1
|
Piper HG, Bording-Jorgensen M, Veniamin S, Zhang Z, Suarez RG, Armstrong H, Silverman JA, Wine E. Intestinal microbial and metabolite profile in infants with small bowel stomas after bowel resection. J Pediatr Gastroenterol Nutr 2024; 79:705-715. [PMID: 39046027 DOI: 10.1002/jpn3.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Infants with small bowel stomas (SBstoma) frequently struggle with absorption and rely on parenteral nutrition (PN). Intestinal absorption is difficult to predict based solely on intestinal anatomy. The purpose of this study was to characterize the microbiota and metabolic by-products within stoma effluent and correlate with clinical features and intestinal absorption. METHODS Prospective cohort study collecting stoma samples from neonates with SBstoma (N = 23) or colostomy control (N = 6) at initial enteral feed (first sample) and before stoma closure (last sample). Gut bacteriome (16S ribosomal RNA [rRNA] sequencing), short-chain fatty acids (SCFAs) and bile acids (BAs) were characterized along with volume and energy content of a 48 h collection via bomb calorimetry (last sample). Hierarchical clustering and linear regression were used to compare the bacteriome and BAs/SCFAs, to bowel length, PN, and growth. RESULTS Infants with ≤50% small bowel lost more fluid on average than those with >50% and controls (22, 18, 16 mL/kg/day, p = 0.013), but had similar energy losses (7, 10, 9 kcal/kg/day, p = 0.147). Infants growing poorly had enrichment of Proteobacteria compared to infants growing well (90% vs. 15%, p = 0.004). An increase in the ratio of secondary BAs within the small bowel over time, correlated with poor prognostic factors (≤50% small bowel, >50% of calories from PN, and poor growth). CONCLUSION Infants with SBstoma and poor growth have a unique bacteriome community and those with poor enteral tolerance have metabolic differences compared to infants with improved absorption.
Collapse
Affiliation(s)
- Hannah G Piper
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Simona Veniamin
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Zhengxiao Zhang
- College of Food and Biological Engineering, Jimei University, Fujian, Xiamen, China
| | - Ricardo G Suarez
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason A Silverman
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Covello C, Becherucci G, Di Vincenzo F, Del Gaudio A, Pizzoferrato M, Cammarota G, Gasbarrini A, Scaldaferri F, Mentella MC. Parenteral Nutrition, Inflammatory Bowel Disease, and Gut Barrier: An Intricate Plot. Nutrients 2024; 16:2288. [PMID: 39064731 PMCID: PMC11279609 DOI: 10.3390/nu16142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Malnutrition poses a critical challenge in inflammatory bowel disease, with the potential to detrimentally impact medical treatment, surgical outcomes, and general well-being. Parenteral nutrition is crucial in certain clinical scenarios, such as with patients suffering from short bowel syndrome, intestinal insufficiency, high-yielding gastrointestinal fistula, or complete small bowel obstruction, to effectively manage malnutrition. Nevertheless, research over the years has attempted to define the potential effects of parenteral nutrition on the intestinal barrier and the composition of the gut microbiota. In this narrative review, we have gathered and analyzed findings from both preclinical and clinical studies on this topic. Based on existing evidence, there is a clear correlation between short- and long-term parenteral nutrition and negative effects on the intestinal system. These include mucosal atrophic damage and immunological and neuroendocrine dysregulation, as well as alterations in gut barrier permeability and microbiota composition. However, the mechanistic role of these changes in inflammatory bowel disease remains unclear. Therefore, further research is necessary to effectively address the numerous gaps and unanswered questions pertaining to these issues.
Collapse
Affiliation(s)
- Carlo Covello
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Guia Becherucci
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
| | - Federica Di Vincenzo
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Angelo Del Gaudio
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Chiara Mentella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Ossola M, Ferrocino I, Franciosa I, Aimasso U, Cravero L, Bonciolini A, Cardenia V, Merlo FD, Anrò M, Chiarotto A, Bosa C, Cocolin L, Bo S. Does Microbiome Matter in Chronic Intestinal Failure Due to Type 1 Short Bowel Syndrome in Adults? Nutrients 2024; 16:2282. [PMID: 39064725 PMCID: PMC11280028 DOI: 10.3390/nu16142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The exact microbiome composition and function of patients with Short Bowel Syndrome (SBS) and Chronic Intestinal Failure (CIF) are still unknown. Patients with type I SBS-CIF (end-jejunostomy/ileostomy) are little represented in available studies. The aim of this study is to evaluate the microbiome characteristics of adult type 1 SBS-CIF patients according to their clinical features. Fecal microbiota was studied by amplicon-based sequencing and volatile organic compounds (VOCs) were assessed by solid-phase microextraction and gas chromatography-mass spectrometry. A total of 44 adult type 1 SBS-CIF patients were enrolled. At the family level, Lactobacillaceae (38% of the relative frequency) and Streptococcaceae (24%) were predominant; at the genus level, Streptococcus (38% of the relative frequency) and Lactobacillus (24%) were the dominant amplicon sequence variants (ASVs). Patients with increased stomal output showed higher ASVs for Lactobacillus (Rho = +0.38; p = 0.010), which was confirmed after adjusting for small bowel length (OR = 1.04; 95% CI 1.01-1.07, p = 0.023). Hyperphagia was associated with higher concentrations of short-chain fatty acid (SCFA) esters, such as butanoic acid ethyl ester (p = 0.005) and hexanoic acid ethyl ester (p = 0.004). Dietary fiber intake was directly correlated with most VOCs. Hyperphagia was associated with dietary fiber, after adjusting for small bowel length (OR = 1.35; 95% CI 1.01-1.81; p = 0.040). In type 1 SBS-CIF patients, a greater frequency of Lactobacilli was associated with increased stomal outputs, while increased fiber intake and concentrations of SCFA esters were associated with hyperphagia. These results might have implications for clinical practice.
Collapse
Affiliation(s)
- Marta Ossola
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Umberto Aimasso
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Leila Cravero
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Fabio Dario Merlo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Marta Anrò
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Alessia Chiarotto
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Clara Bosa
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Simona Bo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| |
Collapse
|
4
|
Du N, Torres C. Prevalence of eosinophilic gastrointestinal diseases in children with short bowel syndrome: A single center study. J Pediatr Gastroenterol Nutr 2024; 78:1149-1154. [PMID: 38511559 DOI: 10.1002/jpn3.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Patients with short bowel syndrome (SBS) have multiple risk factors for eosinophilic gastrointestinal diseases (EGIDs) including increased risk for intestinal dysbiosis and food allergy compared to their counterparts with normal anatomy. However, there is limited data on the prevalence of EGIDs in children with SBS. We aimed to define the prevalence of EGIDs in an SBS cohort and its association with different risk factors via a retrospective chart review of patients with SBS at Children's National Hospital. The prevalence of eosinophilic esophagitis in our SBS cohort was 10%, eosinophilic gastritis was 4.9%, and eosinophilic enteritis was 4.9%. SBS patients with history of allergy or atopy were more likely to have esophageal and intestinal eosinophilia on biopsy than patients without allergy. The prevalence of EGIDs in our SBS cohort is significantly higher than in the general population and may be associated with allergic polarization.
Collapse
Affiliation(s)
- Nicole Du
- Pediatric Residency Program, Children's National Hospital, Washington, District of Columbia, USA
- Division of Pediatric Gastroenterology, Children's National Hospital, Washington, District of Columbbia, USA
| | - Clarivet Torres
- Pediatric Residency Program, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Wang X, Xie W, Cai L, Han C, Kuang H, Shao Y, Zhang S, Zhang Q, Li J, Cui W, Jiang Y, Tang L. Microencapsulated Limosilactobacillus reuteri Encoding Lactoferricin-Lactoferrampin Targeted Intestine against Salmonella typhimurium Infection. Nutrients 2023; 15:5141. [PMID: 38140400 PMCID: PMC10745908 DOI: 10.3390/nu15245141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) is an important foodborne pathogen that infects both humans and animals and develops acute gastroenteritis. As porcine intestines are relatively similar to the human ones due to their relatively similar sizes and structural similarity, S. typhimurium causes analogous symptoms in both. Novel strategies for controlling S. typhimurium infection are also desired, such as mucosal-targeted delivery of probiotics and antimicrobial peptides. The bovine lactoferricin-lactoferrampin-encoding Limosilactobacillus reuteri (LR-LFCA) strain improves intestinal barrier function by strengthening the intestinal barrier. Weaned piglets were selected for oral administration of microencapsulated LR-LFCA (microcapsules entrap LR-LFCA into gastro-resistant polymers) and then infected with S. typhimurium for 3 days. We found that orally administering microencapsulated LR-LFCA to weaned piglets attenuated S. typhimurium-induced production of inflammatory factors in the intestinal mucosa by inhibiting the nuclear factor-kappa B (NF-κB) and P38 mitogen-activated protein kinases (MAPK) signaling pathway. Moreover, microencapsulated LR-LFCA administration significantly suppressed the oxidative stress that may correlate with gut microbiota (reduced Salmonella population and increased α-diversity and Lactobacillus abundance) and intestinal function (membrane transport and metabolism). Our work demonstrated that microencapsulated LR-LFCA effectively targeted intestine delivery of Lactobacillus and antimicrobial peptides and modulated gut microbiota and mucosal immunity. This study reveals a novel targeting mucosal strategy against S. typhimurium infection.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Chuang Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Hongdi Kuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Wolfschluckner V, Obermüller B, Horvath A, Rodriguez-Blanco G, Fuchs P, Miekisch W, Mittl B, Flucher C, Till H, Singer G. Metabolomic Alterations of Volatile Organic Compounds and Bile Acids as Biomarkers of Microbial Shifts in a Murine Model of Short Bowel Syndrome. Nutrients 2023; 15:4949. [PMID: 38068807 PMCID: PMC10708115 DOI: 10.3390/nu15234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. β-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.
Collapse
Affiliation(s)
- Vanessa Wolfschluckner
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Patricia Fuchs
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Wolfram Miekisch
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Christina Flucher
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| |
Collapse
|
7
|
Xie W, Wang X, Cai J, Bai H, Shao Y, Li Z, Cai L, Zhang S, Li J, Cui W, Jiang Y, Tang L. Optimum Fermentation Conditions for Bovine Lactoferricin-Lactoferrampin-Encoding LimosiLactobacillus reuteri and Regulation of Intestinal Inflammation. Foods 2023; 12:4068. [PMID: 38002126 PMCID: PMC10670345 DOI: 10.3390/foods12224068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The multifunctional antibacterial peptide lactoferricin-lactoferrampin (LFCA) is derived from bovine lactoferrin. Optimization of the fermentation process should be studied since different microorganisms have their own favorable conditions and processes for growth and the production of metabolites. In this study, the culture conditions of a recombinant strain, pPG-LFCA-E/LR-CO21 (LR-LFCA), expressing LFCA was optimized, utilizing the high-density fermentation process to augment the biomass of LimosiLactobacillus reuteri and the expression of LFCA. Furthermore, an assessment of the protective effect of LR-LFCA on intestinal inflammation induced by lipopolysaccharide (LPS) was conducted to evaluate the impact of LR-LFCA on the disease resistance of piglets. The findings of this study indicate that LR-LFCA fermentation conditions optimally include 2% inoculation volume, 36.5 °C fermentation temperature, 9% dissolved oxygen concentration, 200 revolutions/minute stirring speed, pH 6, 10 mL/h glucose flow, and 50% glucose concentration. The inclusion of fermented LR-LFCA in the diet resulted in an elevation of immunoglobulin levels, significant upregulation of tight junction proteins ZO-1 and occludin, reinforcement of the intestinal barrier function, and significant amelioration of the aberrant alterations in blood physiological parameters induced by LPS. These results offer a theoretical framework for the implementation of this micro-ecological preparation in the field of piglet production to enhance intestinal well-being.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Huitao Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Hou P, Li B, Wang Y, Li D, Huang X, Sun W, Liang X, Zhang E. The Effect of Dietary Supplementation with Zinc Amino Acids on Immunity, Antioxidant Capacity, and Gut Microbiota Composition in Calves. Animals (Basel) 2023; 13:ani13091570. [PMID: 37174607 PMCID: PMC10177098 DOI: 10.3390/ani13091570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effect of dietary supplementation with zinc (Zn) amino acids at different concentrations on immunity, antioxidant capacity, and gut microbiota composition in calves. Twenty-four one-month-old healthy Angus calves of comparable body weight were randomly divided into three groups (four males and four females in each group) based on the amount of Zn supplementation added to the feed the animals received: group A, 40 mg/kg DM; group B, 80 mg/kg DM; and group C, 120 mg/kg DM. The experiment ended when calves reached three months of age (weaning period). The increase in dietary Zn amino acid content promoted the growth of calves, and the average daily weight gain increased by 36.58% (p < 0.05) in group C compared with group A. With the increase in the content of dietary Zn amino acids, the indexes of serum immune functions initially increased and then decreased; in particular, the content of immunoglobulin M in group A and group B was higher than that in group C (p < 0.05), whereas the content of interleukin-2 in group B was higher than that in the other two groups (p < 0.05). In addition, the content of superoxide dismutase and total antioxidant capacity in the serum of calves in group B was higher than that in group C (p < 0.05), and the MDA level was lower than in group C (p < 0.05). Moreover, alpha diversity in the gut microbiota of calves in group B was higher than that in group A and group C (p < 0.05); the dominant phyla were Firmicutes and Bacteroidota, whereas the dominant genera were Unclassified-Lachnospiraceae and Ruminococcus. Linear discriminant analysis showed that the relative abundance of Bacteroides in the gut microbiota of calves in group B was higher than that in group A, and the relative abundance of Prevotellaceae-UCG-003 was higher compared to that in experimental group C. Thus, dietary supplementation of 80 mg/kg of Zn amino acids to calves could improve the immune function and antioxidant capacity, as well as enrich and regulate the equilibrium of gut microbiota, thus promoting the healthy growth of calves.
Collapse
Affiliation(s)
- Pengxia Hou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Bo Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yan Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Dan Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenyang Sun
- Ningxia Academy of Agriculture and Forestry Science, Institute of Animal, Yinchuan 750002, China
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry Science, Institute of Animal, Yinchuan 750002, China
| | - Enping Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
9
|
Fourati S, Dumay A, Roy M, Willemetz A, Ribeiro-Parenti L, Mauras A, Mayeur C, Thomas M, Kapel N, Joly F, Le Gall M, Bado A, Le Beyec J. Fecal microbiota transplantation in a rodent model of short bowel syndrome: A therapeutic approach? Front Cell Infect Microbiol 2023; 13:1023441. [PMID: 36936775 PMCID: PMC10020656 DOI: 10.3389/fcimb.2023.1023441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive intestinal resection leads to Short Bowel Syndrome (SBS), the main cause of chronic intestinal failure. Colon preservation is crucial for spontaneous adaptation, to improve absorption and reduce parenteral nutrition dependence. Fecal microbiota transplantation (FMT), a promising approach in pathologies with dysbiosis as the one observed in SBS patients, was assessed in SBS rats with jejuno-colonic anastomosis. The evolution of weight and food intake, the lenght of intestinal villi and crypts and the composition of fecal microbiota of Sham and SBS rats, transplanted or not with high fat diet rat microbiota, were analyzed. All SBS rats lost weight, increased their food intake and exhibited jejunal and colonic hyperplasia. Microbiota composition of SBS rats, transplanted or not, was largely enriched with Lactobacillaceae, and α- and β-diversity were significantly different from Sham. The FMT altered microbiota composition and α- and β-diversity in Sham but not SBS rats. FMT from high fat diet rats was successfully engrafted in Sham, but failed to take hold in SBS rats, probably because of the specific luminal environment in colon of SBS subjects favoring aero-tolerant over anaerobic bacteria. Finally, the level of food intake in SBS rats was positively correlated with their Lactobacillaceae abundance. Microbiota transfer must be optimized and adapted to this specific SBS environment.
Collapse
Affiliation(s)
- Salma Fourati
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Sorbonne Université, AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Biochimie Endocrinienne et Oncologique, Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
| | - Anne Dumay
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Maryline Roy
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Alexandra Willemetz
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Lara Ribeiro-Parenti
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- AP-HP, Hôpital Bichat -Claude Bernard, Service de chirurgie Générale OEsogastrique et Bariatrique, Paris, France
| | - Aurélie Mauras
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Camille Mayeur
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Thomas
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR-S 1139, INSERM, Universite Paris Cite, Paris, France
- AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Coprologie fonctionnelle, Paris, France
| | - Francisca Joly
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Department of gastroenterology, IBD and nutrition Support, AP‐HP, CRMR MarDi, Hôpital Beaujon, Clichy, France
| | - Maude Le Gall
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - André Bado
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Johanne Le Beyec
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Sorbonne Université, AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Biochimie Endocrinienne et Oncologique, Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- *Correspondence: Johanne Le Beyec, ;;
| |
Collapse
|
10
|
Zhou Z, Li K, Shi L, Wang Y, He Y, Hu W, Guo J. Self-Assembled Integrative Nutrient Carrier Platform Containing Green Tea Catechin for Short Bowel Syndrome Treatment. Adv Healthc Mater 2023; 12:e2201933. [PMID: 36337003 DOI: 10.1002/adhm.202201933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Extensive resection of the small intestine leads to the development of short bowel syndrome (SBS), which reduces the effective absorptive surface area of the intestine and predisposes patients to emaciation, malnutrition, and other severe symptoms. Herein, green tea catechin (-)-epigallocatechin gallate (EGCG) and ferrous ions (Fe2+ ) are utilized to construct a nutrient carrier platform that self-assembles with nutrients to form phenolic-based nutrient complexes (PNCs). PNCs effectively prolong the residence and absorption time of nutrients in the intestine. Further this platform is applied to integrate full nutrient formula, an enteral nutrition (EN) preparation containing a range of full nutrient components. In an SBS rat model, the prepared phenolic-based integrative nutrient complexes (PINCs) enhance nutritional status, improve anemia and immune function, as well as facilitate the growth of remaining intestinal villi and crypts, and maintain the integrity of the intestinal barrier. In addition, PINCs enable the modulation of gut microbial dysbiosis, enrich the abundance of beneficial bacteria, and have no toxic effects after the long-term ingestion. These results provide a proof of principle for the use of polyphenol-based nanocomplexes as EN preparation, offering a feasible strategy for both nutritional support and therapeutic perspectives for SBS treatment.
Collapse
Affiliation(s)
- Zhengming Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wen Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
11
|
Cerdó T, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Nieto-Ruíz A, G. Bermúdez M, Campoy C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022; 14:4691. [PMID: 36364953 PMCID: PMC9658482 DOI: 10.3390/nu14214691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Parenteral nutrition (PN) is a life-saving therapy providing nutritional support in patients with digestive tract complications, particularly in preterm neonates due to their gut immaturity during the first postnatal weeks. Despite this, PN can also result in several gastrointestinal complications that are the cause or consequence of gut mucosal atrophy and gut microbiota dysbiosis, which may further aggravate gastrointestinal disorders. Consequently, the use of PN presents many unique challenges, notably in terms of the potential role of the gut microbiota on the functional and clinical outcomes associated with the long-term use of PN. In this review, we synthesize the current evidence on the effects of PN on gut microbiome in infants and children suffering from diverse gastrointestinal diseases, including necrotizing enterocolitis (NEC), short bowel syndrome (SBS) and subsequent intestinal failure, liver disease and inflammatory bowel disease (IBD). Moreover, we discuss the potential use of pre-, pro- and/or synbiotics as promising therapeutic strategies to reduce the risk of severe gastrointestinal disorders and mortality. The findings discussed here highlight the need for more well-designed studies, and harmonize the methods and its interpretation, which are critical to better understand the role of the gut microbiota in PN-related diseases and the development of efficient and personalized approaches based on pro- and/or prebiotics.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - María García-Ricobaraza
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Ana Nieto-Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Mercedes G. Bermúdez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Carlos III Health Institute, Avda. Monforte de Lemos 5, 28028 Madrid, Spain
| |
Collapse
|
12
|
Wang X, Xie W, Zhang S, Shao Y, Cai J, Cai L, Wang X, Shan Z, Zhou H, Li J, Cui W, Wang L, Qiao X, Li Y, Jiang Y, Tang L. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus reuteri. Foods 2022; 11:3169. [PMID: 37430918 PMCID: PMC9602003 DOI: 10.3390/foods11203169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri (LR-LFCA) has been found to benefit its host by strengthening its intestinal barrier. However, several questions remain open concerning genetically engineered strains maintaining long-term biological activity at room temperature. In addition, probiotics are vulnerable to harsh conditions in the gut, such as acidity and alkalinity, and bile salts. Microencapsulation is a technique to entrap probiotic bacteria into gastro-resistant polymers to carry them directly to the intestine. We selected nine kinds of wall material combinations to encapsulate LR-LFCA by spray drying microencapsulation. The storage stability, microstructural morphology, biological activity, and simulated digestion in vivo or in vitro of the microencapsulated LR-LFCA were further evaluated. The results showed that LR-LFCA had the highest survival rate when microcapsules were prepared using a wall material mixture (skim milk, sodium glutamate, polyvinylpyrrolidone, maltodextrin, and gelatin). Microencapsulated LR-LFCA increased the stress resistance capacity and colonization abilities. In the present study, we have identified a suitable wall material formulation for spray-dried microencapsulation of genetically engineered probiotic products, which would facilitate their storage and transport.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Jiang L, Wang N, Cheng S, Liu Y, Chen S, Wang Y, Cai W. RNA-sequencing identifies novel transcriptomic signatures in intestinal failure-associated liver disease. J Pediatr Surg 2022; 57:158-165. [PMID: 35033352 DOI: 10.1016/j.jpedsurg.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Total parenteral nutrition (TPN) dependence leads to development of intestinal failure-associated liver disease (IFALD). The spectrum of diseases ranges from cholestasis, steatosis, fibrosis, and cirrhosis that causes significant morbidity. Understanding the disease at molecular level helps us to develop therapeutic targets. We performed transcriptomic analysis on liver from rats with TPN administration, and we assessed the role of selected differentially expressed genes (DEGs), functional pathways, transcriptional factors, and their associations with pathological parameters of IFALD. METHODS Sprague-Dawley rats were subjected to TPN or standard chow with 0.9% saline for 7 days as controls. RNA-seq analysis was performed on liver samples. Correlations between transcriptional factor hairy and enhancer of split 6 (Hes6) and pathological parameters of IFALD were investigated. RESULTS We provided a comprehensive transcriptomic analysis to identify DEGs and functional pathways in liver from TPN-fed rats. We identified solute carrier family 7 member 11 (Slc7a11) as the most up-regulated mRNA, and ferroptosis-associated pathways were enriched in TPN group. Transcriptional factor (TF) analysis revealed that Hes6 interacted with Nr1d1, Tfdp2, Zbtb20, and Hmgb2l1. TF target gene prediction analysis suggested that Hes6 may regulate genes associated with bile acid secretion and fatty acid metabolism. Last, hepatic Hes6 expression was significantly decreased in TPN-fed rats, and was positively correlated with several taurine-conjugated bile acids and negatively correlated with hepatic triglyceride level. CONCLUSIONS RNA-seq analysis revealed unique transcriptomic signatures in the liver following TPN administration. Hes6 may be a critical regulator for IFALD pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yang Liu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China.
| |
Collapse
|
14
|
Pauline M, Fouhse J, Hinchliffe T, Wizzard P, Patrick Nation, Huynh H, Wales P, Willing B, Turner J. Probiotic Treatment Versus Empiric Oral Antibiotics for Managing Dysbiosis in Short Bowel Syndrome: Impact on the Mucosal and Stool Microbiota, Short Chain Fatty Acids and Adaptation. JPEN J Parenter Enteral Nutr 2022; 46:1828-1838. [PMID: 35383975 DOI: 10.1002/jpen.2377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Infants and children with short bowel syndrome (SBS) are presumed to be at risk of gut microbial dysbiosis with potential sequelae of bacterial overgrowth that include sepsis, D-lactic acidosis, mucosal inflammation and malabsorption. In neonatal piglets with SBS, we compared intestinal microbial composition, short chain fatty acids (SCFA) and adaptation given probiotic treatment (Lactobacillus and Bifidobacterium spp.) versus oral metronidazole. METHODS Following 75% distal small intestinal resection, piglets were allocated to: probiotic (PRO, 500mg BID n=7), metronidazole (MET, 15mg/kg BID n=8) and placebo (PLA, 500mg BID n=8). After 10 days of parenteral and enteral nutrition, 16S rRNA gene amplicon sequencing (colon tissue and stool) were undertaken and SCFA analysis (stool and colon effluent) performed using gas chromatography. RESULTS In colon, Shannon diversity was higher for PRO compared to MET and PLA (p=0.002). PRO and PLA increased abundance of Bacteroidetes species (e.g. Bacteroides fragilis), compared to MET (p<0.001). PRO compared to PLA increased abundance of Firmicutes species (e.g. Lactobacillus fermentum) (p<0.001). MET increased abundance of Proteobacteria members, predominately Enterobacteriaceae compared to PRO (p=0.004). In stool, microbial findings were similar and SCFA (butyrate) concentrations were highest for PRO (p=0.003) compared to MET. CONCLUSION In pediatric SBS, the empiric use of oral antibiotics, such as metronidazole, is common for presumed clinical consequences of microbial dysbiosis. In this study of SBS piglets, that approach was associated with decreased microbial diversity and increased abundance of potentially inflammatory Proteobacteria. In contrast, a probiotic treatment using Lactobacillus and Bifidobacterium spp. increased both diversity and SCFAs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle Fouhse
- Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tierah Hinchliffe
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Hien Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Wales
- Department of Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati
| | - Benjamin Willing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Justine Turner
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Catheter-related bloodstream infections in children with intestinal failure: a 6-year review from an intestinal rehabilitation center in China. World J Pediatr 2022; 18:271-277. [PMID: 35211921 DOI: 10.1007/s12519-022-00519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Children with intestinal failure (IF) have frequent catheter-related bloodstream infections (CRBSIs). This study aimed to analyze the clinical presentation and laboratory parameters of CRBSIs in children with IF. METHODS This 6-year retrospective study was conducted among IF children with CRBSIs at an intestinal rehabilitation center in China. Clinical data were collected, including data of temperature and gastrointestinal symptoms. Blood/catheter culture, fecal tests, and calculation of inflammatory index were performed, which were obtained within 1 week since CRBSI onset. RESULTS Fifty children with 87 CRBSIs were identified, of which there were 17 suspected and 70 confirmed cases. Seventy-two pathogens were cultured from 70 positive blood cultures: 63% were Gram-positive organisms, 23% were Gram-negative organisms, and 11% were fungal organisms. Overall, 48.6% were enteric organisms; 47.2% of bacterial pathogens were consistent between fecal and blood cultures. Moreover, 46.3% fecal routines showed abnormalities including increased white blood cells, occult blood positive and the presence of fat droplets. The consistent symptom at onset of CRBSIs was fever and gastrointestinal symptoms including increased stool output, abdominal distension, or both. C-reactive protein (CRP) and procalcitonin (PCT) were elevated, i.e., 16.5 mg/L [interquartile range (IQR) 8.7-44.7] and 0.48 ng/mL (IQR 0.2-1.76), respectively. CONCLUSIONS IF children had a high rate of CRBSIs, of which larger proportions were due to Gram-positive and enteric organisms. Fever and/or gastrointestinal symptoms, combined with elevated CRP and PCT, is conducive to the early diagnosis of CRBSIs in IF patients.
Collapse
|
16
|
Jiang L, Wang Y, Xiao Y, Wang Y, Yan J, Schnabl B, Cai W. Role of the Gut Microbiota in Parenteral Nutrition-Associated Liver Disease: From Current Knowledge to Future Opportunities. J Nutr 2022; 152:377-385. [PMID: 34734271 DOI: 10.1093/jn/nxab380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral nutrition-associated liver disease (PNALD) refers to a spectrum of conditions that can develop cholestasis, steatosis, fibrosis, and cirrhosis in the setting of parenteral nutrition (PN) use. Patient risk factors include short bowel syndrome, bacterial overgrowth and translocation, disturbance of hepatobiliary circulation, and lack of enteral feeding. A growing body of evidence suggests an intricate linkage between the gut microbiota and the pathogenesis of PNALD. In this review, we highlight current knowledge on the taxonomic and functional changes in the gut microbiota that might serve as noninvasive biomarkers. We also discuss the function of microbial metabolites and associated signaling pathways in the pathogenesis of PNALD. By providing the perspectives of microbiota-host interactions in PNALD for basic and translational research and summarizing current limitations of microbiota-based approaches, this review paves the path for developing novel and precise microbiota-based therapies in PNALD.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Hinchliffe T, Pauline ML, Wizzard PR, Jovel J, Nation PN, Wales PW, Madsen KL, Turner JM. The effect of fecal microbial transplant on intestinal microbial composition in short bowel neonatal piglets. JPEN J Parenter Enteral Nutr 2022; 46:1393-1403. [PMID: 35043436 DOI: 10.1002/jpen.2333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Short bowel syndrome (SBS) in neonates is associated with microbial dysbiosis due to intestinal surgery, prolonged hospitalization, enteral nutrition, and repeated antibiotic exposure. Sepsis and liver disease, leading causes of morbidity and mortality in SBS, may relate to such intestinal dysbiosis. We investigated the safety and feasibility of fecal microbial transplant (FMT) to alter intestinal microbial composition in SBS piglets. METHODS Following a 75% distal small intestinal resection, piglets were fed parenteral nutrition (PN) and elemental diet (ED), and randomized to saline (SAL, n=12) or FMT (n=12) treatments delivered by gastric tube on day 2 (d2). FMT donor was a healthy adult pig. Comparisons were also made to healthy sow-fed littermate controls (SOW, n=6). Stool samples were collected daily, and tissue samples were collected at baseline and termination. Microbial DNA was extracted from stool and analyzed using 16S rRNA sequencing. RESULTS All piglets survived to the endpoint. On d2-4, FMT piglets had some differences in microbiota composition, compared to SAL, SOW, and donor. Between base and term, there were transitory changes to alpha and beta diversity in FMT and SAL. CONCLUSION FMT treatment in post-surgical neonatal piglets with SBS appears safe, with no increase in sepsis and no mortality. In SBS piglets, FMT induced transient changes to the intestinal microbiota. However, these changes did not persist long-term. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tierah Hinchliffe
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mirielle L Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Juan Jovel
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati
| | - Karen L Madsen
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Boutte HJ, Chen J, Wylie TN, Wylie KM, Xie Y, Geisman M, Prabu A, Gazit V, Tarr PI, Levin MS, Warner BW, Davidson NO, Rubin DC. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2022; 322:G154-G168. [PMID: 34816756 PMCID: PMC8793869 DOI: 10.1152/ajpgi.00091.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.
Collapse
Affiliation(s)
- Harold J. Boutte
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Chen
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Todd N. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Kristine M. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mackenzie Geisman
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anirudh Prabu
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Vered Gazit
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,4Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Marc S. Levin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,7Veterans Administration Saint Louis Health Care System, St. Louis, Missouri
| | - Brad W. Warner
- 5Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah C. Rubin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Xie W, Song L, Wang X, Xu Y, Liu Z, Zhao D, Wang S, Fan X, Wang Z, Gao C, Wang X, Wang L, Qiao X, Zhou H, Cui W, Jiang Y, Li Y, Tang L. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021; 13:1956281. [PMID: 34369287 PMCID: PMC8354667 DOI: 10.1080/19490976.2021.1956281] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in human and animal. To determine the mechanism of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactobacillus reuteri CO21 (LR-LFCA) to enhance the intestinal mucosal immunity, we used a newborn piglet intestine model to study the intestinal response to ETEC. Pigs were chosen due to the anatomical similarity between the porcine and the human intestine.4-day-old piglets were orally administered with LR-LFCA, LR-con (L. reuteri CO21 transformed with pPG612 plasmid) or phosphate buffered saline (PBS) for three consecutive days, within 21 days after these treatments, we found that LR-LFCA can colonize the intestines of piglets, improve the growth performance, enhance immune response and is beneficial for intestinal health of piglets by improving intestinal barrier function and modulating the composition of gut microbiota. Twenty-one days after, piglets were infected with ETEC K88 for 5 days, we found that oral administration of LR-LFCA to neonatal piglets attenuated ETEC-induced the weight loss of piglets and diarrhea incidence. LR-LFCA decreased the production of inflammatory factors and oxidative stress in intestinal mucosa of ETEC-infected piglets. Additionally, LR-LFCA increased the expression of tight junction proteins in the ileum of ETEC-infected piglets. Using LPS-induced porcine intestinal epithelial cells (IPEC-J2) in vitro, we demonstrated that LR-LFCA-mediated increases in the tight junction proteins might depend on the MLCK pathway; LR-LFCA might increase the anti-inflammatory ability by inhibiting the NF-κB pathway. We also found that LR-LFCA may enhance the antioxidant capacity of piglets by activating the Nrf2/HO-1 pathway. This study demonstrates that LR-LFCA is effective at maintaining intestinal epithelial integrity and host homeostasis as well as at repairing intestinal damage after ETEC infection and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shubo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhaorui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China,CONTACT Lijie Tang College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Xia X, Ni J, Yin S, Yang Z, Jiang H, Wang C, Peng J, Wei H, Wang X. Elevated Systemic and Intestinal Inflammatory Response Are Associated With Gut Microbiome Disorder After Cardiovascular Surgery. Front Microbiol 2021; 12:686648. [PMID: 34512565 PMCID: PMC8424189 DOI: 10.3389/fmicb.2021.686648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammatory response after cardiovascular surgery is associated with poor prognosis, to which gut barrier impairment is related. To investigate whether perioperative changes of the gut microbiome are associated with systemic and intestinal inflammatory response, we examined changes of the gut microbiome, intestinal homeostasis, and systemic inflammatory response in cardiovascular patients before (Pre) surgery and on the first defecation day [postoperative time 1 (Po1)] or a week [postoperative time 2 (Po2)] postsurgery. Markedly, the enhanced systemic inflammatory response was observed in Po1 and Po2 compared with that in Pre. In line with inflammatory response, impaired gut barrier and elevated gut local inflammation were observed in Po1 and Po2. Microbiome analysis showed a remarkable and steady decline of alpha diversity perioperatively. In addition, microbial composition in the postoperation period was characterized by significant expansion of Enterococcus along with a decrease in anaerobes (Blautia, Faecalibacterium, Bifidobacterium, Roseburia, Gemmiger, [Ruminococcus], and Coprococcus), which were typically health-associated bacteria. Spearman correlation analysis showed microbiome disorder was associated with enhanced systemic inflammatory response and intestinal dysbiosis. These results suggest that microbiome disorder was related to disturbed gut homeostatic and subsequently elevates plasma endotoxin and systemic inflammatory response after cardiovascular surgery. This study not only highlights gut microbiome would be considered in future clinical practice but also proposes a promising perspective of potential diagnostic and therapeutic options for perioperative management of cardiovascular surgery patients.
Collapse
Affiliation(s)
- Xiong Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Jiangjin Ni
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Haini Jiang
- Medical Affairs Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Vomhof-DeKrey EE, Stover A, Basson MD. Microbiome diversity declines while distinct expansions of Th17, iNKT, and dendritic cell subpopulations emerge after anastomosis surgery. Gut Pathog 2021; 13:51. [PMID: 34376235 PMCID: PMC8353768 DOI: 10.1186/s13099-021-00447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anastomotic failure causes morbidity and mortality even in technically correct anastomoses. Initial leaks must be prevented by mucosal reapproximation across the anastomosis. Healing is a concerted effort between intestinal epithelial cells (IECs), immune cells, and commensal bacteria. IEC TLR4 activation and signaling is required for mucosal healing, leading to inflammatory factor release that recruits immune cells to limit bacteria invasion. TLR4 absence leads to mucosal damage from loss in epithelial proliferation, attenuated inflammatory response, and bacteria translocation. We hypothesize after anastomosis, an imbalance in microbiota will occur due to a decrease in TLR4 expression and will lead to changes in the immune milieu. RESULTS We isolated fecal content and small intestinal leukocytes from murine, Roux-en-Y and end-to-end anastomoses, to identify microbiome changes and subsequent alterations in the regulatory and pro-inflammatory immune cells 3 days post-operative. TLR4+ IECs were impaired after anastomosis. Microbiome diversity was reduced, with Firmicutes, Bacteroidetes, and Saccharibacteria decreased and Proteobacteria increased. A distinct TCRβhi CD4+ T cells subset after anastomosis was 10-20-fold greater than in control mice. 84% were Th17 IL-17A/F+ IL-22+ and/or TNFα+. iNKT cells were increased and TCRβhi. 75% were iNKT IL-10+ and 13% iNKTh17 IL-22+. Additionally, Treg IL-10+ and IL-22+ cells were increased. A novel dendritic cell subset was identified in anastomotic regions that was CD11bhi CD103mid and was 93% IL-10+. CONCLUSIONS This anastomotic study demonstrated a decrease in IEC TLR4 expression and microbiome diversity which then coincided with increased expansion of regulatory and pro-inflammatory immune cells and cytokines. Defining the anastomotic mucosal environment could help inform innovative therapeutics to target excessive pro-inflammatory invasion and microbiome imbalance.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Allie Stover
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Marc D. Basson
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Pathology, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| |
Collapse
|
22
|
|
23
|
Brenner D, Cherry P, Switzer T, Butt I, Stanton C, Murphy K, McNamara B, Iohom G, O'Mahony SM, Shorten G. Pain after upper limb surgery under peripheral nerve block is associated with gut microbiome composition and diversity. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100072. [PMID: 34485761 PMCID: PMC8404729 DOI: 10.1016/j.ynpai.2021.100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
Gut microbiota play a role in certain pain states. Hence, these microbiota also influence somatic pain. We aimed to determine if there was an association between gut microbiota (composition and diversity) and postoperative pain. Patients (n = 20) undergoing surgical fixation of distal radius fracture under axillary brachial plexus block were studied. Gut microbiota diversity and abundance were analysed for association with: (i) a verbal pain rating scale of < 4/10 throughout the first 24 h after surgery (ii) a level of pain deemed "acceptable" by the patient during the first 24 h following surgery (iii) a maximum self-reported pain score during the first 24 h postoperatively and (iv) analgesic consumption during the first postoperative week. Analgesic consumption was inversely correlated with the Shannon index of alpha diversity. There were also significant differences, at the genus level (including Lachnospira), with respect to pain being "not acceptable" at 24 h postoperatively. Porphyromonas was more abundant in the group reporting an acceptable pain level at 24 h. An inverse correlation was noted between abundance of Collinsella and maximum self-reported pain score with movement. We have demonstrated for the first time that postoperative pain is associated with gut microbiota composition and diversity. Further work on the relationship between the gut microbiome and somatic pain may offer new therapeutic targets.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Paul Cherry
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Tim Switzer
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Ihsan Butt
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
| | - Brian McNamara
- Department of Clinical Neurophysiology Cork University Hospital,
Ireland
| | - Gabriella Iohom
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Ireland
- Department of Anatomy and Neuroscience University College Cork,
Ireland
| | - George Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| |
Collapse
|
24
|
Therapeutic potential of an intestinotrophic hormone, glucagon-like peptide 2, for treatment of type 2 short bowel syndrome rats with intestinal bacterial and fungal dysbiosis. BMC Infect Dis 2021; 21:583. [PMID: 34134659 PMCID: PMC8207711 DOI: 10.1186/s12879-021-06270-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies showed that type 2 short bowel syndrome (SBS) rats were accompanied by severe intestinal bacterial dysbiosis. Limited data are available for intestinal fungal dysbiosis. Moreover, no effective therapeutic drugs are available for these microbiota dysbiosis. The aims of our study were to investigate the therapeutic potential of glucagon-like peptide 2 (GLP-2) for these microbiota dysbiosis in type 2 SBS rats. Methods 8-week-old male SD rats which underwent 80% small bowel resection, ileocecum resection, partial colon resection and jejunocolostomy, were treated with saline (SBS group, n = 5) or GLP-2 (GLP2.SBS group, n = 5). The Sham group rats which underwent transection and re-anastomosis were given a saline placebo (Sham group, n = 5). 16S rRNA and ITS sequencing were applied to evaluate the colonic bacterial and fungal composition at 22 days after surgery, respectively. Results The relative abundance of Actinobacteria, Firmicutes and proinflammatory Proteobacteria increased significantly in SBS group rats, while the relative abundance of Bacteroidetes, Verrucomicrobia and Tenericutes decreased remarkably. GLP-2 treatment significantly decreased Proteus and increased Clostridium relative to the saline treated SBS rats. The diversity of intestinal fungi was significantly increased in SBS rats, accompanied with some fungi abnormally increased and some resident fungi (e.g., Penicillium) significantly decreased. GLP-2 treatment significantly decreased Debaryomyces and Meyerozyma, and increased Penicillium. Moreover, GLP-2 partially restored the bacteria-fungi interkingdom interaction network of SBS rats. Conclusion Our study confirms the bacterial and fungal dysbiosis in type 2 SBS rats, and GLP-2 partially ameliorated these microbiota dysbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06270-w.
Collapse
|
25
|
A comparative study of Helicobacter pylori infection in hamsters experimentally infected with liver flukes Opisthorchis felineus, Opisthorchis viverrini, or Clonorchis sinensis. Sci Rep 2021; 11:7789. [PMID: 33833389 PMCID: PMC8032737 DOI: 10.1038/s41598-021-87446-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori causes a wide range of human diseases including cancer. Carcinogenic foodborne trematodes Opisthorchis viverrini, Clonorchis sinensis, and O. felineus might promote transmission and spread of H. pylori infection in the definitive mammalian host, which in turn might contribute to the liver fluke-associated malignancy. Our objectives were to find out whether liver flukes O. felineus, O. viverrini, and C. sinensis are carriers of Helicobacter pylori and to determine whether H. pylori is present in feces, bile, and stomach samples from the experimentally infected hamsters. We found that liver flukes are not reservoirs of H. pylori. Nevertheless, the prevalence of H. pylori and the H. pylori ureA gene copy number were significantly elevated after the infection. Overall, although the liver flukes O. felineus, C. sinensis, and O. viverrini are not reservoirs of H. pylori, the infection with the liver flukes significantly modifies the biliary and gut microbiota by increasing H. pylori abundance. This may be a feature of any liver fluke pathogenesis that have not previously been taken into account. Our findings appear to be novel in terms of comparative assessment of the host microbiota and Helicobacter abundance during epidemiologically important liver fluke infections.
Collapse
|
26
|
Alterations of gut microbiota and serum bile acids are associated with parenteral nutrition-associated liver disease. J Pediatr Surg 2021; 56:738-744. [PMID: 32732165 DOI: 10.1016/j.jpedsurg.2020.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Parenteral nutrition-associated liver disease (PNALD) is a major complication of long-term parenteral nutrition (PN). The pathogenesis of PNALD remains unclear. We investigated the changes in taxonomic and functional composition of gut microbiota and serum bile acid levels in a rat model of PNALD. METHODS Male 4-week-old Sprague Dawley rats received either total parenteral nutrition or standard chow with 0.9% saline for 7 days. The taxonomic composition of cecal microbiota and its functional composition associated with bile acid metabolism were measured. RESULTS There were differences in taxonomic composition between the two groups. The abundance of the secondary bile acid biosynthesis pathway was higher in the TPN group (p < 0.05) with an increase in the percentage of bacteria expressing 7-alpha-hydroxysteroid dehydrogenase (p < 0.05). The abundance of enzymes associated with bile salt hydrolase was also higher (p < 0.05) in the TPN group. The TPN group showed a distinct bile acid profile characterized by a higher ratio of secondary bile acids to primary bile acids. CONCLUSIONS The alteration of bile acid-associated microbiota may lead to increased secondary bile acid production in a rat model of PNALD.
Collapse
|
27
|
Thänert R, Thänert A, Ou J, Bajinting A, Burnham CAD, Engelstad HJ, Tecos ME, Ndao IM, Hall-Moore C, Rouggly-Nickless C, Carl MA, Rubin DC, Davidson NO, Tarr PI, Warner BB, Dantas G, Warner BW. Antibiotic-driven intestinal dysbiosis in pediatric short bowel syndrome is associated with persistently altered microbiome functions and gut-derived bloodstream infections. Gut Microbes 2021; 13:1940792. [PMID: 34264786 PMCID: PMC8284144 DOI: 10.1080/19490976.2021.1940792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
Surgical removal of the intestine, lifesaving in catastrophic gastrointestinal disorders of infancy, can result in a form of intestinal failure known as short bowel syndrome (SBS). Bloodstream infections (BSIs) are a major challenge in pediatric SBS management. BSIs require frequent antibiotic therapy, with ill-defined consequences for the gut microbiome and childhood health. Here, we combine serial stool collection, shotgun metagenomic sequencing, multivariate statistics and genome-resolved strain-tracking in a cohort of 19 patients with surgically-induced SBS to show that antibiotic-driven intestinal dysbiosis in SBS enriches for persistent intestinal colonization with BSI causative pathogens in SBS. Comparing the gut microbiome composition of SBS patients over the first 4 years of life to 19 age-matched term and 18 preterm controls, we find that SBS gut microbiota diversity and composition was persistently altered compared to controls. Commensals including Ruminococcus, Bifidobacterium, Eubacterium, and Clostridium species were depleted in SBS, while pathobionts (Enterococcus) were enriched. Integrating clinical covariates with gut microbiome composition in pediatric SBS, we identified dietary and antibiotic exposures as the main drivers of these alterations. Moreover, antibiotic resistance genes, specifically broad-spectrum efflux pumps, were at a higher abundance in SBS, while putatively beneficial microbiota functions, including amino acid and vitamin biosynthesis, were depleted. Moreover, using strain-tracking we found that the SBS gut microbiome harbors BSI causing pathogens, which can persist intestinally throughout the first years of life. The association between antibiotic-driven gut dysbiosis and enrichment of intestinal pathobionts isolated from BSI suggests that antibiotic treatment may predispose SBS patients to infection. Persistence of pathobionts and depletion of beneficial microbiota and functionalities in SBS highlights the need for microbiota-targeted interventions to prevent infection and facilitate intestinal adaptation.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jocelyn Ou
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Holly J. Engelstad
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria E. Tecos
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - I. Malick Ndao
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla Hall-Moore
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colleen Rouggly-Nickless
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mike A. Carl
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah C. Rubin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I. Tarr
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara B. Warner
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Anti-TNF-α Therapy Exerts Intestinal Anti-inflammatory and Anti-apoptotic Effects After Massive Bowel Resection in a Rat. J Pediatr Gastroenterol Nutr 2021; 72:49-55. [PMID: 32740515 DOI: 10.1097/mpg.0000000000002876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of massive small bowel resection on proinflammatory cytokine intestinal expression and the effect of anti-TNF-α antibodies (ATA) on intestinal inflammation, epithelial cell turnover, and intestinal adaptation after bowel resection in rats. METHODS Male Sprague-Dawley rats were divided into 4 experimental groups: Sham-rats underwent bowel transection; Sham-ATA rats underwent bowel transection and were treated with ATA; SBS-animals underwent 75% bowel resection; and SBS-ATA rats underwent bowel resection and were treated with ATA similarly to Group B. Parameters of intestinal adaptation, enterocyte proliferation, and apoptosis were determined at sacrifice. TNF-α and apoptosis-related gene and protein levels were determined by Illumina's Digital Gene Expression (DGE) analysis, Real Time PCR, Western blotting, and immunohistochemistry. RESULTS From 25 genes related to TNF-α signalling that were investigated, 8 genes in the jejunum and 10 genes in the ileum were found to be up-regulated in resected versus sham animals. SBS rats demonstrated a significant increase in tissue and plasma TNF-α, IL-6 levels, intestinal mucosal TNF-α related gene expression, and microscopic parameters of inflammation. Treatment of resected animals with ATA resulted in a significant decrease in TNF-α levels, intestinal mucosal TNF-α-related gene expression, decreased number of intraepithelial lymphocytes and macrophages, and lower apoptotic index compared with SBS animals. CONCLUSIONS In a rat model of SBS, ATA decreased plasma and tissue TNF-α levels, diminished mucosal inflammation, and inhibited cell apoptosis. Anti-apoptotic effects of ATA appear to be associated with an inhibited extrinsic apoptotic pathway.
Collapse
|
29
|
Resende M, Chaves RF, Garcia RM, Barbosa JA, Marques AS, Rezende LR, Peconick AP, Garbossa CAP, Mesa D, Silva CC, Fascina VB, Dias FTF, Cantarelli VDS. Benzoic acid and essential oils modify the cecum microbiota composition in weaned piglets and improve growth performance in finishing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Channabasappa N, Girouard S, Nguyen V, Piper H. Enteral Nutrition in Pediatric Short-Bowel Syndrome. Nutr Clin Pract 2020; 35:848-854. [PMID: 32815247 DOI: 10.1002/ncp.10565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pediatric intestinal failure (IF) is the critical reduction of intestinal mass or function below the amount necessary for normal growth in children. Short-bowel syndrome (SBS) is the most common cause of IF in infants and children and is caused by intestinal resection. Enteral autonomy and freedom from parenteral nutrition is the mainstay of nutrition management in SBS. The goal is to achieve intestinal adaptation while maintaining proper growth and development. Treatment is variable, and there remains a paucity of evidence to draw well-informed conclusions for the care of individuals in this complex population. Physiological principles of enteral nutrition and practical recommendations for advancing the diet of patients with pediatric SBS are presented. Emerging trends in nutrition management, such as the growing interest in blending diets and the impact on SBS, are reviewed. Finally, the influence of the microbiome on enteral tolerance and small bowel bacterial overgrowth are considered.
Collapse
Affiliation(s)
- Nandini Channabasappa
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sara Girouard
- Department of Clinical Nutrition, Children's Health of Dallas, Dallas, Texas, USA
| | - Van Nguyen
- Department of Gastroenterology, Children's Health of Dallas, Dallas, Texas, USA
| | - Hannah Piper
- Division of Pediatric Surgery, Unversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Maselli KM, Gee K, Isani M, Fode A, Schall KA, Grikscheit TC. Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 319:G212-G226. [PMID: 32597709 DOI: 10.1152/ajpgi.00119.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short bowel syndrome (SBS) is associated with changes in the intestinal microbiome and marked local and systemic inflammation. There is also a late complication of SBS, intestinal failure associated liver disease (IFALD) in which hepatic steatosis progresses to cirrhosis. Most patients with SBS arrive at massive intestinal resection after a contaminating intraabdominal catastrophe and have a history of exposure to broad-spectrum antibiotics. We therefore investigated whether the administration of broad-spectrum antibiotics in conjunction with SBS in zebrafish (ZF) would replicate these systemic effects observed in humans to identify potentially druggable targets to aid in the management of SBS and resulting IFALD. In zebrafish with SBS, broad-spectrum antibiotics altered the microbiome, decreased inflammation, and reduced the development of hepatic steatosis. After two weeks of broad-spectrum antibiotics, these fish exhibited decreased alpha diversity, with less variation in microbial community composition between SBS and sham fish. Additionally, administration of broad-spectrum antibiotics was associated with decreased expression of intestinal toll-like receptor 4 (tlr4), increased expression of the intestinal gene encoding the Farnesoid X receptor (fxr), decreased expression of downstream hepatic cyp7a1, and decreased development of hepatic steatosis. SBS in zebrafish reproducibly results in increased epithelial surface area as occurs in human patients who demonstrate intestinal adaptation, but antibiotic administration in zebrafish with SBS reduced these gains with increased cell death in the intervillus pocket that contains stem/progenitor cells. These alternate states in SBS zebrafish might direct the development of future human therapies.NEW & NOTEWORTHY In a zebrafish model that replicates a common clinical scenario, systemic effects of the administration of broad-spectrum antibiotics in a zebrafish model of SBS identified two alternate states that led to the establishment of fat accumulation in the liver or its absence. Broad-spectrum antibiotics given to zebrafish with SBS over 2 wk altered the intestinal microbiome, decreased intestinal and hepatic inflammation, and decreased hepatic steatosis.
Collapse
Affiliation(s)
- Kathryn M Maselli
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kristin Gee
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Mubina Isani
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Alexa Fode
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kathy A Schall
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California.,Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Abstract
Parenteral nutrition has been widely used in patients whose gastrointestinal tract is anatomically or physiologically unavailable for sufficient food intake. It has been considered lifesaving but is not without adverse effects. It has been proven to cause liver injury through different mechanisms. We present a review of parenteral nutrition-associated liver disease.
Collapse
|
33
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|
34
|
Grillot J, Ait S, Bergoin C, Couronne T, Blond E, Peraldi C, Barnoud D, Chambrier C, Lauverjat M. Vitamin C in Home Parenteral Nutrition: A Need for Monitoring. Nutrients 2020; 12:nu12061667. [PMID: 32503297 PMCID: PMC7352530 DOI: 10.3390/nu12061667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
To date, there are no recommendations about screening plasma vitamin C concentration and adjust its supplementation in patients on long-term home parenteral nutrition (HPN). The aim of this study was to evaluate vitamin C status and determine if a commercial multivitamin preparation (CMVP) containing 125 mg of vitamin C is sufficient in stable patients on HPN. All clinically stable patients receiving HPN or an intravenous fluid infusion at least two times per week for at least 6 months, hospitalized for nutritional assessment, were retrospectively included, for a total of 186 patients. We found that 29% of the patients had vitamin C insufficiency (i.e., <25 µmol/L). In univariate analysis, C-reactive protein (CRP) (p = 0.002) and intake of only 125 mg of vitamin C (p = 0.001) were negatively associated with vitamin C levels, and duration of follow-up in our referral center (p = 0.009) was positively associated with vitamin C levels. In multivariate analysis, only CRP (p = 0.001) and intake of 125 mg of vitamin C (p < 0.0001) were independently associated with low plasma vitamin C concentration. Patients receiving only CMVP with a low plasma vitamin C level significantly received personal compounded HPN (p = 0.008) and presented an inflammatory syndrome (p = 0.002). Vitamin C insufficiency is frequent in individuals undergoing home parenteral nutrition; therefore, there is a need to monitor plasma vitamin C levels, especially in patients on HPN with an inflammatory syndrome and only on CMVP.
Collapse
Affiliation(s)
- Julienne Grillot
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, CEDEX, F-69495 Pierre Benite, France; (S.A.); (C.B.); (D.B.); (C.C.)
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, CEDEX, 69921 Oullins, France;
- Correspondence: ; Tel.: +33-478-86-39-91
| | - Sabrina Ait
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, CEDEX, F-69495 Pierre Benite, France; (S.A.); (C.B.); (D.B.); (C.C.)
| | - Charlotte Bergoin
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, CEDEX, F-69495 Pierre Benite, France; (S.A.); (C.B.); (D.B.); (C.C.)
| | - Thomas Couronne
- Department of Gastroenterology, Hospices Civils de Lyon, CEDEX, F-69495 Pierre Benite, France;
| | - Emilie Blond
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, CEDEX, 69921 Oullins, France;
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, F-69495 Pierre Benite, France
| | - Catherine Peraldi
- Centre Agréé de Nutrition Parentérale à Domicile, Hospices Civils de Lyon, CEDEX, F-69495 Pierre Benite, France; (C.P.); (M.L.)
| | - Didier Barnoud
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, CEDEX, F-69495 Pierre Benite, France; (S.A.); (C.B.); (D.B.); (C.C.)
| | - Cécile Chambrier
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, CEDEX, F-69495 Pierre Benite, France; (S.A.); (C.B.); (D.B.); (C.C.)
- Centre Agréé de Nutrition Parentérale à Domicile, Hospices Civils de Lyon, CEDEX, F-69495 Pierre Benite, France; (C.P.); (M.L.)
| | - Madeleine Lauverjat
- Centre Agréé de Nutrition Parentérale à Domicile, Hospices Civils de Lyon, CEDEX, F-69495 Pierre Benite, France; (C.P.); (M.L.)
| |
Collapse
|
35
|
Abstract
Short bowel syndrome (SBS) is a malabsorptive state that may occur either after surgical bowel resection or as the result of congenital bowel anomalies. SBS can incur significant morbidity and mortality including intestinal failure, cholestasis, sepsis, and death. For patients with SBS, management involves a multidisciplinary approach that begins with neonatology, pediatric surgery, nutritionists, pharmacists, and nurses in the NICU and also includes the transition to an intestinal rehabilitation program. The aim of this review is to provide the neonatologist with an overview of the common causes of neonatal SBS, anticipated nutritional deficiencies, complications associated with SBS, and the surgical and medical management of SBS to assist in counseling affected families.
Collapse
Affiliation(s)
| | - Melissa E Danko
- Pediatric Surgery, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN
| |
Collapse
|
36
|
Severe Intestinal Dysbiosis in Rat Models of Short Bowel Syndrome with Ileocecal Resection. Dig Dis Sci 2020; 65:431-441. [PMID: 31441001 DOI: 10.1007/s10620-019-05802-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Short bowel syndrome (SBS) resulting from extensive intestinal resection is thought to significantly affect gut microbiota. Data are limited on the signatures of the intestinal microbiome in SBS with different anatomical types. AIMS The aim of our investigation was to characterize the composition and function of gut microbiota in SBS with or without ileocecal resection (ICR). METHODS Six-week-old male Sprague-Dawley rats underwent 75% small bowel resection (SBR) with the ileocecal junction intact (SBR group, jejunoileal anastomosis, n = 10) or removed (ICR group, jejunocolic anastomosis, n = 10), or sham surgery (sham group, n = 10). Colonic contents of the rats were collected 28 days after operation, and 16S rRNA gene sequencing was performed on the MiSeq Illumina platform to analyze bacterial composition. RESULTS Overall structures of the gut microbiome differed significantly among the three groups. The bacterial α-diversity of the ICR group was remarkably lower than that of the sham group. ICR rats were enriched with Lactobacillus and opportunistic pathogens from Proteobacteria but depleted of commensal genera belonging to the Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae families. Genera from the Bacteroidales S24-7 group, Porphyromonadaceae, Prevotellaceae, Rikenellaceae and Christensenellaceae were prevalent in SBR rats. Functional pathways of branched-chain and aromatic amino acid biosynthesis, lipopolysaccharide biosynthesis and infectious diseases were abundant in the ICR group, while SBR rats featured pathways of C5 branched dibasic acid metabolism, biotin metabolism and one carbon pool folate. CONCLUSIONS ICR causes dramatically more severe intestinal dysbiosis than SBR only in SBS rat models, resulting in altered functional profiles of the gut microbiome.
Collapse
|
37
|
Christensen S, Olesen A, Kristensen L, Jensen M, Rasmussen H, Køhler M, Schmidt S, Vinter-Jensen L, Holst M. Absence of colon as the predominant risk factor for liver fibrosis in adults requiring home parenteral nutrition. Clin Nutr ESPEN 2020; 35:141-145. [DOI: 10.1016/j.clnesp.2019.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022]
|
38
|
Fujii T, Chiba Y, Nakayama-Imaohji H, Onishi S, Tanaka A, Katami H, Kaji T, Ieiri S, Miki T, Ueno M, Kuwahara T, Shimono R. Partially hydrolyzed guar gum alleviates small intestinal mucosal damage after massive small bowel resection along with changes in the intestinal microbiota. J Pediatr Surg 2019; 54:2514-2519. [PMID: 31515113 DOI: 10.1016/j.jpedsurg.2019.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/24/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE Short bowel syndrome is associated with intestinal mucosal inflammation and microbial dysbiosis, leading to intractable complications. Partially hydrolyzed guar gum (PHGG) has trophic and anti-inflammatory effects on the intestine. We investigated whether PHGG ameliorates small intestinal mucosal damage and alters the intestinal microbiota using a rat small bowel resection (SBR) model. METHODS Sprague Dawley rats were divided into sham operation (Sham), Sham/PHGG, SBR, and SBR/PHGG groups. On day 21, all rats were euthanized. To assess small intestinal mucosal damage, the degeneration rate was morphometrically evaluated and immunohistochemically examined using anti-CD45 antibodies. Analyses of fecal microbiota using 16S rRNA and short-chain fatty acid production were also performed. RESULTS The mucosal degeneration rate was significantly higher in the SBR group than in the Sham or SBR/PHGG groups. The number of CD45-positive cells was significantly higher in the SBR group than in the Sham, Sham/PHGG, or SBR/PHGG groups. The relative abundance of family Lachnospiraceae was significantly higher in the SBR/PHGG group than in the SBR group. CONCLUSIONS PHGG administration alleviated small intestinal mucosal damage which could be associated with modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Molecular Microbiology, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Shun Onishi
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragaoka, Kagoshima City, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragaoka, Kagoshima City, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragaoka, Kagoshima City, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Tomomi Kuwahara
- Department of Molecular Microbiology, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Ikenobe, Mikicho, Kitagun, Kagawa, Japan.
| |
Collapse
|
39
|
Berlin P, Reiner J, Witte M, Wobar J, Lindemann S, Barrantes I, Kreikemeyer B, Bastian M, Schäffler H, Bannert K, Jaster R, Lamprecht G. Nod2 deficiency functionally impairs adaptation to short bowel syndrome via alterations of the epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2019; 317:G727-G738. [PMID: 31509436 DOI: 10.1152/ajpgi.00117.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene mutations are a risk factor for Crohn's disease and also associated with worse outcome in short bowel syndrome (SBS) patients independent of the underlying disease. The aim of this study was to analyze the effect of Nod2 deficiency on barrier function and stool microbiome after extensive ileocecal resection in mice. Male C57BL6/J wild-type (WT) and Nod2-knockout (KO) mice underwent 40% ileocecal resection. Sham control mice received simple transection of the ileum. Clinical outcome was monitored daily. Barrier function was measured with Ussing chambers using FITC-4-kDa-Dextran flux, transmucosal electrical resistance, and dilution potentials. Immunofluorescence of claudin-2 was studied. Composition of the stool microbiome was assessed by 16S rRNA gene sequencing. Resected Nod2-KO mice had impaired clinical outcome compared with resected WT mice. This was accompanied by increased stool water contents and increased plasma aldosterone. Histomorphological adaptation was independent of Nod2. Barrier function studies revealed impaired sodium to chloride permeability and altered claudin-2 localization in the absence of Nod2. Resection induced decreases of bacterial diversity and a shift of bacteriodetes-to-firmicutes ratios. Ileum and cecum resection-induced increase in proteobacteria was absent in Nod2-deficient mice. Verrucomicrobia were temporarily increased in Nod2-KO mice. Nod2 deficiency functionally impairs adaptation to short bowel syndrome via a lesser increase of epithelial sodium pore permeability, altered epithelial barrier function, and the microbiome.NEW & NOTEWORTHYNOD2 gene mutations are associated with the development of severe short bowel syndrome and intestinal failure. The influence of Nod2 mutations on intestinal adaptation in experimental short bowel syndrome has not been studied yet. Here, we provide data that Nod2 deficiency worsens clinical outcome and functional adaptation under SBS conditions in mice, indicating that NOD2 is required for successful adaptation after ileocecal resection.
Collapse
Affiliation(s)
- Peggy Berlin
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Johannes Reiner
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular, and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jakob Wobar
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Sabeth Lindemann
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute for Microbiology, Virology, and Hygiene, University of Medicine Rostock, Rostock, Germany
| | - Manuela Bastian
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
| | - Holger Schäffler
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
40
|
Dowhaniuk JK, Szamosi J, Chorlton S, Owens J, Mileski H, Clause R, Pernica JM, Bowdish DME, Surette MG, Ratcliffe EM. Starving the Gut: A Deficit of Butyrate in the Intestinal Ecosystem of Children With Intestinal Failure. JPEN J Parenter Enteral Nutr 2019; 44:1112-1123. [DOI: 10.1002/jpen.1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/25/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Jake Szamosi
- Department of Medicine and Biochemistry and Biomedical SciencesMcMaster University Hamilton Ontario Canada
| | - Sam Chorlton
- Department of Undergraduate MedicineMcMaster University Hamilton Ontario Canada
| | - Jillian Owens
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | - Heather Mileski
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | - Rose‐Frances Clause
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | | | - Dawn M. E. Bowdish
- Department of Pathology & Molecular MedicineMcMaster University Hamilton Ontario Canada
| | - Michael G. Surette
- Department of Medicine and Biochemistry and Biomedical SciencesMcMaster University Hamilton Ontario Canada
| | | |
Collapse
|
41
|
Peng M, Zheng Q, Liu P, Liang X, Zhang M, Wang Y, Zhao Y. Developments in the study of gastrointestinal microbiome disorders affected by FGF19 in the occurrence and development of colorectal neoplasms. J Cell Physiol 2019; 235:4060-4069. [PMID: 31637718 DOI: 10.1002/jcp.29322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Colorectal neoplasms are a type of malignant digestive system tumor that has become the third-highest morbidity tumor in China and the fourth leading cause of cancer-related death worldwide. The role of the gastrointestinal (GI) microbiome in bile acid metabolism, inflammation, and insulin resistance and its strong correlation with the occurrence and development of colorectal neoplasms have gradually led to it becoming a target area of tumor research. Fibroblast growth factor (FGF) 19 is a hormone that is secreted in mainly the ileum and can regulate bile acid biosynthesis, improve inflammation, and regulate insulin resistance. The relationship of the GI microbiome, FGF19 and its carcinogenic activities in colorectal neoplasms enticed us to search for potential targets and research ideas for the clinical diagnosis and treatment of colorectal neoplasms.
Collapse
Affiliation(s)
- Meichang Peng
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China.,Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qiaowen Zheng
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Peiqi Liu
- Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xinyun Liang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Min Zhang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yan Wang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yi Zhao
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
42
|
Knop V, Neuberger SC, Marienfeld S, Bojunga J, Herrmann E, Poynard T, Zeuzem S, Blumenstein I, Friedrich-Rust M. Intestinal failure-associated liver disease in patients with short bowel syndrome: Evaluation by transient elastography. Nutrition 2019; 63-64:134-140. [DOI: 10.1016/j.nut.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/27/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
|
43
|
Zeichner SL, Mongodin EF, Hittle L, Huang SH, Torres C. The bacterial communities of the small intestine and stool in children with short bowel syndrome. PLoS One 2019; 14:e0215351. [PMID: 31095575 PMCID: PMC6521997 DOI: 10.1371/journal.pone.0215351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Short bowel syndrome (SBS) presents an increasing problem in pediatrics. SBS often results from surgical resection of necrotic bowel following necrotizing enterocolitis or treatment of anatomic gastrointestinal defects. SBS is associated with significant morbidity and mortality, and creates substantial burdens for patients, families, and the health system. Recent reports have demonstrated that the fecal microbiome of children with SBS is significantly different from healthy control and severe intestinal microbial imbalances is associated with poor growth. We hypothesized that children with SBS and adverse clinical features such as PN dependent, shorter bowel length and lack of ileocecal valve would demonstrate more gut dysbiosis compare with the SBS non-PN dependent. An improved understanding of SBS pathogenesis would enhance management and potentially suggest new interventions. We studied microbial communities of SBS and control non-SBS patients from the jejunum, obtained endoscopically or by ostomy aspiration, and stool. We enrolled SBS patients who did and did not require parenteral nutrition (PN), as a surrogate marker for the seriousness of their disease. We studied the microbiota using high-throughput DNA sequencing of 16S rRNA genes and statistical analyses. We found that microbial diversity was significantly greater in jejunal aspirate than in stool samples in SBS patients, unlike non-SBS patients; that SBS patients receiving enteral feeds had greater diversity, and that SBS patients on PN and enteral feeds had lower differences in diversity in jejunal vs. stool samples. We found a trend toward increased diversity in patients with an intact ileocecal valve, and found that certain taxa were more abundant in the certain sample types, and in SBS patients vs. non-SBS patients. SBS patients have lower microbial diversity, especially patients with more severe disease, patients requiring PN, and those lacking an ileocecal valve. SBS patients, particularly those with more complex characteristics, exhibit differences in their intestinal microbiota. Particular individual taxa were over- and under-represented in patients with more unfavorable disease. While diminished diversity and alterations in microbiota composition are likely consequences of SBS, future efforts aimed at increasing microbial diversity and interventions targeting specific microbiota characteristics might constitute a testable approach to ameliorate some clinical SBS clinical consequences.
Collapse
Affiliation(s)
- Steven L. Zeichner
- Departments of Pediatrics and Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (SLZ); (CT)
| | - Emmanuel F. Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences Department of Microbiology & Immunology, Baltimore, Maryland, United States of America
| | - Lauren Hittle
- University of Maryland School of Medicine, Institute for Genome Sciences Department of Microbiology & Immunology, Baltimore, Maryland, United States of America
| | - Szu-Han Huang
- Department of Microbiology, Immunology, and Cancer Biology, George Washington University, District of Columbia, United States of America
| | - Clarivet Torres
- Gastroenterology, Hepatology and Nutrition, Children’s National Medical Center, District of Columbia, United States of America
- * E-mail: (SLZ); (CT)
| |
Collapse
|
44
|
Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci Rep 2018; 8:16655. [PMID: 30413754 PMCID: PMC6226458 DOI: 10.1038/s41598-018-34912-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Though the physical structuring of insoluble dietary fiber sources may strongly impact their processing by microbiota in the colon, relatively little mechanistic information exists to explain how these aspects affect microbial fiber fermentation. Here, we hypothesized that wheat bran fractions varying in size would be fermented differently by gut microbiota, which would lead to size-dependent differences in metabolic fate (as short-chain fatty acids; SCFAs) and community structure. To test this hypothesis, we performed an in vitro fermentation assay in which wheat bran particles from a single source were separated by sieving into five size fractions and inoculated with fecal microbiota from three healthy donors. SCFA production, measured by gas chromatography, uncovered size fraction-dependent relationships between total SCFAs produced as well as the molar ratios of acetate, propionate, and butyrate. 16S rRNA sequencing revealed that these size-dependent metabolic outcomes were accompanied by the development of divergent microbial community structures. We further linked these distinct results to subtle, size-dependent differences in chemical composition. These results suggest that physical context can drive differences in microbiota composition and function, that fiber-microbiota interaction studies should consider size as a variable, and that manipulating the size of insoluble fiber-containing particles might be used to control gut microbiome composition and metabolic output.
Collapse
Affiliation(s)
- Yunus E Tuncil
- Food Engineering Department, Ordu University, Ordu, 52200, Turkey.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Riya D Thakkar
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Arianna D Romero Marcia
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.,Department of Food Science and Technology, Universidad Zamorano, El Zamorano, 11101, Honduras
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
45
|
Mucosal homeostasis is altered in the ileum of gnotobiotic mice. J Surg Res 2018; 231:331-337. [DOI: 10.1016/j.jss.2018.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023]
|
46
|
Engelstad HJ, Barron L, Moen J, Wylie TN, Wylie K, Rubin DC, Davidson N, Cade WT, Warner BB, Warner BW. Remnant Small Bowel Length in Pediatric Short Bowel Syndrome and the Correlation with Intestinal Dysbiosis and Linear Growth. J Am Coll Surg 2018; 227:439-449. [PMID: 30077861 PMCID: PMC6162148 DOI: 10.1016/j.jamcollsurg.2018.07.657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric short bowel syndrome (SBS) is a malabsorptive state placing patients at risk for malnutrition, dehydration, and bacterial overgrowth. These patients are often dependent on parenteral nutrition (PN) while intestinal adaptation is underway. The aim of this study was to characterize the effect of remnant small bowel length on the gut microbiome. Further, we sought to examine the contribution of clinical and nutritional variables to the gut microbiota and anthropometric growth. STUDY DESIGN Clinical data, anthropometrics, and fecal samples were collected from 14 SBS patients and 10 age- and sex-matched controls. Fecal bacterial DNA composition was analyzed using 16s ribosomal RNA gene sequencing. Statistical analysis was completed using the Mann-Whitney or Fisher's exact tests when applicable and linear mixed effect modeling. RESULTS Distinct microbiota changes were found among those with the least remaining small bowel (<35 cm) compared with those with longer remaining bowel and controls. Those with <35 cm small bowel displayed an increased relative abundance of Proteobacteria, while those with longer remaining small bowel had a higher proportion of Firmicutes. Further, patients with less remaining bowel required more PN (p < 0.01), with a tendency to be shorter in height (p = 0.05) and with a higher BMI (p = 0.05). CONCLUSIONS Remnant small bowel length appears to be a predictor of stunting with diminished linear growth, parenteral nutrition dependency, and a greater relative abundance of Proteobacteria in the gut. These findings suggest an integrated adaptive response predicted by remnant intestinal length. Further research is necessary to examine the effects of intestinal dysbiosis on clinical outcomes.
Collapse
Affiliation(s)
- Holly J Engelstad
- Department of Pediatrics, Washington University, School of Medicine, St Louis, MO
| | - Lauren Barron
- Department of Surgery, Washington University, School of Medicine, St Louis, MO
| | - Joseph Moen
- Department of Biostatistics, Washington University, School of Medicine, St Louis, MO
| | - Todd N Wylie
- Department of Pediatrics, Washington University, School of Medicine, St Louis, MO
| | - Kristine Wylie
- Department of Pediatrics, Washington University, School of Medicine, St Louis, MO
| | - Deborah C Rubin
- Department of Medicine, Washington University, School of Medicine, St Louis, MO
| | - Nicholas Davidson
- Department of Medicine, Washington University, School of Medicine, St Louis, MO
| | - W Todd Cade
- Department of Medicine, Washington University, School of Medicine, St Louis, MO; Program in Physical Therapy, Washington University, School of Medicine, St Louis, MO
| | - Barbara B Warner
- Department of Pediatrics, Washington University, School of Medicine, St Louis, MO
| | - Brad W Warner
- Department of Surgery, Washington University, School of Medicine, St Louis, MO.
| |
Collapse
|
47
|
Saltykova IV, Petrov VA, Brindley PJ. Opisthorchiasis and the Microbiome. ADVANCES IN PARASITOLOGY 2018; 102:1-23. [PMID: 30442306 DOI: 10.1016/bs.apar.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver flukes Opisthorchis viverrini, O. felineus, and Clonorchis sinensis are closely related fish-borne trematodes endemic in East Asia, Eurasia, and Siberia. Following ingestion, the parasites locate to the biliary tree, where chronic infection frequently leads to cholangiocarcinoma (CCA). Infection with C. sinensis or O. viverrini is classified as a Group 1 carcinogen by the International Agency for Research on Cancer. Infection with O. felineus may also be carcinogenic. The mechanism(s) by which infection with these liver flukes culminates in CCA remain elusive, although they are likely to be multi-factorial. Not yet well studied is the influence of opisthorchiasis on the microbiome of the host despite reports that helminth parasites are capable of affecting the microbiome, potentially modulating gastrointestinal inflammation in response to the appearance of pathogenic strains of bacteria. Here, we review recent findings related to opisthorchiasis and the microbiome and related issues. In the hamster, a tractable model of infection with liver fluke and of infection-induced biliary morbidity and CCA, infection with O. viverrini perturbs the microbiome of the gastrointestinal tract, including increasing numbers of Lachnospiraceae, Ruminococcaceae, Lactobacillaceae, and others, while decreasing Porphyromonadaceae, Erysipelotrichaceae, and Eubacteriaceae. In addition, a complex microbial community associates with the parasites within the biliary tree, including Helicobacter pylori and related bacteria. Moreover, higher rates of infection with Helicobacter occur in Thailand in persons with opisthorchiasis in a liver fluke infection intensity-dependent manner. Experimental infection of hamsters with Opisthorchis felineus results in increased alpha diversity of the microbiota diversity in the biliary tract. In humans, infection with O. felineus modifies the composition of the biliary microbiome, with increasing numbers of species of Klebsiella, Aggregatibacter, Lactobacillus, Treponema, and others. Several phylotypes of Archaea occurred solely in bile from persons infected with O. felineus.
Collapse
Affiliation(s)
- Irina V Saltykova
- Siberian State Medical University, Central Research Laboratory, Tomsk, Russian Federation
| | - Vyacheslav A Petrov
- Siberian State Medical University, Central Research Laboratory, Tomsk, Russian Federation
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
48
|
Abstract
Children with short bowel syndrome have significant changes to their intestinal microbiota after intestinal loss. The purpose of this article is to understand the potential implications of these changes on gut function, hepatic cholestasis and overall nutrition. Possible therapies to restore the commensal bacterial community in these patients will also be reviewed.
Collapse
Affiliation(s)
- Hannah G Piper
- Division of Pediatric Surgery, University of British Columbia/BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.
| |
Collapse
|
49
|
Abstract
Short bowel syndrome with intestinal failure is a rare disease with a massive impairment in quality of life, requiring a multidisciplinary team approach to medical, surgical, and nutritional therapy. Current pharmacological and surgical therapeutic options are limited; an important cornerstone is enteral and parenteral nutrition. The changed physiology of carbohydrate digestion plays a major role in the adaptation process and can be a target for specific enteral nutrition interventions. An important prognostic factor is the preservation of at least portions of the colon in continuity with small bowel. This strategy has to include an evaluation of the anatomical situation and small bowel absorptive capacity, adaptation processes, and luminal microbiota including its fermentative properties. Starch is probably the most important complex carbohydrate in short bowel syndrome nutrition, because it is absorbed or fermented almost completely. Benefits of supplementation with complex carbohydrates include improved adaptive processes, positive trophic effects on the mucosa and its hormonal response, longer transit time, and possibly a faster time to wean from parenteral nutrition, but supplementation advice needs to weigh carefully the risks and benefits, especially considering bacterial overgrowth, osmotic load, and D-lactate acidosis.
Collapse
|
50
|
Abstract
Short-bowel syndrome represents the most common cause of intestinal failure and occurs when the remaining intestine cannot support fluid and nutrient needs to sustain adequate physiology and development without the use of supplemental parenteral nutrition. After intestinal loss or damage, the remnant bowel undergoes multifactorial compensatory processes, termed adaptation, which are largely driven by intraluminal nutrient exposure. Previous studies have provided insight into the biological processes and mediators after resection, however, there still remains a gap in the knowledge of more comprehensive mechanisms that drive the adaptive responses in these patients. Recent data support the microbiota as a key mediator of gut homeostasis and a potential driver of metabolism and immunomodulation after intestinal loss. In this review, we summarize the emerging ideas related to host-microbiota interactions in the intestinal adaptation processes.
Collapse
Key Words
- Adaptive Responses
- CONV, conventional
- ENS, enteric nervous system
- Enteric Flora
- GF, germ-free
- GI, gastrointestinal
- GLP-2, glucagon-like peptide 2
- IBD, inflammatory bowel disease
- ICR, ileocecal resection
- IF, intestinal failure
- IL, interleukin
- Immune System
- Intestinal Failure
- Microbial Metabolites
- NEC, necrotizing enterocolitis
- PN, parenteral nutrition
- SBR, small bowel resection
- SBS, short-bowel syndrome
- SCFA, short-chain fatty acid
- SFB, segmented filamentous bacteria
- TGR5, Takeda-G-protein-receptor 5
Collapse
|