1
|
Joaquín-Ovalle FM, Guihurt G, Barcelo-Bovea V, Hani-Saba A, Fontanet-Gómez NC, Ramirez-Paz J, Kashino Y, Torres-Martinez Z, Doble-Cacho K, Delinois LJ, Delgado Y, Griebenow K. Oxidative Stress- and Autophagy-Inducing Effects of PSI-LHCI from Botryococcus braunii in Breast Cancer Cells. BIOTECH 2022; 11:9. [PMID: 35822782 PMCID: PMC9264392 DOI: 10.3390/biotech11020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment-protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Freisa M. Joaquín-Ovalle
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Grace Guihurt
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Vanessa Barcelo-Bovea
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Andraous Hani-Saba
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Nicole C. Fontanet-Gómez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Josell Ramirez-Paz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, Kobe 678-1297, Japan;
| | - Zally Torres-Martinez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Katerina Doble-Cacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| |
Collapse
|
2
|
Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nat Commun 2021; 12:5284. [PMID: 34489414 PMCID: PMC8421388 DOI: 10.1038/s41467-021-25549-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Cell death is a critical process that occurs normally in health and disease. However, its study is limited due to available technologies that only detect very late stages in the process or specific death mechanisms. Here, we report the development of a family of fluorescent biosensors called genetically encoded death indicators (GEDIs). GEDIs specifically detect an intracellular Ca2+ level that cells achieve early in the cell death process and that marks a stage at which cells are irreversibly committed to die. The time-resolved nature of a GEDI delineates a binary demarcation of cell life and death in real time, reformulating the definition of cell death. We demonstrate that GEDIs acutely and accurately report death of rodent and human neurons in vitro, and show that GEDIs enable an automated imaging platform for single cell detection of neuronal death in vivo in zebrafish larvae. With a quantitative pseudo-ratiometric signal, GEDIs facilitate high-throughput analysis of cell death in time-lapse imaging analysis, providing the necessary resolution and scale to identify early factors leading to cell death in studies of neurodegeneration. Cell death is a critical process in health and disease, yet available markers record later stages of cell death once a cell has already begun to decompose. Here the authors show the use of a genetically encoded calcium indicator that demarcates an irreversible stage of cell death earlier than previously possible.
Collapse
|
3
|
Gumuscu B, Herr AE. Separation-encoded microparticles for single-cell western blotting. LAB ON A CHIP 2020; 20:64-73. [PMID: 31773114 PMCID: PMC7029799 DOI: 10.1039/c9lc00917e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Direct measurement of proteins from single cells has been realized at the microscale using microfluidic channels, capillaries, and semi-enclosed microwell arrays. Although powerful, these formats are constrained, with the enclosed geometries proving cumbersome for multistage assays, including electrophoresis followed by immunoprobing. We introduce a hybrid microfluidic format that toggles between a planar microwell array and a suspension of microparticles. The planar array is stippled in a thin sheet of polyacrylamide gel, for efficient single-cell isolation and protein electrophoresis of hundreds-to-thousands of cells. Upon mechanical release, array elements become a suspension of separation-encoded microparticles for more efficient immunoprobing due to enhanced mass transfer. Dehydrating microparticles offer improved analytical sensitivity owing to in-gel concentration of fluorescence signal for high-throughput single-cell targeted proteomics.
Collapse
Affiliation(s)
- Burcu Gumuscu
- Department of Bioengineering, University of California Berkeley, Berkeley, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, USA.
| |
Collapse
|
4
|
Serine 229 Balances the Hepatitis C Virus Nonstructural Protein NS5A between Hypo- and Hyperphosphorylated States. J Virol 2019; 93:JVI.01028-19. [PMID: 31511391 DOI: 10.1128/jvi.01028-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
The nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation. In contrast to S232, S235, or S238 phosphorylation detected only in the hyperphosphorylated NS5A, S229 phosphorylation was found in both hypo- and hyperphosphorylated NS5A, suggesting that S229 phosphorylation initiates NS5A sequential phosphorylation. Immunoblotting showed an inverse relationship between S229 phosphorylation and S235 phosphorylation. When S235 was phosphorylated as in the wild-type NS5A, the S229 phosphorylation level was low; when S235 could not be phosphorylated as in the S235A mutant NS5A, the S229 phosphorylation level was high. These results suggest an intrinsic feedback regulation between S229 phosphorylation and S235 phosphorylation. It has been known that NS5A distributes in large static and small dynamic intracellular structures and that both structures are required for the HCV life cycle. We found that S229A or S229D mutation was lethal to the virus and that both increased NS5A in large intracellular structures. Similarly, the lethal S235A mutation also increased NS5A in large structures. Likewise, the replication-compromised S235D mutation also increased NS5A in large structures, albeit to a lesser extent. Our data suggest that S229 probably cycles through phosphorylation and dephosphorylation to maintain a delicate balance of NS5A between hypo- and hyperphosphorylated states and the intracellular distribution necessary for the HCV life cycle.IMPORTANCE This study joins our previous efforts to elucidate how NS5A transits between hypo- and hyperphosphorylated states via phosphorylation on a series of highly conserved serine residues. Of the serine residues, serine 229 is the most interesting since phosphorylation-mimicking and phosphorylation-ablating mutations at this serine residue are both lethal. With a new high-quality antibody specific to serine 229 phosphorylation, we concluded that serine 229 must remain wild type so that it can dynamically cycle through phosphorylation and dephosphorylation that govern NS5A between hypo- and hyperphosphorylated states. Both are required for the HCV life cycle. When phosphorylated, serine 229 signals phosphorylation on serine 232 and 235 in a sequential manner, leading NS5A to the hyperphosphorylated state. As serine 235 phosphorylation is reached, serine 229 is dephosphorylated, stopping signal for hyperphosphorylation. This balances NS5A between two phosphorylation states and in intracellular structures that warrant a productive HCV life cycle.
Collapse
|
5
|
Linsley JW, Tripathi A, Epstein I, Schmunk G, Mount E, Campioni M, Oza V, Barch M, Javaherian A, Nowakowski TJ, Samsi S, Finkbeiner S. Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Commun Biol 2019; 2:155. [PMID: 31069265 PMCID: PMC6494885 DOI: 10.1038/s42003-019-0411-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches for dynamic profiling of single cells rely on dissociated cultures, which lack important biological features existing in tissues. Organotypic slice cultures preserve aspects of structural and synaptic organisation within the brain and are amenable to microscopy, but established techniques are not well adapted for high throughput or longitudinal single cell analysis. Here we developed a custom-built, automated confocal imaging platform, with improved organotypic slice culture and maintenance. The approach enables fully automated image acquisition and four-dimensional tracking of morphological changes within individual cells in organotypic cultures from rodent and human primary tissues for at least 3 weeks. To validate this system, we analysed neurons expressing a disease-associated version of huntingtin (HTT586Q138-EGFP), and observed that they displayed hallmarks of Huntington's disease and died sooner than controls. By facilitating longitudinal single-cell analyses of neuronal physiology, our system bridges scales necessary to attain statistical power to detect developmental and disease phenotypes.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Atmiyata Tripathi
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Irina Epstein
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Galina Schmunk
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Elliot Mount
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Matthew Campioni
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Viral Oza
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Mariya Barch
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Ashkan Javaherian
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Tomasz J Nowakowski
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Siddharth Samsi
- 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, L-4367 Luxembourg
- 9Present Address: MIT Lincoln Laboratory, Lexington, MA 02421 USA
| | - Steven Finkbeiner
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
- 4Neuroscience Graduate Program, University of California, San Francisco, CA 94158 USA
- 5Biomedical Sciences and Neuroscience Graduate Program, University of California, San Francisco, CA 94143 USA
- 6Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA 94158 USA
- 7Department of Neurology, University of California, San Francisco, CA 94158 USA
- 8Department of Physiology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
6
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Wang L, Zhang L, Hou Q, Zhu X, Chen Z, Liu Z. Triptolide attenuates proteinuria and podocyte apoptosis via inhibition of NF-κB/GADD45B. Sci Rep 2018; 8:10843. [PMID: 30022148 PMCID: PMC6052061 DOI: 10.1038/s41598-018-29203-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Podocyte injury is a primary contributor to proteinuria. Triptolide is a major active component of Tripterygium wilfordii Hook F that exhibits potent antiproteinuric effects. We used our previously developed in vivo zebrafish model of inducible podocyte-target injury and found that triptolide treatment effectively alleviated oedema, proteinuria and foot process effacement. Triptolide also inhibited podocyte apoptosis in our zebrafish model and in vitro. We also examined the mechanism of triptolide protection of podocyte. Whole-genome expression profiles of cultured podocytes demonstrated that triptolide treatment downregulated apoptosis pathway-related GADD45B expression. Specific overexpression of gadd45b in zebrafish podocytes abolished the protective effects of triptolide. GADD45B is a mediator of podocyte apoptosis that contains typical NF-κB binding sites in the promoter region, and NF-κB p65 primarily transactivates this gene. Triptolide inhibited NF-κB signalling activation and binding of NF-κB to the GADD45B promoter. Taken together, our findings demonstrated that triptolide attenuated proteinuria and podocyte apoptosis via inhibition of NF-κB/GADD45B signalling, which provides a new understanding of the antiproteinuric effects of triptolide in glomerular diseases.
Collapse
Affiliation(s)
- Ling Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Liwen Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| |
Collapse
|
8
|
Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 2018; 8:8334. [PMID: 29844468 PMCID: PMC5974327 DOI: 10.1038/s41598-018-26673-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Lung alveolarization requires precise coordination of cell growth with extracellular matrix (ECM) synthesis and deposition. The role of extracellular matrices in alveogenesis is not fully understood, because prior knowledge is largely extrapolated from two-dimensional structural analysis. Herein, we studied temporospatial changes of two important ECM proteins, laminin and elastin that are tightly associated with alveolar capillary growth and lung elastic recoil respectively, during both mouse and human lung alveolarization. By combining protein immunofluorescence staining with two- and three-dimensional imaging, we found that the laminin network was simplified along with the thinning of septal walls during alveogenesis, and more tightly associated with alveolar endothelial cells in matured lung. In contrast, elastin fibers were initially localized to the saccular openings of nascent alveoli, forming a ring-like structure. Then, throughout alveolar growth, the number of such alveolar mouth ring-like structures increased, while the relative ring size decreased. These rings were interconnected via additional elastin fibers. The apparent patches and dots of elastin at the tips of alveolar septae found in two-dimensional images were cross sections of elastin ring fibers in the three-dimension. Thus, the previous concept that deposition of elastin at alveolar tips drives septal inward growth may potentially be conceptually challenged by our data.
Collapse
|
9
|
Pressey JC, Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Ye W, Huang M, Chauhan AK, Meas SJ, Uvarov P, Airaksinen MS, Woodin MA. A kainate receptor subunit promotes the recycling of the neuron-specific K +-Cl - co-transporter KCC2 in hippocampal neurons. J Biol Chem 2017; 292:6190-6201. [PMID: 28235805 PMCID: PMC5391750 DOI: 10.1074/jbc.m116.767236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K+-Cl- co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (EGABA). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus.
Collapse
Affiliation(s)
- Jessica C Pressey
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Vivek Mahadevan
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - C Sahara Khademullah
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Zahra Dargaei
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Jonah Chevrier
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Wenqing Ye
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Michelle Huang
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Alamjeet K Chauhan
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Steven J Meas
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| | - Pavel Uvarov
- the Department of Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | - Matti S Airaksinen
- the Department of Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | - Melanie A Woodin
- From the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada and
| |
Collapse
|
10
|
Bruna F, Arango-Rodríguez M, Plaza A, Espinoza I, Conget P. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma. Stem Cell Res 2016; 18:5-13. [PMID: 27939557 DOI: 10.1016/j.scr.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Multipotent stromal cells (MSCs) are envisioned as a powerful therapeutic tool. As they home into tumors, secrete trophic and vasculogenic factors, and suppress immune response their role in carcinogenesis is a matter of controversy. Worldwide oral squamous cell carcinoma (OSCC) is the fifth most common epithelial cancer. Our aim was to determine whether MSC administration at precancerous stage modifies the natural progression of OSCC. OSCC was induced in Syrian hamsters by topical application of DMBA in the buccal pouch. At papilloma stage, the vehicle or 3×106 allogenic bone marrow-derived MSCs were locally administered. Four weeks later, the lesions were studied according to: volume, stratification (histology), proliferation (Ki-67), apoptosis (Caspase 3 cleaved), vasculature (ASMA), inflammation (Leukocyte infiltrate), differentiation (CK1 and CK4) and gene expression profile (mRNA). Tumors found in individuals that received MSCs were smaller than those presented in the vehicle group (87±80 versus 54±62mm3, p<0.05). The rate of proliferation was two times lower and the apoptosis was 2.5 times higher in lesions treated with MSCs than in untreated ones. While the laters presented dedifferentiated cells, the former maintained differentiated cells (cytokeratin and gene expression profile similar to normal tissue). Thus, MSC administration at papilloma stage precludes tumor growth and epithelial dedifferentiation of OSCC.
Collapse
Affiliation(s)
- Flavia Bruna
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Martha Arango-Rodríguez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Anita Plaza
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Iris Espinoza
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
11
|
Gonzalez JM, Ko MK, Pouw A, Tan JCH. Tissue-based multiphoton analysis of actomyosin and structural responses in human trabecular meshwork. Sci Rep 2016; 6:21315. [PMID: 26883567 PMCID: PMC4756353 DOI: 10.1038/srep21315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023] Open
Abstract
The contractile trabecular meshwork (TM) modulates aqueous humor outflow resistance and intraocular pressure. The primary goal was to visualize and quantify human TM contractile state by analyzing actin polymerization (F-actin) by 2-photon excitation fluorescence imaging (TPEF) in situ. A secondary goal was to ascertain if structural extracellular matrix (ECM) configuration changed with contractility. Viable ex vivo human TM was incubated with latrunculin-A (Lat-A) or vehicle prior to Alexa-568-phalloidin labeling and TPEF. Quantitative image analysis was applied to 2-dimensional (2D) optical sections and 3D image reconstructions. After Lat-A exposure, (a) the F-actin network reorganized as aggregates; (b) F-actin-associated fluorescence intensity was reduced by 48.6% (mean; p = 0.007; n = 8); (c) F-actin 3D distribution was reduced by 68.9% (p = 0.040); (d) ECM pore cross-sectional area and volume were larger by 36% (p = 0.032) and 65% (p = 0.059) respectively and pores appeared more interconnected; (e) expression of type I collagen and elastin, key TM structural ECM proteins, were unaltered (p = 0.54); and (f) tissue viability was unchanged (p = 0.39) relative to vehicle controls. Thus Lat-A-induced reduction of actomyosin contractility was associated with TM porous expansion without evidence of reduced structural ECM protein expression or cellular viability. These important subcellular-level dynamics could be visualized and quantified within human tissue by TPEF.
Collapse
Affiliation(s)
- Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrew Pouw
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - James C H Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
12
|
Bauer NC, Corbett AH, Doetsch PW. Automated quantification of the subcellular localization of multicompartment proteins via Q-SCAn. Traffic 2013; 14:1200-8. [PMID: 24034606 PMCID: PMC3836439 DOI: 10.1111/tra.12118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, proteins can occupy multiple intracellular compartments and even move between compartments to fulfill critical biological functions or respond to cellular signals. Examples include transcription factors that reside in the cytoplasm but are mobilized to the nucleus as well as dual-purpose DNA repair proteins that are charged with simultaneously maintaining the integrity of both the nuclear and mitochondrial genomes. While numerous methods exist to study protein localization and dynamics, automated methods to quantify the relative amounts of proteins that occupy multiple subcellular compartments have not been extensively developed. To address this need, we present a rapid, automated method termed quantitative subcellular compartmentalization analysis (Q-SCAn). To develop this method, we exploited the facile molecular biology of the budding yeast, Saccharomyces cerevisiae. Individual subcellular compartments are defined by a fluorescent marker protein and the intensity of a target GFP-tagged protein is then quantified within each compartment. To validate Q-SCAn, we analyzed relocalization of the transcription factor Yap1 following oxidative stress and then extended the approach to multicompartment localization by examining two DNA repair proteins critical for the base excision repair pathway, Ntg1 and Ung1. Our findings demonstrate the utility of Q-SCAn for quantitative analysis of the subcellular distribution of multicompartment proteins.
Collapse
Affiliation(s)
- Nicholas C. Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States
| |
Collapse
|
13
|
Caster AH, Kahn RA. Recruitment of the Mint3 adaptor is necessary for export of the amyloid precursor protein (APP) from the Golgi complex. J Biol Chem 2013; 288:28567-80. [PMID: 23965993 DOI: 10.1074/jbc.m113.481101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) is a ubiquitously expressed single-pass transmembrane protein that undergoes proteolytic processing by secretases to generate the pathogenic amyloid-β peptide, the major component in Alzheimer plaques. The traffic of APP through the cell determines its exposure to secretases and consequently the cleavages that generate the pathogenic or nonpathogenic peptide fragments. Despite the likely importance of APP traffic to Alzheimer disease, we still lack clear models for the routing and regulation of APP in cells. Like the traffic of most transmembrane proteins, the binding of adaptors to its cytoplasmic tail, which is 47 residues long and contains at least four distinct sorting motifs, regulates that of APP. We tested each of these for effects on the traffic of APP from the Golgi by mutating key residues within them and examining adaptor recruitment at the Golgi and traffic to post-Golgi site(s). We demonstrate strict specificity for recruitment of the Mint3 adaptor by APP at the Golgi, a critical role for Tyr-682 (within the YENPTY motif) in Mint3 recruitment and export of APP from the Golgi, and we identify LAMP1(+) structures as the proximal destination of APP after leaving the Golgi. Together, these data provide a detailed view of the first sorting step in its route to the cell surface and processing by secretases and further highlight the critical role played by Mint3.
Collapse
Affiliation(s)
- Amanda H Caster
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
14
|
Abstract
Membrane traffic requires the specific concentration of protein cargos and exclusion of other proteins into nascent carriers. Critical components of this selectivity are the protein adaptors that bind to short, linear motifs in the cytoplasmic tails of transmembrane protein cargos and sequester them into nascent carriers. The recruitment of the adaptors is mediated by activated Arf GTPases, and the Arf-adaptor complexes mark sites of carrier formation. However, the nature of the signal(s) that initiates carrier biogenesis remains unknown. We examined the specificity and initial sites of recruitment of Arf-dependent adaptors (AP-1 and GGAs) in response to the Golgi or endosomal localization of specific cargo proteins (furin, mannose-6-phosphate receptor (M6PR), and M6PR lacking a C-terminal domain M6PRΔC). We find that cargo promotes the recruitment of specific adaptors, suggesting that it is part of an upstream signaling event. Cargos do not promote adaptor recruitment to all compartments in which they reside, and thus additional factors regulate the cargo's ability to promote Arf activation and adaptor recruitment. We document that within a given compartment different cargos recruit different adaptors, suggesting that there is little or no free, activated Arf at the membrane and that Arf activation is spatially and temporally coupled to the cargo and the adaptor. Using temperature block, brefeldin A, and recovery from each, we found that the cytoplasmic tail of M6PR causes the recruitment of AP-1 and GGAs to recycling endosomes and not at the Golgi, as predicted by steady state staining profiles. These results are discussed with respect to the generation of novel models for cargo-dependent regulation of membrane traffic.
Collapse
Affiliation(s)
- Amanda H Caster
- Department of Biochemistry and the Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
15
|
Pompey S, Zhao Z, Luby-Phelps K, Michaely P. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake. J Lipid Res 2013; 54:744-753. [PMID: 23296879 PMCID: PMC3617948 DOI: 10.1194/jlr.m033548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ.
Collapse
Affiliation(s)
- Shanica Pompey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|