066009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A robotic fish has been developed to create a mixed bio-hybrid system made up of weakly electric fish and a mobile dummy fish. Weakly electric fish are capable of interacting with each other via sequences of self-generated electric signals during electrocommunication. Here we present the design of an artificial dummy fish, which is subsequently tested in behavioural experiments. The robot consists of two parts: a flexible tail that can move at different frequencies and amplitudes, performing a carangiform oscillation, and a rigid head containing the motor for the tail oscillation. The dummy fish mimics the weakly electric fish Mormyrus rume in morphology, size and electric signal generation. In order to study electrical interactions, the dummy fish is equipped with ten electrodes that record electric signals of nearby real fish and generate electric dipole fields around itself that are similar to those produced by real fish in both waveform and sequence. Behavioural experiments demonstrate that the dummy fish is able to recruit both single individuals and groups of M. rume from a shelter into an exposed area. The development of an artificial dummy fish may help to understand fundamental aspects of collective behaviour in weakly electric fish and the properties necessary to initiate and sustain it in closed-loop feedback experiments based on electrocommunication.
Collapse
Affiliation(s)
- Elisa Donati
- The BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), Viale Rinaldo Piaggio 34, I-56025 Pontedera (Pisa), Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Lamanna F, Kirschbaum F, Ernst AR, Feulner PG, Mamonekene V, Paul C, Tiedemann R. Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). Mol Phylogenet Evol 2016; 101:8-18. [DOI: 10.1016/j.ympev.2016.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 11/30/2022]
|
19
|
Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae). J Mol Evol 2016; 83:61-77. [PMID: 27481396 DOI: 10.1007/s00239-016-9754-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/23/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor-together with the electrocyte's morphology and innervation pattern-that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels. In mormyroids, SCN4aa is solely expressed in the electrocytes of the adult electric organ. In this study, we compared entire SCN4aa sequences of six species of the genus Campylomormyrus and identified nonsynonymous substitutions among them. SCN4aa in Campylomormyrus exhibits a much higher evolutionary rate compared to its paralog SCN4ab, whose expression is not restricted to the electric organ. We also found evidence for strong positive selection on the SCN4aa gene within Mormyridae and along the lineage ancestral to the Mormyridae. We have identified sites at which all nonelectric teleosts are monomorphic in their amino acid, but mormyrids have different amino acids. Our findings confirm the crucial role of SCN4aa in EOD evolution among mormyrid weakly electric fish. The inferred positive selection within Mormyridae makes this gene a prime candidate for further investigation of the divergent evolution of pulse-type EODs among closely related species.
Collapse
|
20
|
Carlson BA. Differences in electrosensory anatomy and social behavior in an area of sympatry between two species of mormyrid electric fishes. ACTA ACUST UNITED AC 2015; 219:31-43. [PMID: 26567347 DOI: 10.1242/jeb.127720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023]
Abstract
Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of signal evolution and species diversification in a lineage called 'clade A'. Previous field observations suggest that clade-A species tend to be solitary and territorial, whereas non-clade-A species tend to be clustered in high densities suggestive of schooling or shoaling. To explore behavioral differences between species in these lineages in greater detail, I studied population densities, social interactions, and electric signaling in two mormyrid species, Gnathonemus victoriae (clade A) and Petrocephalus degeni (non-clade A), from Lwamunda Swamp, Uganda. Petrocephalus degeni was found at higher population densities, but intraspecific diversity in electric signal waveform was greater in G. victoriae. In the laboratory, G. victoriae exhibited strong shelter-seeking behavior and competition for shelter, whereas P. degeni were more likely to abandon shelter in the presence of conspecifics as well as electric mimics of signaling conspecifics. In other words, P. degeni exhibited social affiliation whereas G. victoriae exhibited social competition. Further, P. degeni showed correlated electric signaling behavior whereas G. victoriae showed anti-correlated signaling behavior. These findings extend previous reports of social spacing, territoriality, and habitat preference among mormyrid species, suggesting that evolutionary divergence in electrosensory processing relates to differences in social behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| |
Collapse
|
21
|
Lamanna F, Kirschbaum F, Tiedemann R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Mol Ecol Resour 2014; 14:1222-30. [PMID: 24690394 DOI: 10.1111/1755-0998.12260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
African weakly electric fishes (Mormyridae) underwent an outstanding adaptive radiation (about 200 species), putatively owing to their ability to communicate through species-specific weak electric signals. The electric organ discharge (EOD) is produced by muscle-derived electrocytes organized in piles to form an electric organ. Despite the importance of this trait as a prezygotic isolation mechanism, genomic resources remained limited. We present here a first draft of the skeletal muscle and electric organ transcriptomes from the weakly electric fish species Campylomormyrus compressirostris, obtained using the Illumina HiSeq2000 sequencing technology. Approximately 6.8 Gbp of cDNA sequence data were produced from both tissues, resulting in 57,268,109 raw reads for the skeletal muscle and 46,934,923 for the electric organ, and assembled de novo into 46,143 and 89,270 contigs, respectively. About 50% of both transcriptomes were annotated after protein databases search. The two transcriptomes show similar profiles in terms of Gene Ontology categories composition. We identified several candidate genes which are likely to play a central role in the production and evolution of the electric signal. For most of these genes, and for many other housekeeping genes, we were able to obtain the complete or partial coding DNA sequences (CDS), which can be used for the development of primers to be utilized in qRT-PCR experiments. We present also the complete mitochondrial genome and compare it to those available from other weakly electric fish species. Additionally, we located 1671 SSR-containing regions with their flanking sites and designed the relative primers. This study establishes a first step in the development of genomic tools aimed at understanding the role of electric communication during speciation.
Collapse
Affiliation(s)
- Francesco Lamanna
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, Germany
| | | | | |
Collapse
|
22
|
Geiger MF, McCrary JK, Schliewen UK. Crater Lake Apoyo revisited--population genetics of an emerging species flock. PLoS One 2013; 8:e74901. [PMID: 24086393 PMCID: PMC3781112 DOI: 10.1371/journal.pone.0074901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/06/2013] [Indexed: 12/27/2022] Open
Abstract
The polytypic Nicaraguan Midas cichlids (Amphilophus cf. citrinellus) have been established as a model system for studying the mechanisms of speciation and patterns of diversification in allopatry and sympatry. The species assemblage in Crater Lake Apoyo has been accepted as a textbook example for sympatric speciation. Here, we present a first comprehensive data set of population genetic (mtDNA & AFLPs) proxies of species level differentiation for a representative set of individuals of all six endemic Amphilophus species occurring in Crater Lake Apoyo. AFLP genetic differentiation was partitioned into a neutral and non-neutral component based on outlier-loci detection approaches, and patterns of species divergence were explored with Bayesian clustering methods. Substantial levels of admixture between species were detected, indicating different levels of reproductive isolation between the six species. Analysis of neutral genetic variation revealed several A. zaliosus as being introgressed by an unknown contributor, hereby rendering the sympatrically evolving L. Apoyo flock polyphyletic. This is contrasted by the mtDNA analysis delivering a clear monophyly signal with Crater Lake Apoyo private haplotypes characterising all six described species, but also demonstrating different demographic histories as inferred from pairwise mismatch distributions.
Collapse
Affiliation(s)
- Matthias F. Geiger
- Bavarian State Collection of Zoology (ZSM, Zoologische Staatssammlung München), Department of Ichthyology, Munich, Germany
- * E-mail:
| | - Jeffrey K. McCrary
- Fundación Nicaragüense Pro-desarrollo Comunitario Integral (FUNDECI/GAIA), Estación Biológica, Laguna de Apoyo Nature Reserve, Masaya, Nicaragua
| | - Ulrich K. Schliewen
- Bavarian State Collection of Zoology (ZSM, Zoologische Staatssammlung München), Department of Ichthyology, Munich, Germany
| |
Collapse
|
23
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
24
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
25
|
Carlson BA, Arnegard ME. Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 2012; 4:720-5. [PMID: 22446537 DOI: 10.4161/cib.17483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In African mormyrid fishes, evolutionary change in a sensory region of the brain established an ability to detect subtle variation in electric communication signals. In one lineage, this newfound perceptual ability triggered a dramatic increase in the rates of signal evolution and species diversification. This particular neural innovation is just one in a series of nested evolutionary novelties that characterize the sensory and motor systems of mormyrids, the most speciose group of extant osteoglossomorph fishes. Here we discuss the behavioral significance of these neural innovations, relate them to differences in extant species diversity, and outline possible scenarios by which some of these traits may have fueled diversification. We propose that sensory and motor capabilities limit the extent to which signals evolve and, by extension, the role of communication behavior in the process of speciation. By expanding these capabilities, neural innovations increase the potential for signal evolution and species diversification.
Collapse
|
26
|
Riesch R, Schlupp I, Langerhans RB, Plath M. Shared and unique patterns of embryo development in extremophile poeciliids. PLoS One 2011; 6:e27377. [PMID: 22087302 PMCID: PMC3210165 DOI: 10.1371/journal.pone.0027377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H(2)S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats ("surface mollies") and a sulphidic cave ("cave mollies"), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring ("sulphur mollies"). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. METHODS AND RESULTS Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. CONCLUSION Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies.
Collapse
Affiliation(s)
- Rüdiger Riesch
- Department of Biology & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | |
Collapse
|
27
|
Divergent evolution of male aggressive behaviour: another reproductive isolation barrier in extremophile poeciliid fishes? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2012:148745. [PMID: 22315695 PMCID: PMC3270405 DOI: 10.1155/2012/148745] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022]
Abstract
Reproductive isolation among locally adapted populations may arise when immigrants from foreign habitats are selected against via natural or (inter-)sexual selection (female mate choice). We asked whether also intrasexual selection through male-male competition could promote reproductive isolation among populations of poeciliid fishes that are locally adapted to extreme environmental conditions [i.e., darkness in caves and/or toxic hydrogen sulphide (H(2)S)]. We found strongly reduced aggressiveness in extremophile P. oecilia mexicana, and darkness was the best predictor for the evolutionary reduction of aggressiveness, especially when combined with presence of H(2)S. We demonstrate that reduced aggression directly translates into migrant males being inferior when paired with males from non-sulphidic surface habitats. By contrast, the phylogenetically old sulphur endemic P. sulphuraria from another sulphide spring area showed no overall reduced aggressiveness, possibly indicating evolved mechanisms to better cope with H(2)S.
Collapse
|
28
|
Plath M, Hermann B, Schröder C, Riesch R, Tobler M, García de León FJ, Schlupp I, Tiedemann R. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evol Biol 2010; 10:256. [PMID: 20731863 PMCID: PMC2936308 DOI: 10.1186/1471-2148-10-256] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.
Collapse
Affiliation(s)
- Martin Plath
- Institute of Biochemistry & Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht Str 24-25, D-14476 Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|