1
|
Danielewicz H, Gurgul A, Dębińska A, Drabik-Chamerska A, Hirnle L, Boznański A. Cord blood methylation at TNFRSF17 is associated with early allergic phenotypes. Immunol Res 2024:10.1007/s12026-024-09524-2. [PMID: 39085570 DOI: 10.1007/s12026-024-09524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Food allergy and eczema are the earliest allergic phenotypes in childhood. These diseases could be related to either IgE-mediated or non-IgE-mediated reactions to the allergen. TNFRSF17 is a key molecule in B cell maturation and is important in both types of responses.We conducted a study comparing the relative expression and the methylation status at the TNFRSF17 in regard to the child's early atopic sensitisation and allergic phenotypes.In the recruited population of 200 women and 174 children with available clinical data (physical examination by allergist and antigen-specific IgE measurements), 78 cord blood samples were included in the gene expression analysis (relative gene expression with GAPDH as reference by RT-PCR) and 96 samples with microarray DNA methylation data (whole genome methylation profile Infinium MethylationEPIC).The altered TNFRSF17 methylation pattern in the cord blood at both single cg04453550 and mean methylation at upstream of TNFRSF17 was observed in children who developed food allergy and/or eczema in early childhood. The change in methylation profile was mirrored by the relative expression. The profile of IgE sensitisation to food and/or inhalant allergens was not significantly associated with either methylation or expression of TNFRSF17.In conclusion, methylation at the upstream sites at TNFRSF17 in the cord blood at birth is associated with food allergy and eczema early in childhood.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Clinical Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, Ul. Chałubińskiego 2a, 50-368, Wrocław, Poland.
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1C, 30-248, Kraków, Poland
| | - Anna Dębińska
- 1st Clinical Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, Ul. Chałubińskiego 2a, 50-368, Wrocław, Poland
| | - Anna Drabik-Chamerska
- 1st Clinical Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, Ul. Chałubińskiego 2a, 50-368, Wrocław, Poland
| | - Lidia Hirnle
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, Ul. Chałubińskiego 5, 50-368, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Clinical Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, Ul. Chałubińskiego 2a, 50-368, Wrocław, Poland
| |
Collapse
|
2
|
Yang F, Zhang X, Xie Y, Yuan J, Gao J, Chen H, Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J Nutr Biochem 2024; 128:109593. [PMID: 38336123 DOI: 10.1016/j.jnutbio.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Food allergy is a global food safety concern, with an increasing prevalence in recent decades. However, the immunological and cellular mechanisms involved in allergic reactions remain incompletely understood, which impedes the development of effective prevention and treatment strategies. Current evidence supports those epigenetic modifications regulate the activation of immune cells, and their dysregulation can contribute to the development of food allergies. Patients with food allergy show epigenetic alterations that lead to the onset, duration and recovery of allergic disease. Moreover, many preclinical studies have shown that certain dietary components exert nutriepigenetic effects in changing the course of food allergies. In this review, we provide an up-to-date overview of DNA methylation, noncoding RNA and histone modification, with a focus on their connections to food allergies. Following this, we discuss the epigenetic mechanisms that regulate the activation and differentiation of innate and adapted immune cell in the context of food allergies. Subsequently, this study specifically focuses on the multidimensional epigenetic effects of dietary components in modulating the immune response, which holds promise for preventing food allergies in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yanhai Xie
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
D’Aiuto V, Mormile I, Granata F, Napolitano F, Lamagna L, Della Casa F, de Paulis A, Rossi FW. Worldwide Heterogeneity of Food Allergy: Focus on Peach Allergy in Southern Italy. J Clin Med 2024; 13:3259. [PMID: 38892968 PMCID: PMC11173152 DOI: 10.3390/jcm13113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Food allergy (FA) has shown an increasing prevalence in the last decades, becoming a major public health problem. However, data on the prevalence of FA across the world are heterogeneous because they are influenced by several factors. Among IgE-mediated FA, an important role is played by FA related to plant-derived food which can result from the sensitization to a single protein (specific FA) or to homologous proteins present in different foods (cross-reactive FA) including non-specific lipid transfer proteins (nsLTPs), profilins, and pathogenesis-related class 10 (PR-10). In addition, the clinical presentation of FA is widely heterogeneous ranging from mild symptoms to severe reactions up to anaphylaxis, most frequently associated with nsLTP-related FA (LTP syndrome). Considering the potential life-threatening nature of nsLTP-related FA, the patient's geographical setting should always be taken into account; thereby, it is highly recommended to build a personalized approach for managing FA across the world in the precision medicine era. For this reason, in this review, we aim to provide an overview of the prevalence of nsLTP-mediated allergies in the Mediterranean area and to point out the potential reasons for the different geographical significance of LTP-driven allergies with a particular focus on the allergenic properties of food allergens and their cross reactivity.
Collapse
Affiliation(s)
- Valentina D’Aiuto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Francesca Della Casa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Serio C, Leung ASY, Eigenmann P, Lezmi G. Editorial comment on "Epigenomic and epigenetic investigations of food allergy". Pediatr Allergy Immunol 2024; 35:e14117. [PMID: 38556795 DOI: 10.1111/pai.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Cristina Serio
- Scuola di Specializzazione in Pediatria, University of Bari "Aldo Moro", Bari, Italy
| | - Agnes S Y Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, China
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Guillaume Lezmi
- Department of Pediatric Pulmonology and Allergy, Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants Malades and University of Paris Cité, Paris, France
| |
Collapse
|
5
|
Guo X, Bai Y, Jia X, Wu P, Luo L, Wang J, Li H, Guo H, Li J, Guo Z, Yun K, Gao C, Yan J. DNA methylation profiling reveals potential biomarkers of β-lactams induced fatal anaphylactic shock. Forensic Sci Int 2024; 356:111943. [PMID: 38290418 DOI: 10.1016/j.forsciint.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Anaphylaxis is a serious reaction of systemic hypersensitivity with that rapid onset and sudden death. Drug hypersensitivity, particularly induced by β-lactams, is one of the most frequent causes of anaphylaxis in adults. But identification of anaphylactic shock, in forensic sciences recently, is difficult, because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. Here, we detected DNA methylation signatures of β-lactams-induced fatal anaphylactic shock with the Illumina Infinium Human Methylation EPIC BeadChip, to screen potential forensic biomarkers and reveal the molecular mechanisms of drug-induced anaphylaxis with fatal shock and sudden death. Our results indicated that DNA methylation was associated with β-lactams-induced fatal anaphylactic shock, in which the hypomethylation played a vital role. We found that 1459 differentially methylated positions (DMPs) were mainly involved in β-lactams-induced fatal anaphylactic shock by regulating MAPK and other signaling pathways. 18 DNA methylation signatures that could separate β-lactams-induced anaphylactic shock from healthy individuals were identified. The altered methylation of DMPs can affect the transcription of corresponding genes and promote β-lactams-induced fatal anaphylactic shock. The results suggest that DNA methylation can detect forensic identification markers of drug-induced anaphylaxis with fatal shock and sudden death, and it is an effective method for the forensic diagnosis.
Collapse
Affiliation(s)
- Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China.
| | - Yaqin Bai
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Jia
- College of Pharmacy, Nankai University, Tianjin, China
| | - Peng Wu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Luo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Wang
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Li
- Institute of Forensic Science of China, Beijing, China
| | - Hualin Guo
- China Astronaut Research and Training Center, Beijing, China
| | - Jianguo Li
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China
| | - Zhongyuan Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cairong Gao
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jiangwei Yan
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Chun Y, Lee JH, Bunyavanich S. Epigenomic and epigenetic investigations of food allergy. Pediatr Allergy Immunol 2024; 35:e14065. [PMID: 38284919 PMCID: PMC10825314 DOI: 10.1111/pai.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
As a potential link between genetic predisposition, environmental exposures, and food allergy outcomes, epigenetics has been a molecular variable of interest in ongoing efforts to understand food allergy mechanisms and outcomes. Here we review population-based investigations of epigenetic loci associated with food allergy, focusing on established clinical food allergy. We first provide an overview of epigenetic mechanisms that have been studied in cohorts with food allergy, predominantly DNA methylation but also microRNA. We then discuss investigations that have implemented epigenome-wide approaches aimed at genome-wide profiling and discovery. Such epigenome-wide studies have collectively identified differentially methylated and differentially regulated loci associated with T cell development, antigen presentation, reaction severity, and causal mediation in food allergy. We then discuss candidate-gene investigations that have honed in on Th1, Th2, T regulatory, and innate genes of a priori interest in food allergy. These studies have highlighted methylation changes in specific candidate genes as associated with T regulatory cell activity as well as differential methylation of Type 1 and Type 2 cytokine genes associated with various food allergies. Intriguingly, epigenetic loci associated with food allergy have also been explored as potential biomarkers for the clinical management of food allergy. We conclude by highlighting several priority directions for advancing population-based epigenomic and epigenetic understandings of food allergy.
Collapse
Affiliation(s)
- Yoojin Chun
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jo Hsuan Lee
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Mrkić Kobal I, Plavec D, Vlašić Lončarić Ž, Jerković I, Turkalj M. Atopic March or Atopic Multimorbidity-Overview of Current Research. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:21. [PMID: 38256282 PMCID: PMC10819021 DOI: 10.3390/medicina60010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
The atopic march encompasses a sequence of allergic conditions, including atopic dermatitis, food allergy, allergic rhinitis, and asthma, that frequently develop in a sequential pattern within the same individual. It was introduced as a conceptual framework aimed at elucidating the developmental trajectory of allergic conditions during childhood. Following the introduction of this concept, it was initially believed that the atopic march represented the sole and definitive trajectory of the development of allergic diseases. However, this perspective evolved with the emergence of new longitudinal studies, which revealed that the evolution of allergic diseases is far more intricate. It involves numerous immunological pathological mechanisms and may not align entirely with the traditional concept of the atopic march. The objective of our review is to portray the atopic march alongside other patterns in the development of childhood allergic diseases, with a specific emphasis on the potential for a personalized approach to the prevention, diagnosis, and treatment of atopic conditions.
Collapse
Affiliation(s)
- Iva Mrkić Kobal
- Clinic for Pediatric Medicine Helena, Ulica kneza Branimira 71, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Davor Plavec
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Prima Nova, Zagrebačka cesta 132a, 10000 Zagreb, Croatia
| | - Željka Vlašić Lončarić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
| | - Ivana Jerković
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
| | - Mirjana Turkalj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Kolsun KP, Lee S, MacIsaac JL, Subbarao P, Moraes TJ, Mandhane PJ, Turvey SE, Kobor MS, Jones MJ, Simons E. DNA methylation is not associated with sensitization to or dietary introduction of highly allergenic foods in a subset of the CHILD cohort at age 1 year. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100130. [PMID: 37781669 PMCID: PMC10509901 DOI: 10.1016/j.jacig.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 10/03/2023]
Abstract
Background In the first year of life, DNA methylation (DNAm) patterns are established and are particularly susceptible to exposure-induced changes. Some of these changes may leave lasting effects by persistently altering gene expression or cell type composition or function, contributing to disease. Objectives In this discovery study, we investigated DNAm associations with sensitization to peanut, egg, or cow's milk and hypothesized that genes demonstrating DNAm differences in immune cells may play a role in the development of food sensitization. Methods Infant sensitization (a skin prick test wheal size that is at least 2 mm greater than the negative control) was measured to peanut, egg, and cow's milk at age 1 year, and ages of food introduction were reported prospectively. PBMC DNAm was measured in blood samples at 1 year in 144 infants, oversampled for atopy or wheeze. Statistical analysis of Illumina 450k array DNAm data was conducted in R with adjustment for clinical and genetic covariables and a minimum effect size of 1%, false discovery rate of 5%, and medium-confidence false discovery rate threshold of 20%. Results There were no DNAm differences between infants with and without peanut, egg, or cow's milk sensitization. Borderline significant sites with high effect sizes were enriched for methylation quantitative trait loci, hinting at genetic factors influencing DNAm at these sites. DNAm patterns did not differ by peanut or egg introduction before or after 12 months. Conclusion This small pilot study did not show differences in methylation by food sensitization or introduction, but it did demonstrate DNAm patterns linked to genetic variants.
Collapse
Affiliation(s)
- Kurt P. Kolsun
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg
| | - Julia L. MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children and University of Toronto
| | - Theo J. Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children and University of Toronto
| | - Piushkumar J. Mandhane
- Division of Pediatric Respirology, Pulmonary, and Asthma, Department of Pediatrics, University of Alberta, Edmonton
| | - Stuart E. Turvey
- Division of Allergy and Immunology, Department of Pediatrics, British Columbia Children’s Hospital, Vancouver
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg
- Children’s Hospital Research Institute of Manitoba, Winnipeg
| | - Elinor Simons
- Children’s Hospital Research Institute of Manitoba, Winnipeg
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg
| |
Collapse
|
9
|
Imran S, Neeland MR, Martino DJ, Peng S, Koplin J, Dharmage SC, Tang MLK, Sawyer S, Dang T, McWilliam V, Peters RL, Prescott S, Perrett KP, Novakovic B, Saffery R. Epigenomic variability is associated with age-specific naïve CD4 T cell response to activation in infants and adolescents. Immunol Cell Biol 2023; 101:397-411. [PMID: 36760028 PMCID: PMC10952707 DOI: 10.1111/imcb.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Childhood is a critical period of immune development. During this time, naïve CD4 (nCD4) T cells undergo programmed cell differentiation, mediated by epigenetic changes, in response to external stimuli leading to a baseline homeostatic state that may determine lifelong disease risk. However, the ontogeny of epigenetic signatures associated with CD4 T cell activation during key developmental periods are yet to be described. We investigated genome-wide DNA methylation (DNAm) changes associated with nCD4 T activation following 72 h culture in media+anti-CD3/CD28 beads in healthy infants (aged 12 months, n = 18) and adolescents (aged 10-15 years, n = 15). We integrated these data with transcriptomic and cytokine profiling from the same samples. nCD4 T cells from both age groups show similar extensive epigenetic reprogramming following activation, with the majority of genes involved in the T cell receptor signaling pathway associated with differential methylation. Additionally, we identified differentially methylated probes showing age-specific responses, that is, responses in only infants or adolescents, including within a cluster of T cell receptor (TCR) genes. These encoded several TCR alpha joining (TRAJ), and TCR alpha variable (TRAV) genes. Cytokine data analysis following stimulation revealed enhanced release of IFN-γ, IL-2 and IL-10, in nCD4 T cells from adolescents compared with infants. Overlapping differential methylation and cytokine responses identified four probes potentially underpinning these age-specific responses. We show that DNAm in nCD4T cells in response to activation is dynamic in infancy and adolescence, with additional evidence for age-specific effects potentially driving variation in cytokine responses between these ages.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - David J. Martino
- Wal‐yan Respiratory Research Centre, Telethon Kids InstitutePerthAustralia
- University of Western AustraliaPerthWAAustralia
| | - Stephen Peng
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Jennifer Koplin
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Shyamali C Dharmage
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
- Allergy and Lung Health UnitMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVICAustralia
| | - Mimi LK Tang
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Susan Sawyer
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
- Centre for Adolescent HealthRoyal Children's Hospital MelbourneMelbourneVICAustralia
| | - Thanh Dang
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Vicki McWilliam
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Rachel L Peters
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Susan Prescott
- School of MedicineThe University of Western Australia35 Stirling HighwayCrawleyWAAustralia
- Telethon Kids Institute15 Hospital AvenueNedlandsWAAustralia
- Department of ImmunologyPerth Children's Hospital15 Hospital AvenueNedlandsWAAustralia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalFlemington RoadParkvilleVICAustralia
| |
Collapse
|
10
|
Devonshire A, Gautam Y, Johansson E, Mersha TB. Multi-omics profiling approach in food allergy. World Allergy Organ J 2023; 16:100777. [PMID: 37214173 PMCID: PMC10199264 DOI: 10.1016/j.waojou.2023.100777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
The prevalence of food allergy (FA) among children is increasing, affecting nearly 8% of children, and FA is the most common cause of anaphylaxis and anaphylaxis-related emergency department visits in children. Importantly, FA is a complex, multi-system, multifactorial disease mediated by food-specific immunoglobulin E (IgE) and type 2 immune responses and involving environmental and genetic factors and gene-environment interactions. Early exposure to external and internal environmental factors largely influences the development of immune responses to allergens. Genetic factors and gene-environment interactions have established roles in the FA pathophysiology. To improve diagnosis and identification of FA therapeutic targets, high-throughput omics approaches have emerged and been applied over the past decades to screen for potential FA biomarkers, such as genes, transcripts, proteins, and metabolites. In this article, we provide an overview of the current status of FA omics studies, namely genomic, transcriptomic, epigenomic, proteomic, exposomic, and metabolomic. The current development of multi-omics integration of FA studies is also briefly discussed. As individual omics technologies only provide limited information on the multi-system biological processes of FA, integration of population-based multi-omics data and clinical data may lead to robust biomarker discovery that could translate into advances in disease management and clinical care and ultimately lead to precision medicine approaches.
Collapse
Affiliation(s)
- Ashley Devonshire
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yadu Gautam
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
11
|
Safar R, Oussalah A, Mayorga L, Vieths S, Barber D, Torres MJ, Guéant JL. Epigenome alterations in food allergy: A systematic review of candidate gene and epigenome-wide association studies. Clin Exp Allergy 2023; 53:259-275. [PMID: 36756739 DOI: 10.1111/cea.14277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVE The aim of this study was to systematically review the evidence across studies that assessed DNA methylome variations in association with food allergy (FA). DESIGN A systematic review of the literature and meta-analysis were carried out within several databases. However, the risk of bias in the included articles was not evaluated. DATA SOURCES PubMed, Cochrane Database of Systematic Reviews, and Web of Science were used to search up to July 2022. ELIGIBILITY CRITERIA We included targeted and epigenome-wide association studies (EWASs) that assessed DNA methylome alterations in association with FA in adult or paediatric populations. RESULTS Among 366 publications, only 16 were retained, which were mainly focused on FA in children. Seven candidate gene-targeted studies found associations in Th1/Th2 imbalance (IL4, IL5, IL10, INFG, IL2 and IL12B genes), regulatory T cell function (FOXP3 gene), Toll-like receptors pathway (TLR2, CD14 genes) and digestive barrier integrity (FLG gene). Nine EWAS assessed the association with peanut allergy (n = 3), cow's milk allergy (n = 2) or various food allergens (n = 4). They highlighted 11 differentially methylated loci in at least two studies (RPS6KA2, CAMTA1, CTBP2, RYR2, TRAPPC9, DOCK1, GALNTL4, HDAC4, UMODL1, ZAK and TNS3 genes). Among them, CAMTA1 and RPS6KA2, and CTBP2 are involved in regulatory T cell function and Th2 cell differentiation, respectively. Gene-functional analysis revealed two enriched gene clusters involved in immune responses and protein phosphorylation. ChIP-X Enrichment Analysis 3 showed eight significant transcription factors (RXRA, ZBTB7A, ESR1, TCF3, MYOD1, CTCF, GATA3 and CBX2). Ingenuity Pathway Analysis identified canonical pathways involved, among other, in B cell development, pathogen-induced cytokine storm signalling pathway and dendritic cell maturation. CONCLUSION This review highlights the involvement of epigenomic alterations of loci in Th1/Th2 and regulatory T cell differentiation in both candidate gene studies and EWAS. These alterations provide a better insight into the mechanistic aspects in FA pathogenesis and may guide the development of epigenome-based biomarkers for FA.
Collapse
Affiliation(s)
- Ramia Safar
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Lina Mayorga
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Research Group, Instituto de Investigación Biomedica de Malaga-IBIMA and ARADyAL, Malaga, Spain.,Laboratory for Nanostructures for the Diagnosis and Treatment of Allergic Diseases, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, IMMA, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.,ARADyAL-RD16/0006/0015, Thematic Network and Cooperative Research Centers, ISCIII, Madrid, Spain
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Research Group, Instituto de Investigación Biomedica de Malaga-IBIMA and ARADyAL, Malaga, Spain.,Laboratory for Nanostructures for the Diagnosis and Treatment of Allergic Diseases, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
12
|
Imran S, Neeland MR, Peng S, Vlahos A, Martino D, Dharmage SC, Tang MLK, Sawyer S, Dang TD, McWilliam V, Peters RL, Koplin JJ, Perrett KP, Novakovic B, Saffery R. Immuno-epigenomic analysis identifies attenuated interferon responses in naïve CD4 T cells of adolescents with peanut and multi-food allergy. Pediatr Allergy Immunol 2022; 33:e13890. [PMID: 36433861 DOI: 10.1111/pai.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND IgE-mediated food allergies have been linked to suboptimal naïve CD4 T (nCD4T) cell activation in infancy, underlined by epigenetic and transcriptomic variation. Similar attenuated nCD4T cell activation in adolescents with food allergy have also been reported, but these are yet to be linked to specific epigenetic or transcriptional changes. METHODS We generated genome-wide DNA methylation data in purified nCD4 T cells at quiescence and following activation in a cohort of adolescents (aged 10-15 years old) with peanut allergy (peanut only or peanut + ≥1 additional food allergy) (FA, n = 29), and age-matched non-food allergic controls (NA, n = 18). Additionally, we assessed transcriptome-wide gene expression and cytokine production in these cells following activation. RESULTS We found widespread changes in DNA methylation in both NA and FA nCD4T cells in response to activation, associated with the T cell receptor signaling pathway. Adolescents with FA exhibit unique DNA methylation signatures at quiescence and post-activation at key genes involved in Th1/Th2 differentiation (RUNX3, RXRA, NFKB1A, IL4R), including a differentially methylated region (DMR) at the TNFRSF6B promoter, linked to Th1 proliferation. Combined analysis of DNA methylation, transcriptomic data and cytokine output in the same samples identified an attenuated interferon response in nCD4T cells from FA individuals following activation, with decreased expression of several interferon genes, including IFN-γ and a DMR at a key downstream gene, BST2. CONCLUSION We find that attenuated nCD4T cell responses from adolescents with food allergy are associated with specific epigenetic variation, including disruption of interferon responses, indicating dysregulation of key immune pathways that may contribute to a persistent FA phenotype. However, we recognize the small sample size, and the consequent restraint on reporting adjusted p-value statistics as limitations of the study. Further study is required to validate these findings.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Stephen Peng
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Amanda Vlahos
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - David Martino
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Telethon Kids Institute, University of Western, Perth, Nedlands, Australia
| | - Shyamali C Dharmage
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan Sawyer
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Centre for Adolescent Health, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Thanh D Dang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vicki McWilliam
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jennifer J Koplin
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Xie Q, Xue W. IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Crit Rev Food Sci Nutr 2022; 63:10148-10172. [PMID: 35587740 DOI: 10.1080/10408398.2022.2075312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergy (FA) is a serious public health issue afflicting millions of people globally, with an estimated prevalence ranging from 1-10%. Management of FA is challenging due to overly restrictive diets and the lack of diagnostic approaches with high accuracy and prediction. Although measurement of serum-specific antibodies combined with patient medical history and skin prick test is a useful diagnostic tool, it is still an imprecise predictor of clinical reactivity with a high false-positive rate. The double-blind placebo-controlled food challenge represents the gold standard for FA diagnosis; however, it requires large healthcare and involves the risk of acute onset of allergic reactions. Improvement in our understanding of the molecular mechanism underlying allergic disease pathology, development of omics-based methods, and advances in bioinformatics have boosted the generation of a number of robust diagnostic biomarkers of FA. In this review, we discuss how traditional diagnostic modalities guide appropriate diagnosis and management of FA in clinical practice, as well as uncover the potential of the latest biomarkers for the diagnosis, monitoring, and prediction of FA. We also raise perspectives for precise and targeted medical intervention to fill the gap in the diagnosis of FA.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
14
|
Application of (multi-)omics approaches for advancing food allergy: an updated review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
16
|
Wisgrill L, Fyhrquist N, Ndika J, Paalanen L, Berger A, Laatikainen T, Karisola P, Haahtela T, Alenius H. Bet v 1 triggers antiviral-type immune signaling in birch pollen allergic individuals. Clin Exp Allergy 2022; 52:929-941. [PMID: 35147263 PMCID: PMC9540660 DOI: 10.1111/cea.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Background In allergic patients, clinical symptoms caused by pollen remind of symptoms triggered by viral respiratory infections, which are also the main cause of asthmatic exacerbations. In patients sensitized to birch pollen, Bet v 1 is the major symptom‐causing allergen. Immune mechanisms driving Bet v 1‐related responses of human blood cells have not been fully characterized. Objective To characterize the immune response to Bet v 1 in peripheral blood in patients allergic to birch pollen. Methods The peripheral blood mononuclear cells of birch‐allergic (n = 24) and non‐allergic (n = 47) adolescents were stimulated ex‐vivo followed by transcriptomic profiling. Systems‐biology approaches were employed to decipher disease‐relevant gene networks and deconvolution of associated cell populations. Results Solely in birch‐allergic patients, co‐expression analysis revealed activation of networks of innate immunity and antiviral signalling as the immediate response to Bet v 1 stimulation. Toll‐like receptors and signal transducer transcription were the main drivers of gene expression patterns. Macrophages and dendritic cells were the main cell subsets responding to Bet v 1. Conclusions and clinical relevance In birch‐pollen‐allergic patients, the activated innate immune networks seem to be, in part, the same as those activated during viral infections. This tendency of the immune system to read pollens as viruses may provide new insight to allergy prevention and treatment.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Joseph Ndika
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Paalanen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tiina Laatikainen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Wan Z, Xiong H, Tan X, Su T, Xia K, Wang D. Integrative Multi-Omics Analysis Reveals Candidate Biomarkers for Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:794146. [PMID: 35096593 PMCID: PMC8795899 DOI: 10.3389/fonc.2021.794146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer worldwide. Due to the lack of early detection and treatment, the survival rate of OSCC remains poor and the incidence of OSCC has not decreased during the past decades. To explore potential biomarkers and therapeutic targets for OSCC, we analyzed differentially expressed genes (DEGs) associated with OSCC using RNA sequencing technology. Methylation-regulated and differentially expressed genes (MeDEGs) of OSCC were further identified via an integrative approach by examining publicly available methylomic datasets together with our transcriptomic data. Protein-protein interaction (PPI) networks of MeDEGs were constructed and highly connected hub MeDEGs were identified from these PPI networks. Subsequently, expression and survival analyses of hub genes were performed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Profiling Interactive Analysis (GEPIA) online tool. A total of 56 upregulated MeDEGs and 170 downregulated MeDEGs were identified in OSCC. Eleven hub genes with high degree of connectivity were picked out from the PPI networks constructed by those MeDEGs. Among them, the expression level of four hub genes (CTLA4, CDSN, ACTN2, and MYH11) were found to be significantly changed in the head and neck squamous carcinoma (HNSC) patients. Three hypomethylated hub genes (CTLA4, GPR29, and TNFSF11) and one hypermethylated hub gene (ISL1) were found to be significantly associated with overall survival (OS) of HNSC patients. Therefore, these hub genes may serve as potential DNA methylation biomarkers and therapeutic targets of OSCC.
Collapse
Affiliation(s)
- Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haofeng Xiong
- Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xian Tan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Tong Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
18
|
Abstract
The prevalence of allergic diseases such as asthma is globally increasing, posing threat to the life quality of the affected population. Genome-wide association studies (GWAS) suggest that genetic variations only account for a small proportion of immunoglobulin E (IgE)-mediated type I hypersensitivity. Recently, epigenetics has gained attention as an approach to further understand the missing heritability and underpinning mechanisms of allergic diseases. Furthermore, epigenetic regulation allows the evaluation of the interaction between an individual's genetic predisposition and their environmental exposures. This chapter summarizes several large-scale epigenome-wide association studies (EWAS) on asthma and other allergic diseases and draws a blueprint for future analysis and research direction.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Cañas JA, Núñez R, Cruz-Amaya A, Gómez F, Torres MJ, Palomares F, Mayorga C. Epigenetics in Food Allergy and Immunomodulation. Nutrients 2021; 13:4345. [PMID: 34959895 PMCID: PMC8708211 DOI: 10.3390/nu13124345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Food allergy (FA) is an increasing problem worldwide and, over recent years, its prevalence is rising in developed countries. Nowadays, the immunological and cellular processes that occur in the allergic reactions are not fully understood, which hampers the development of in vitro diagnostic tools and further treatment options. Moreover, allergic diseases could be reinforced by environmental exposure and genetic modifications. Gene expression can be controlled by different epigenetic mechanisms like DNA methylation, histone modifications, and microRNAs. In addition, several environmental factors such as dietary components (vitamin D, butyrate, folic acid) are able to regulate this epigenetic mechanism. All these factors produce modifications in immune genes that could alter the development and function of immune cells, and therefore the etiology of the disease. Furthermore, these epigenetic mechanisms have also an influence on immunomodulation, which could explain sustained responsiveness or unresponsiveness during immunotherapy due to epigenetic modifications in key genes that induce tolerance in several FA. Thus, in this review we focus on the different epigenetic mechanisms that occur in FA and on the influence of several dietary components in these gene modifications.
Collapse
Affiliation(s)
- José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
- Medicine Department, Universidad de Málaga-UMA, 29010 Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| |
Collapse
|
21
|
Ali A, Hamzaid NH, Ismail NAS. The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life (Basel) 2021; 11:1275. [PMID: 34833150 PMCID: PMC8623511 DOI: 10.3390/life11111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Food allergy in children has been a common issue due to the challenges of prescribing personalized nutrition with a lack of nutriepigenomics data. This has indeed further influenced clinical practice for appropriate management. While allergen avoidance is still the main principle in food allergy management, we require more information to advance the science behind nutrition, genes, and the immune system. Many researchers have highlighted the importance of personalized nutrition but there is a lack of data on how the decision is made. Thus, this review highlights the relationship among these key players in identifying the solution to the clinical management of food allergy with current nutriepigenomics data. The discussion integrates various inputs, including clinical assessments, biomarkers, and epigenetic information pertaining to food allergy, to curate a holistic and personalized approach to food allergy management in particular.
Collapse
Affiliation(s)
- Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nur Hana Hamzaid
- Dietetic Program & Centre for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Childs CE, Munblit D, Ulfman L, Gómez-Gallego C, Lehtoranta L, Recker T, Salminen S, Tiemessen M, Collado MC. Potential Biomarkers, Risk Factors and their Associations with IgE-mediated Food Allergy in Early Life: A Narrative Review. Adv Nutr 2021; 13:S2161-8313(22)00081-3. [PMID: 34596662 PMCID: PMC8970818 DOI: 10.1093/advances/nmab122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for food allergy include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers which predict the risk of developing food allergy in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy and synthesizes the currently available data indicating potential biomarkers. While there is a large body of research evidence available within each field of potential risk factors, there are very limited number of studies which span multiple methodological fields, for example including immunology, microbiome, genetic/epigenetic factors and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge confirmed food allergy in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high quality, reliable and reproducible research findings. STATEMENT OF SIGNIFICANCE Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. Identifying reliable biomarkers which predict the risk of developing food allergy would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. This review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy. This helps in identifying reliable biomarkers to predict the risk of developing food allergy, which could be valuable in both preventing morbidity and mortality and by making interventions available at the earliest opportunity.
Collapse
Affiliation(s)
- Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Daniel Munblit
- Imperial College London, London, United Kingdom,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Imran S, Neeland MR, Koplin J, Dharmage S, Tang MLK, Sawyer S, Dang T, McWilliam V, Peters R, Perrett KP, Novakovic B, Saffery R. Epigenetic programming underpins B-cell dysfunction in peanut and multi-food allergy. Clin Transl Immunology 2021; 10:e1324. [PMID: 34466226 PMCID: PMC8384135 DOI: 10.1002/cti2.1324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Rates of IgE-mediated food allergy (FA) have increased over the last few decades, and mounting evidence implicates disruption of epigenetic profiles in various immune cell types in FA development. Recent data implicate B-cell dysfunction in FA; however, few studies have examined epigenetic changes within these cells. METHODS We assessed epigenetic and transcriptomic profiles in purified B cells from adolescents with FA, comparing single-food-allergic (peanut only), multi-food-allergic (peanut and ≥1 other food) and non-allergic (control) individuals. Adolescents represent a phenotype of persistent and severe FA indicative of a common immune deviation. RESULTS We identified 144 differentially methylated probes (DMPs) and 116 differentially expressed genes (DEGs) that distinguish B cells of individuals with FA from controls, including differential methylation of the PM20D1 promoter previously associated with allergic disorders. Subgroup comparisons found 729 DMPs specific to either single-food- or multi-food-allergic individuals, suggesting epigenetic distinctions between allergy groups. This included two regions with increased methylation near three S100 genes in multi-food-allergic individuals. Ontology results of DEGs specific to multi-food-allergic individuals revealed enrichment of terms associated with myeloid cell activation. Motif enrichment analysis of promoters associated with DMPs and DEGs showed differential enrichment for motifs recognised by transcription factors regulating B- and T-cell development, B-cell lineage determination and TGF-β signalling pathway between the multi-food-allergic and single-food-allergic groups. CONCLUSION Our data highlight epigenetic changes in B cells associated with peanut allergy, distinguishing features of the epigenome between single-food- and multi-food-allergic individuals and revealing differential developmental pathways potentially underpinning these distinct phenotypes.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Melanie R Neeland
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Jennifer Koplin
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Shyamali Dharmage
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Allergy and Lung Health UnitMelbourne School of Population and Global HealthUniversity of MelbourneCarltonVICAustralia
| | - Mimi LK Tang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Susan Sawyer
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Centre for Adolescent HealthRoyal Children's HospitalMelbourneVICAustralia
| | - Thanh Dang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Vicki McWilliam
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Rachel Peters
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Kirsten P Perrett
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Boris Novakovic
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Richard Saffery
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| |
Collapse
|
24
|
Danielewicz H, Gurgul A, Dębińska A, Myszczyszyn G, Szmatoła T, Myszkal A, Jasielczuk I, Drabik-Chamerska A, Hirnle L, Boznański A. Maternal atopy and offspring epigenome-wide methylation signature. Epigenetics 2021; 16:629-641. [PMID: 32902349 PMCID: PMC8143219 DOI: 10.1080/15592294.2020.1814504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The increase in the prevalence of allergic diseases is believed to partially depend on environmental changes. DNA methylation is a major epigenetic mechanism, which is known to respond to environmental factors. A number of studies have revealed that patterns of DNA methylation may potentially predict allergic diseases.Here, we examined how maternal atopy is associated with methylation patterns in the cord blood of neonates.We conducted an epigenome-wide association study in a cohort of 96 mother-child pairs. Pregnant women aged not more than 35 years old, not currently smoking or exposed to environmental tobacco smoke, who did not report obesity before conception were considered eligible. They were further tested for atopy. Converted DNA from cord blood was analysed using Infinium MethylationEPIC; for statistical analysis, RnBeads software was applied. Gestational age and sex were included as covariates in the final analysis.83 DM sites were associated with maternal atopy. Within the top DM sites, there were CpG sites which mapped to genes SCD, ITM2C, NT5C3A and NPEPL1. Regional analysis revealed 25 tiling regions, 4 genes, 3 CpG islands and 5 gene promoters, (including PIGCP1, ADAM3A, ZSCAN12P1) associated with maternal atopy. Gene content analysis revealed pointwise enrichments in pathways related to purine-containing compound metabolism, the G1/S transition of the mitotic cell cycle, stem cell division and cellular glucose homoeostasis.These findings suggest that maternal atopy provides a unique intrauterine environment that may constitute the first environment in which exposure is associated with methylation patterns in newborn.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Dębińska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Myszczyszyn
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Myszkal
- 1st Department of Gynecology and Obstetrics, University Hospital of Jan Mikulicz-Radecki in Wroclaw, Wroclaw, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Drabik-Chamerska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Wang B, Mou H, Liu M, Ran Z, Li X, Li J, Ou Y. Multiomics characteristics of neurogenesis-related gene are dysregulated in tumor immune microenvironment. NPJ Genom Med 2021; 6:37. [PMID: 34059678 PMCID: PMC8166819 DOI: 10.1038/s41525-021-00202-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
The success of immunotherapy was overshadowed by its low response rate, and the hot or cold tumor microenvironment was reported to be responsible for it. However, due to the lack of an appropriate method, it is still a huge challenge for researchers to understand the molecular differences between hot and cold tumor microenvironments. Further research is needed to gain deeper insight into the molecular characteristics of the hot/cold tumor microenvironment. A large-scale clinical cohort and single-cell RNA-seq technology were used to identify the molecular characteristics of inflamed or noninflamed tumors. With single-cell RNA sequencing technology, we provided a novel method to dissect the tumor microenvironment into a hot/cold tumor microenvironment to help us understand the molecular differences between hot and cold tumor microenvironments. Compared with cold tumors, hot tumors highly expressed B cell-related genes, such as MS4A1 and CXCR5, neurogenesis-related miRNA such as MIR650, and immune molecule-related lncRNA such as MIR155HG and LINC00426. In cold tumors, the expression of genes related to multiple biological processes, such as the neural system, was significantly upregulated, and methylome analysis indicated that the promoter methylation level of genes related to neurogenesis was significantly reduced. Finally, we investigated the pan-cancer prognostic value of the cold/hot microenvironment and performed pharmacogenomic analysis to predict potential drugs that may have the potential to convert the cold microenvironment into a hot microenvironment. Our study reveals the multiomics characteristics of cold/hot microenvironments. These molecular characteristics may contribute to the understanding of immune exclusion and the development of microenvironment-targeted therapy.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai Mou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengmeng Liu
- Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Zhujie Ran
- School of Public Health and Community Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol 2021; 20:48-55. [PMID: 31633569 DOI: 10.1097/aci.0000000000000598] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms are known to play a crucial role in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, food allergy, and other allergic disorders, especially through mediating the effects of the environmental factors, well recognized allergy-risk modifiers. The aim of this work was to provide a concise but comprehensive review of the recent progress in the epigenetics of allergic diseases. RECENT FINDINGS Recent few years have substantially expanded our knowledge on the role of epigenetics in the pathogenesis and clinical picture of allergies. Specifically, it has been shown that epigenetic marks, especially DNA methylation, possess a diagnostic potential for atopic sensitization, asthma, allergic rhinitis, and food allergy. DNA methylation can be a predictor of clinical responses in controlled allergen challenges, including oral food challenges. Furthermore, direct or indirect targeting epigenetic mechanisms, this time especially histone modifications, was able to favorably affect expression of the genes underlying allergies and generally improve airway biology in allergic diseases or their animal models. SUMMARY Further studies are needed to explore the diagnostic and therapeutic potential of epigenetic modifications in allergies and to develop respective clinical tools.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA.,College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Andreas Ruhl
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA.,John Paul II Hospital, Krakow, Poland
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA
| |
Collapse
|
27
|
Carstensen S, Benediktus E, Litzenburger T, Hohlfeld JM, Müller M. Basophil activation test: Assay precision and BI 1002494 SYK inhibition in healthy and mild asthmatics. Cytometry A 2021; 101:86-94. [PMID: 33797185 DOI: 10.1002/cyto.a.24338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Application of basophil activation test (BAT) in clinical trials requires assay validity. Whether assay variability differs between healthy and asthmatic subjects is mostly unknown. This study compares basophil stimulation using blood from healthy and asthmatic subjects with or without inhibition of spleen tyrosine kinase (SYK). METHODS Whole blood of healthy and mild asthmatic subjects was stimulated with anti-dinitrophenyl (DNP) IgE/DNP bovine serum albumin and anti-IgE. Basophil activation was detected by CD63 and CD203c expression. CD63 expression levels were compared with serum IgE levels. Three operators repeated experiments with three subjects each from both groups at 3 days to observe assay precision. The effect of the SYK inhibitor BI 1002494 was assessed in BAT for both healthy and asthmatic subjects. RESULTS BAT was reproducible in both groups. Acceptance criteria of <25% CV were mostly fulfilled. Stimulation with anti-DNP (p < 0.001, r = -0.80) but not anti-IgE (p = 0.74, r = 0.05) was related to serum IgE with levels > 200 IU/ml limiting anti-DNP stimulation. BI 1002494 IC50 values were 497 nM and 1080 nM in healthy and 287 nM and 683 nM in asthmatics for anti-DNP and anti-IgE stimulation, respectively. CONCLUSION BAT, performed with blood from healthy or asthmatic subjects, is a robust test for the measurement of a physiological response in clinical trials. Blood from asthmatic donors with serum IgE > 200 IU/ml is less feasible when using anti-DNP stimulation. SYK inhibition was not affected by disease status.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Ewald Benediktus
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tobias Litzenburger
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Jens M Hohlfeld
- Division of Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.,Member of the German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Meike Müller
- Department of Biomarker Analysis and Development, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
28
|
Abstract
The risk factors for food allergy (FA) include both genetic variants and environmental factors. Advances using both candidate-gene association studies and genome-wide approaches have led to the identification of FA-associated genes involved in immune responses and skin barrier functions. Epigenetic changes have also been associated with the risk of FA. In this chapter, we outline current understanding of the genetics, epigenetics and the interplay with environmental risk factors associated with FA. Future studies of gene-environment interactions, gene-gene interactions, and multi-omics integration may help shed light on the mechanisms of FA, and lead to improved diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Elisabet Johansson
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
29
|
Xing M, Ooi WF, Tan J, Qamra A, Lee PH, Li Z, Xu C, Padmanabhan N, Lim JQ, Guo YA, Yao X, Amit M, Ng LM, Sheng T, Wang J, Huang KK, Anene-Nzelu CG, Ho SWT, Ray M, Ma L, Fazzi G, Lim KJ, Wijaya GC, Zhang S, Nandi T, Yan T, Chang MM, Das K, Isa ZFA, Wu J, Poon PSY, Lam YN, Lin JS, Tay ST, Lee MH, Tan ALK, Ong X, White K, Rozen SG, Beer M, Foo RSY, Grabsch HI, Skanderup AJ, Li S, Teh BT, Tan P. Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer. J Clin Invest 2021; 130:3005-3020. [PMID: 32364535 DOI: 10.1172/jci126726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.
Collapse
Affiliation(s)
- Manjie Xing
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Aditi Qamra
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Po-Hsien Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nisha Padmanabhan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Singapore
| | - Mandoli Amit
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Taotao Sheng
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Jing Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mohana Ray
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Gregorio Fazzi
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Kevin Junliang Lim
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Giovani Claresta Wijaya
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Shenli Zhang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Tannistha Nandi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Tingdong Yan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Mei Mei Chang
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Kakoli Das
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zul Fazreen Adam Isa
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Jeanie Wu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Polly Suk Yean Poon
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Yue Ning Lam
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Joyce Suling Lin
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kevin White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA.,Tempus Labs, Chicago, Illinois, USA
| | - Steven George Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| | - Michael Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medicine, and.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Singapore
| | - Heike Irmgard Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,Pathology and Data Analyticis, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Biomedical Research Council, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
30
|
Calvani M, Anania C, Cuomo B, D’Auria E, Decimo F, Indirli GC, Marseglia G, Mastrorilli V, Sartorio MUA, Santoro A, Veronelli E. Non-IgE- or Mixed IgE/Non-IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients 2021; 13:226. [PMID: 33466746 PMCID: PMC7829867 DOI: 10.3390/nu13010226] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
non-IgE and mixed gastrointestinal food allergies present various specific, well-characterized clinical pictures such as food protein-induced allergic proctocolitis, food protein-induced enterocolitis and food protein-induced enteropathy syndrome as well as eosinophilic gastrointestinal disorders such as eosinophilic esophagitis, allergic eosinophilic gastroenteritis and eosinophilic colitis. The aim of this article is to provide an updated review of their different clinical presentations, to suggest a correct approach to their diagnosis and to discuss the usefulness of both old and new diagnostic tools, including fecal biomarkers, atopy patch tests, endoscopy, specific IgG and IgG4 testing, allergen-specific lymphocyte stimulation test (ALST) and clinical score (CoMiss).
Collapse
Affiliation(s)
- Mauro Calvani
- Operative Unit of Pediatrics, S. Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Caterina Anania
- Immunology and Allergology Unit, Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy;
| | - Barbara Cuomo
- Operative Complex Unit of Pediatrics, Belcolle Hospital, 00100 Viterbo, Italy;
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (E.D.); (M.U.A.S.)
| | - Fabio Decimo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Giovanni Cosimo Indirli
- Pediatric Allergology and Immunology (SIAIP) for Regions Puglia and Basilicata, 73100 Lecce, Italy;
| | - Gianluigi Marseglia
- Pediatric Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Violetta Mastrorilli
- Operative Complex Unit of Pediatrics and Emergency, Giovanni XXIII Hospital, 70056 Bari, Italy;
| | - Marco Ugo Andrea Sartorio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (E.D.); (M.U.A.S.)
| | - Angelica Santoro
- Pediatric Clinic, Mother-Child Department, University of Parma, 43121 Parma, Italy;
| | - Elisabetta Veronelli
- Food Allergy Committee of the Italian Society of Pediatric Allergy and Immunology (SIAIP), Pediatric Department, Garbagnate Milanese Hospital, ASST Rhodense, 70056 Garbagnate Milanese, Italy;
| |
Collapse
|
31
|
Acevedo N, Scala G, Merid SK, Frumento P, Bruhn S, Andersson A, Ogris C, Bottai M, Pershagen G, Koppelman GH, Melén E, Sonnhammer E, Alm J, Söderhäll C, Kere J, Greco D, Scheynius A. DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. Int J Mol Sci 2021; 22:ijms22020801. [PMID: 33466918 PMCID: PMC7830007 DOI: 10.3390/ijms22020801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute for Immunological Research, University of Cartagena, 130014 Cartagena, Colombia
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, 80138 Napoli, Italy;
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, 56126 Pisa, Italy;
| | - Sören Bruhn
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Anna Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Christoph Ogris
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Gerard H. Koppelman
- Section of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Erik Sonnhammer
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
| | - Johan Alm
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Folkhälsan Research Institute, Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Science for Life Laboratory, Karolinska Institutet, SE-171 65 Solna, Sweden
- Correspondence:
| |
Collapse
|
32
|
Irizar H, Kanchan K, Mathias RA, Bunyavanich S. Advancing Food Allergy Through Omics Sciences. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:119-129. [PMID: 32777389 PMCID: PMC7855623 DOI: 10.1016/j.jaip.2020.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Since the publication of the first draft of the human genome, there has been an explosion of new technologies with increasing power to interrogate the totality of biological molecules (eg, DNA, RNA, proteins, metabolites) and their modifications (eg, DNA methylation, histone modifications). These technologies, collectively called omics, have been widely applied in the last 2 decades to study biological systems to gain deeper insight into mechanisms driving the physiology and pathophysiology of human health and disease. Because of its complex, multifactorial nature, food allergy is especially well suited to be investigated using omics approaches. In this rostrum, we review how omic technologies have been applied to explore diverse aspects of food allergy, including adaptive and innate immune processes in food-allergic responses, the role of the microbiome in food allergy risk, metabolic changes in the gut and blood associated with food allergy, and the identification of biomarkers and potential therapeutic targets for the condition. We discuss the strengths and limitations of the studies performed thus far and the need to adopt systems biology approaches that integrate data from multiple omics to fully leverage the potential of these technologies to advance food allergy research and care.
Collapse
Affiliation(s)
- Haritz Irizar
- Division of Psychiatry, University College London, London, United Kingdom; Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kanika Kanchan
- Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Supinda Bunyavanich
- Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
33
|
Laha A, Ghosh A, Moitra S, Biswas H, Saha NC, Bhattacharya S, Saha GK, Podder S. Association of HLA-DQ and IL13 gene variants with challenge-proven shrimp allergy in West Bengal, India. Immunogenetics 2020; 72:489-498. [PMID: 33175217 DOI: 10.1007/s00251-020-01185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Little is known about genetic factors and mechanisms underlying shrimp allergy. Genome-wide association studies identified HLA class-II and IL13 genes as highly plausible candidates for shrimp allergy. The present study was designed to investigate potential associations of HLA-DQ rs9275596, IL13 rs20541, and IL13 rs1800925 polymorphisms with challenge-proven shrimp allergy using the data from 532 people of West Bengal, India; selected on basis of positive skin prick test, elevated specific IgE and medical history. Risk genotypes, i.e., HLA-DQ rs9275596 CC, IL13 rs20541 AA, and IL13 rs1800925 TT, were found to be significantly associated with challenge positive shrimp allergy (P = 0.04, 0.01, and 0.03, respectively). Distribution of genotypes for HLA-DQ and IL13 polymorphisms in allergic and control subjects showed significant difference between younger (20-40 years) and older (> 40 years) age group (P = 0.006). Risk genotypes significantly associated with elevated shrimp-specific IgE. IL13 TA haplotype significantly associated with shrimp allergy and elevated specific IgE (P = 0.02). Synergistic effect of IL13 TA haplotype-HLA-DQ rs9275596 CC genotype interaction significantly elevated specific IgE (P = 0.03). The present study suggests that HLA-DQ and IL13 polymorphisms pose major risk for shrimp allergic patients in West Bengal, India and thus could be helpful for early target-specific therapeutic intervention in near future.
Collapse
Affiliation(s)
- Arghya Laha
- Allergology and Applied Entomology Research Laboratory, Department of Zoology, University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Saibal Moitra
- Allergy and Asthma Research Centre, Kolkata- 700029, West Bengal, India
| | - Himani Biswas
- Post Graduate Department of Zoology, Krishnagar Government College, Krishnagar, 741101, West Bengal, India
| | - Nimai Chandra Saha
- Vice-Chancellor, University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Srijit Bhattacharya
- Post Graduate Department of Physics, Barasat Government College, Kolkata, 700124, West Bengal, India
| | - Goutam Kumar Saha
- Department of Zoology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Sanjoy Podder
- Allergology and Applied Entomology Research Laboratory, Department of Zoology, University of Burdwan, Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
34
|
Hoang TT, Sikdar S, Xu CJ, Lee MK, Cardwell J, Forno E, Imboden M, Jeong A, Madore AM, Qi C, Wang T, Bennett BD, Ward JM, Parks CG, Beane-Freeman LE, King D, Motsinger-Reif A, Umbach DM, Wyss AB, Schwartz DA, Celedón JC, Laprise C, Ober C, Probst-Hensch N, Yang IV, Koppelman GH, London SJ. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 2020; 56:13993003.00217-2020. [PMID: 32381493 PMCID: PMC7469973 DOI: 10.1183/13993003.00217-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma. We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression. No associations were observed with atopy without asthma. Numerous cytosine–phosphate–guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10−8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation. We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma. Distinct methylation signals are found in non-atopic and atopic asthma. Most are related to gene expression and are replicated in asthma-relevant tissues, confirming the value of blood DNA methylation for identifying novel genes linked in asthma pathogenesis.https://bit.ly/2VnbJg3
Collapse
Affiliation(s)
- Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Joint first authors
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Dept of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.,Joint first authors
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Centre for Experimental and Clinical Infection Research (TWINCORE), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Joint first authors
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Jonathan Cardwell
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Medea Imboden
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Cancan Qi
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Debra King
- Clinical Pathology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David A Schwartz
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Centre Intersectoriel en Santé Durable, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Dept of Pediatrics, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Carole Ober
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Nicole Probst-Hensch
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ivana V Yang
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
35
|
Abstract
The incidence of allergic diseases continues to rise. Cross-sectional and longitudinal studies have indicated that allergic diseases occur in a time-based order: from atopic dermatitis and food allergy in infancy to gradual development into allergic asthma and allergic rhinitis in childhood. This phenomenon is defined as the "atopic march". Some scholars have suggested that the atopic march does not progress completely in a temporal pattern with genetic and environmental factors. Also, the mechanisms underlying the atopic march are incompletely understood. Nevertheless, the concept of the atopic march provides a new perspective for the mechanistic research, prediction, prevention, and treatment of atopic diseases. Here, we review the epidemiology, related diseases, mechanistic studies, and treatment strategies for the atopic march.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Poole A, Song Y, O'Sullivan M, Lee KH, Metcalfe J, Guo J, Brown H, Mullins B, Loh R, Zhang GB. Children with nut allergies have impaired gene expression of Toll-like receptors pathway. Pediatr Allergy Immunol 2020; 31:671-677. [PMID: 32173911 DOI: 10.1111/pai.13246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Trends in food allergies prompted investigation into the underlying mechanisms. Genetic and epigenetic factors are of high interest, and, in particular, the interplay between genes relating to immune factors directly and indirectly involved in food allergy pathogenesis. We sought to determine potential links between gene expression and epigenetic factors relating to Toll-like receptor (TLR) pathways and childhood food allergies. METHODS In a cross-sectional study, samples from 80 children with and without food allergies were analysed for gene expression, DNA methylation and a range of immune factors relating to TLR pathways. TLR2, TLR4, CD14, IL5, IL13 and vitamin D were explored. RESULTS The importance of these immune factors appeared to vary between the different types of food allergies. Expression of TLR2 (P < .001), TLR4 (P = .014) and CD14 (P = .028) varied significantly between children with no food allergy, allergy to nuts and peanuts, and allergy to eggs. DNA methylation in the promoter regions of these genes had a significant association with gene expression. These trends persisted when subjects were stratified by nut allergy vs no nut allergy. Furthermore, TLR2 (P = .001) and CD14 (P = .007) expressions were significantly lower in children with food allergies when compared to those without. CONCLUSION Gene expression of TLR pathway genes was directly related to food allergy type, and DNA methylation had an indirect effect. TLR2 pathways are of significant interest in nut allergies.
Collapse
Affiliation(s)
- Ashlyn Poole
- School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Yong Song
- School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Michael O'Sullivan
- Department of Immunology, Princess Margaret Hospital for Children, Subiaco, WA, Australia
| | - Khui Hung Lee
- School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Jessica Metcalfe
- Department of Immunology, Princess Margaret Hospital for Children, Subiaco, WA, Australia
| | - Jing Guo
- School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Helen Brown
- School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ben Mullins
- School of Public Health, Curtin University, Bentley, WA, Australia
| | - Richard Loh
- Department of Immunology, Princess Margaret Hospital for Children, Subiaco, WA, Australia
| | - Guicheng Brad Zhang
- School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|
37
|
Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020; 23:101171. [PMID: 32480123 PMCID: PMC7262566 DOI: 10.1016/j.isci.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of IgE-mediated food allergy is increasing at a rapid pace in many countries. The association of high food allergy rates with Westernized lifestyles suggests the role of gene-environment interactions, potentially underpinned by epigenetic variation, in mediating this process. Recent studies have implicated innate immune system dysfunction in the development and persistence of food allergy. These responses are characterized by increased circulating frequency of innate immune cells and heightened inflammatory responses to bacterial stimulation in food allergic patients. These signatures mirror those described in trained immunity, whereby innate immune cells retain a “memory” of earlier microbial encounters, thus influencing subsequent immune responses. Here, we propose that a robust multi-omics approach that integrates immunological, transcriptomic, and epigenomic datasets, combined with well-phenotyped and longitudinal food allergy cohorts, can inform the potential role of trained immunity in food allergy.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Rebecca Shepherd
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Nicole Messina
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Nigel Curtis
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia.
| |
Collapse
|
38
|
Do AN, Watson CT, Cohain AT, Griffin RS, Grishin A, Wood RA, Wesley Burks A, Jones SM, Scurlock A, Leung DYM, Sampson HA, Sicherer SH, Sharp AJ, Schadt EE, Bunyavanich S. Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children. J Allergy Clin Immunol 2020; 145:1219-1230. [PMID: 31838046 PMCID: PMC7192362 DOI: 10.1016/j.jaci.2019.10.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unexpected allergic reactions to peanut are the most common cause of fatal food-related anaphylaxis. Mechanisms underlying the variable severity of peanut-allergic reactions remain unclear. OBJECTIVES We sought to expand mechanistic understanding of reaction severity in peanut allergy. METHODS We performed an integrated transcriptomic and epigenomic study of peanut-allergic children as they reacted in vivo during double-blind, placebo-controlled peanut challenges. We integrated whole-blood transcriptome and CD4+ T-cell epigenome profiles to identify molecular signatures of reaction severity (ie, how severely a peanut-allergic child reacts when exposed to peanut). A threshold-weighted reaction severity score was calculated for each subject based on symptoms experienced during peanut challenge and the eliciting dose. Through linear mixed effects modeling, network construction, and causal mediation analysis, we identified genes, CpGs, and their interactions that mediate reaction severity. Findings were replicated in an independent cohort. RESULTS We identified 318 genes with changes in expression during the course of reaction associated with reaction severity, and 203 CpG sites with differential DNA methylation associated with reaction severity. After replicating these findings in an independent cohort, we constructed interaction networks with the identified peanut severity genes and CpGs. These analyses and leukocyte deconvolution highlighted neutrophil-mediated immunity. We identified NFKBIA and ARG1 as hubs in the networks and 3 groups of interacting key node CpGs and peanut severity genes encompassing immune response, chemotaxis, and regulation of macroautophagy. In addition, we found that gene expression of PHACTR1 and ZNF121 causally mediates the association between methylation at corresponding CpGs and reaction severity, suggesting that methylation may serve as an anchor upon which gene expression modulates reaction severity. CONCLUSIONS Our findings enhance current mechanistic understanding of the genetic and epigenetic architecture of reaction severity in peanut allergy.
Collapse
Affiliation(s)
- Anh N Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Ky
| | - Ariella T Cohain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert S Griffin
- Department of Anesthesia, Hospital for Special Surgery, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - A Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Stacie M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Amy Scurlock
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | | | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott H Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
39
|
Maternal Folic Acid Supplementation Mediates Offspring Health via DNA Methylation. Reprod Sci 2020; 27:963-976. [PMID: 32124397 DOI: 10.1007/s43032-020-00161-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/24/2022]
Abstract
The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.
Collapse
|
40
|
Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol 2020; 42:43-60. [PMID: 32060620 PMCID: PMC7066293 DOI: 10.1007/s00281-019-00777-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
In asthma and allergy genetics, a trend towards a few main topics developed over the last 2 years. First, a number of studies have been published recently which focus on overlapping and/or very specific phenotypes: within the allergy spectrum but also reaching beyond, looking for common genetic traits shared between different diseases or disease entities. Secondly, an urgently needed focus has been put on asthma and allergy genetics in populations genetically different from European ancestry. This acknowledges that the majority of new asthma patients today are not white and asthma is a truly worldwide disease. In epigenetics, recent years have seen several large-scale epigenome-wide association studies (EWAS) being published and a further focus was on the interaction between the environment and epigenetic signatures. And finally, the major trends in current asthma and allergy genetics and epigenetics comes from the field of pharmacogenetics, where it is necessary to understand the susceptibility for and mechanisms of current asthma and allergy therapies while at the same time, we need to have scientific answers to the recent availability of novel drugs that hold the promise for a more individualized therapy.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology and Allergy, St. Hedwig's Hospital of the order of St. John, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, 2 rue Gaston Crémieux, 91000, Evry, France
| |
Collapse
|
41
|
Chang C, Wu H, Lu Q. The Epigenetics of Food Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:141-152. [PMID: 32445094 DOI: 10.1007/978-981-15-3449-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA.
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
McGowan EC, Hong X, Selhub J, Paul L, Wood RA, Matsui EC, Keet CA, Wang X. Association Between Folate Metabolites and the Development of Food Allergy in Children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:132-140.e5. [PMID: 31252026 PMCID: PMC6930362 DOI: 10.1016/j.jaip.2019.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Studies on the association between folate/folic acid exposure and the development of allergic disease have yielded inconsistent results, which may be due, in part, to lack of data distinguishing folate from folic acid exposure. OBJECTIVE To examine the association between total folate, 5-methyltetrahydrofolate (5-MTHF), and unmetabolized folic acid (UMFA) concentrations at birth and in early childhood and the development of food sensitization (FS) and food allergy (FA). METHODS A nested case control study was performed in the Boston Birth Cohort (BBC). Total folate, 5-MTHF, and UMFA were measured at birth and in early childhood. Based on food-specific IgE (sIgE) levels, diet, and clinical history, children were classified as FS (sIgE ≥0.35 kU/L), FA, or non-FS/FA (controls). Folate concentrations were divided into quartiles, and multiple logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Of a total of 1394 children, 507 children with FS and 78 with FA were identified. Although mean total folate concentrations at birth were lower among those who developed FA (30.2 vs 35.3 nmol/L; P = .02), mean concentrations of the synthetic folic acid derivative, UMFA, were higher (1.7 vs 1.3 nmol/L, P = .001). Higher quartiles of UMFA at birth were associated more strongly with FA (OR 8.50; 95% CI 1.7-42.8; test for trend P = .001). Neither early childhood concentrations of 5-MTHF nor UMFA were associated with the development of FS or FA. CONCLUSION Among children in the BBC, higher concentrations of UMFA at birth were associated with the development of FA, which may be due to increased exposure to synthetic folic acid in utero or underlying genetic differences in synthetic folic acid metabolism.
Collapse
Affiliation(s)
- Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va; Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Xiumei Hong
- Department of Population, Family, and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Jacob Selhub
- Tufts University, JM USDA HNRCA at Tufts University, Boston, Mass
| | - Ligi Paul
- Tufts University, JM USDA HNRCA at Tufts University, Boston, Mass
| | - Robert A Wood
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Elizabeth C Matsui
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Corinne A Keet
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Xiaobin Wang
- Department of Population, Family, and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| |
Collapse
|
43
|
Bunyavanich S, Berin MC. Food allergy and the microbiome: Current understandings and future directions. J Allergy Clin Immunol 2019; 144:1468-1477. [PMID: 31812181 PMCID: PMC6905201 DOI: 10.1016/j.jaci.2019.10.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Growing evidence points to an important role for the commensal microbiota in susceptibility to food allergy. Epidemiologic studies demonstrate associations between exposures known to modify the microbiome and risk of food allergy. Direct profiling of the gut microbiome in human cohort studies has demonstrated that individuals with food allergy have distinct gut microbiomes compared to healthy control subjects, and dysbiosis precedes the development of food allergy. Mechanistic studies in mouse models of food allergy have confirmed that the composition of the intestinal microbiota can imprint susceptibility or resistance to food allergy on the host and have identified a unique population of microbially responsive RORγt-positive FOXp3-positive regulatory T cells as critical for the maintenance of tolerance to foods. Armed with this new understanding of the role of the microbiota in food allergy and tolerance, therapeutics aimed at modifying the gastrointestinal microbiota are in development. In this article we review key milestones in the development of our current understanding of how the gastrointestinal microbiota contributes to food allergy and discuss our vision for the future of the field.
Collapse
Affiliation(s)
- Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; PRIISM Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
44
|
Tost J. A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 2019; 142:715-726. [PMID: 30195377 DOI: 10.1016/j.jaci.2018.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
The analysis of epigenetic modifications in allergic diseases has recently attracted substantial interest because epigenetic modifications can mediate the effects of the environment on the development of or protection from allergic diseases. Furthermore, recent research has provided evidence for an altered epigenomic landscape in disease-relevant cell populations. Although still in the early phase, epigenetic modifications, particularly DNA methylation and microRNAs, might have potential for assisting in the stratification of patients for treatment and complement or replace in the future biochemical or clinical tests. The first epigenetic biomarkers correlating with the successful outcome of immunotherapy have been reported, and with personalized treatment options being rolled out, epigenetic modifications might well play a role in monitoring or even predicting the response to tailored therapy. However, further studies in larger cohorts with well-defined phenotypes in specific cell populations need to be performed before their implementation. Furthermore, the epigenome provides an interesting target for therapeutic intervention, with microRNA mimics, inhibitors, and antisense oligonucleotides being evaluated in clinical trials in patients with other diseases. Selection or engineering of populations of extracellular vesicles and epigenetic editing represent novel tools for modulation of the cellular phenotype and responses, although further technological improvements are required. Moreover, interactions between the host epigenome and the microbiome are increasingly recognized, and interventions of the microbiome could contribute to modulation of the epigenome with a potential effect on the overall goal of prevention of allergic diseases.
Collapse
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.
| |
Collapse
|
45
|
Dhondalay GK, Rael E, Acharya S, Zhang W, Sampath V, Galli SJ, Tibshirani R, Boyd SD, Maecker H, Nadeau KC, Andorf S. Food allergy and omics. J Allergy Clin Immunol 2019; 141:20-29. [PMID: 29307411 DOI: 10.1016/j.jaci.2017.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023]
Abstract
Food allergy (FA) prevalence has been increasing over the last few decades and is now a global health concern. Current diagnostic methods for FA result in a high number of false-positive results, and the standard of care is either allergen avoidance or use of epinephrine on accidental exposure, although currently with no other approved treatments. The increasing prevalence of FA, lack of robust biomarkers, and inadequate treatments warrants further research into the mechanism underlying food allergies. Recent technological advances have made it possible to move beyond traditional biological techniques to more sophisticated high-throughput approaches. These technologies have created the burgeoning field of omics sciences, which permit a more systematic investigation of biological problems. Omics sciences, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, have enabled the construction of regulatory networks and biological pathway models. Parallel advances in bioinformatics and computational techniques have enabled the integration, analysis, and interpretation of these exponentially growing data sets and opens the possibility of personalized or precision medicine for FA.
Collapse
Affiliation(s)
- Gopal Krishna Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Efren Rael
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Swati Acharya
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif
| | - Robert Tibshirani
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, Calif
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Holden Maecker
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Kari Christine Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif.
| | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
46
|
Gao X, Colicino E, Shen J, Kioumourtzoglou MA, Just AC, Nwanaji-Enwerem JC, Coull B, Lin X, Vokonas P, Zheng Y, Hou L, Schwartz J, Baccarelli AA. Impacts of air pollution, temperature, and relative humidity on leukocyte distribution: An epigenetic perspective. ENVIRONMENT INTERNATIONAL 2019; 126:395-405. [PMID: 30826618 PMCID: PMC6441628 DOI: 10.1016/j.envint.2019.02.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exploring the associations of air pollution and weather variables with blood leukocyte distribution is critical to understand the impacts of environmental exposures on the human immune system. OBJECTIVES As previous analyses have been mainly based on data from cell counters, which might not be feasible in epidemiologic studies including large populations of long-stored blood samples, we aimed to expand the understanding of this topic by employing the leukocyte distribution estimated by DNA methylation profiles. METHODS We measured DNA methylation profiles in blood samples using Illumina HumanMethylation450 BeadChip from 1519 visits of 774 Caucasian males participating in the Normative Aging Study. Leukocyte distribution was estimated using Houseman's and Horvath's algorithms. Data on air pollution exposure, temperature, and relative humidity within 28 days before each blood draw was obtained. RESULTS After fully adjusting for potential covariates, PM2.5, black carbon, particle number, carbon monoxide, nitrogen dioxide, sulfur dioxide, temperature, and relative humidity were associated with the proportions of at least one subtype of leukocytes. Particularly, an interquartile range-higher 28-day average exposure of PM2.5 was associated with 0.147-, 0.054- and 0.101-unit lower proportions (z-scored) of plasma cells, naïve CD8+ T cells, and natural killers, respectively, and 0.059- and 0.161-unit higher proportions (z-scored) of naïve CD4+ T cells and CD8+ T cells, respectively. CONCLUSIONS Our study suggests that short-term air pollution exposure, temperature, and relative humidity are associated with leukocyte distribution. Our study further provides a successful attempt to use epigenetic patterns to assess the influences of environmental exposures on human immune profiles.
Collapse
Affiliation(s)
- Xu Gao
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | | | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
48
|
Yao TC, Chung RH, Lin CY, Tsai PC, Chang WC, Yeh KW, Tsai MH, Liao SL, Hua MC, Lai SH, Chen LC, Chang SW, Yu YW, Hsu JY, Chang SC, Cheng WC, Hu D, Hong X, Burchard EG, Wang X, Tzeng JY, Tsai HJ, Huang JL. Genetic loci determining total immunoglobulin E levels from birth through adulthood. Allergy 2019; 74:621-625. [PMID: 30378687 DOI: 10.1111/all.13654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Chang Gung Immunology Consortium; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Ren-Hua Chung
- Division of Biostatistics and Bioinformatics; Institute of Population Health Sciences; National Health Research Institutes; Zhunan Taiwan
| | - Chung-Yen Lin
- Division of Biostatistics and Bioinformatics; Institute of Population Health Sciences; National Health Research Institutes; Zhunan Taiwan
- Institute of Information Science; Academia Sinica; Taipei Taiwan
| | - Pei-Chien Tsai
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Department and Graduate Institute of Biomedical Sciences; Chang Gung University; Taoyuan Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy; School of Pharmacy; Taipei Medical University; Taipei Taiwan
- Department of Pharmacy; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics; School of Pharmacy; Taipei Medical University; Taipei Taiwan
- Center for Biomarkers and Biotech Drugs; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - Ming-Han Tsai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - Sui-Ling Liao
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - Man-Chin Hua
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - Shen-Hao Lai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Division of Pediatric Pulmonology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - Su-Wei Chang
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Clinical Informatics and Medical Statistics Research Center; Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Ya-Wen Yu
- Division of Biostatistics and Bioinformatics; Institute of Population Health Sciences; National Health Research Institutes; Zhunan Taiwan
| | - Jing-Ya Hsu
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Su-Ching Chang
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Wen-Chih Cheng
- Division of Biostatistics and Bioinformatics; Institute of Population Health Sciences; National Health Research Institutes; Zhunan Taiwan
| | - Donglei Hu
- Department of Medicine; University of California, San Francisco; San Francisco California
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health; Center on Early Life Origins of Disease; Johns Hopkins University Bloomberg School of Public Health; Baltimore Maryland
| | - Esteban G. Burchard
- Department of Medicine; University of California, San Francisco; San Francisco California
- Department of Bioengineering and Therapeutic Sciences; University of California San Francisco; San Francisco California
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health; Center on Early Life Origins of Disease; Johns Hopkins University Bloomberg School of Public Health; Baltimore Maryland
| | - Jung-Ying Tzeng
- Department of Statistics; North Carolina State University; Raleigh North Carolina
- Bioinformatics Research Center; North Carolina State University; Raleigh North Carolina
- Institute of Epidemiology and Preventive Medicine; National Taiwan University; Taipei Taiwan
- Department of Statistics; National Cheng-Kung University; Tainan Taiwan
| | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics; Institute of Population Health Sciences; National Health Research Institutes; Zhunan Taiwan
- Department of Population, Family and Reproductive Health; Center on Early Life Origins of Disease; Johns Hopkins University Bloomberg School of Public Health; Baltimore Maryland
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| |
Collapse
|
49
|
Zhao W, Ho HE, Bunyavanich S. The gut microbiome in food allergy. Ann Allergy Asthma Immunol 2019; 122:276-282. [PMID: 30578857 PMCID: PMC6389411 DOI: 10.1016/j.anai.2018.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review observational human, murine, and interventional trial studies that have examined the gut microbiome in food allergy, and to provide perspective on future investigations in this field. DATA SOURCES A review of the published literature was performed with PubMed, and clinical studies catalogued at ClinicalTrials.gov were also reviewed. STUDY SELECTIONS The most recent relevant studies, seminal works, and topical clinical trials were selected. RESULTS Gut dysbiosis likely precedes the development of food allergy, and the timing of such dysbiosis is critical. Gut microbiota associated with individual food allergies may be distinct. Murine models support the importance of gut microbiota in shaping immune maturation and tolerance. Gut microbiota may affect food allergy susceptibility by modulating type 2 immunity, influencing immune development and tolerance, regulating basophil populations, and promoting intestinal barrier function. Ongoing and future interventional trials of probiotics, prebiotics, synbiotics, and fecal microbiota transfer will help translate our understanding of the gut microbiome in food allergy to clinical practice. Future work in this area will include deepening of current research foci, as well as expansion of efforts to include the virome, mycobiome, and interactions between the microbiome, host, and environment. Robust and consistent study designs, multidimensional profiling, and systems biology approaches will enable this future work. CONCLUSION By advancing research on the microbiome in food allergy, we can further our understanding of food allergy and derive new approaches for its prevention and therapy.
Collapse
Affiliation(s)
- William Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hsi-En Ho
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
50
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|