1
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Elokil A, Li S, Chen W, Farid O, Abouelezz K, Zohair K, Nassar F, El-Komy E, Farag S, Elattrouny M. Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poult Sci 2024; 103:103761. [PMID: 38692088 PMCID: PMC11070915 DOI: 10.1016/j.psj.2024.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Intestinal oxidative stress in broilers is produced by chronic heat stress (HS) and has a negative impact on poultry performance as it induces intestinal inflammation and promotes the invasion of gram-negative bacteria, such as bacterial lipopolysaccharide (LPS). Therefore, dietary inclusion of the antioxidant compound, ethoxyquin (EQ), could improve enteric antioxidant capacity, immune responses, and the epithelial barrier, and maintain the symbiotic gut microbiota community. To investigate the effects of EQ supplementation on alleviating enteric oxidative stress in heat-stressed broilers, 200 one-day-old male Ross 308 broilers were randomly assigned to 4 groups (n = 50 chicks/group; n = 10 chicks/replicate) and fed a basal diet supplemented with 0 (CT), 50 (EQ-50), 100 (EQ-100), and 200 (EQ-200) mg EQ/ kg-1 for 5 wk. The chicks were raised in floor pens inside the broiler farm at a temperature and humidity index (THI) of 29 from d 21 to d 35. Growth performance traits, relative organ index, hepatic antioxidant enzymes, serum immunity, total adenylate, and cytokine activities were improved in the EQ-50 group (linear or quadratic P < 0.05), promoting the relative mRNA expression of cytokine gene-related anti-inflammatory and growth factors. A distinct microbial community colonised the gut microbiota in the EQ-50 group, with a high relative abundance of Lactobacillus, Ligilactobacillus, Limosilactobacillus, Pediococcus, Blautia, and Faecalibacterium compared to the other groups. Dietary supplementation with 50 mg EQ/ kg-1 for 5 wk attenuates enteric oxidative stress and intestinal inflammation by enhancing serum immune and cytokine content (IgG, IL-6, and TGF-β,) and symbiotic microbiota in heat-stressed broilers. EQ promotes the expression of Hsp70, SOD2, GPx 4, IL-6, and IGF-1 cytokine gene-related anti-inflammatory and growth factors in heat-stressed hepatic broilers. Collectively, EQ-50 could be a suitable feed supplement for attenuating enteric oxidative stress and intestinal inflammation, thereby promoting the productivity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdelmotaleb Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12553, Egypt
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Khairy Zohair
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Farid Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Esteftah El-Komy
- Animal Production Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Soha Farag
- Department of animal production, Faculty of Agriculture, Tanta University, Egypt
| | - Mahmoud Elattrouny
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
3
|
Li S, Zhang YX. Sensitive delivery systems and novel encapsulation technologies for live biotherapeutic products and probiotics. Crit Rev Microbiol 2024; 50:371-384. [PMID: 37074732 DOI: 10.1080/1040841x.2023.2202237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Live biotherapeutic product (LBP), a type of biological product, holds promise for the prevention or treatment of metabolic disease and pathogenic infection. Probiotics are live microorganisms that improve the intestinal microbial balance and beneficially affect the health of the host when ingested in sufficient numbers. These biological products possess the advantages of inhibition of pathogens, degradation of toxins, and modulation of immunity. The application of LBP and probiotic delivery systems has attracted great interest to researchers. The initial used technologies for LBP and probiotic encapsulation are traditional capsules and microcapsules. However, the stability and targeted delivery capability require further improved. The specific sensitive materials can greatly improve the delivery efficiency of LBPs and probiotics. The specific sensitive delivery systems show advantages over traditional ones due to their better properties of biocompatibility, biodegradability, innocuousness, and stability. Moreover, some new technologies, including layer-by-layer encapsulation, polyelectrolyte complexation, and electrohydrodynamic technology, show great potential in LBP and probiotic delivery. In this review, novel delivery systems and new technologies of LBPs and probiotics were presented, and the challenges and prospects were explored in specific sensitive materials for LBP and probiotic delivery.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
5
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
7
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
8
|
Li Y, Xu S, Wang L, Shi H, Wang H, Fang Z, Hu Y, Jin J, Du Y, Deng M, Wang L, Zhu Z. Gut microbial genetic variation modulates host lifespan, sleep, and motor performance. THE ISME JOURNAL 2023; 17:1733-1740. [PMID: 37550381 PMCID: PMC10504343 DOI: 10.1038/s41396-023-01478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Recent studies have shown that gut microorganisms can modulate host lifespan and activities, including sleep quality and motor performance. However, the role of gut microbial genetic variation in regulating host phenotypes remains unclear. In this study, we investigated the links between gut microbial genetic variation and host phenotypes using Saccharomyces cerevisiae and Drosophila melanogaster as research models. Our result suggested a novel role for peroxisome-related genes in yeast in regulating host lifespan and activities by modulating gut oxidative stress. Specifically, we found that deficiency in catalase A (CTA1) in yeast reduced both the sleep duration and lifespan of fruit flies significantly. Furthermore, our research also expanded our understanding of the relationship between sleep and longevity. Using a large sample size and excluding individual genetic background differences, we found that lifespan is associated with sleep duration, but not sleep fragmentation or motor performance. Overall, our study provides novel insights into the role of gut microbial genetic variation in regulating host phenotypes and offers potential new avenues for improving health and longevity.
Collapse
Affiliation(s)
- Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Liying Wang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Hao Shi
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Han Wang
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ziyi Fang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yufan Hu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Jin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yujie Du
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengqiong Deng
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- The Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Vitetta L, Bambling M, Strodl E. Probiotics and Commensal Bacteria Metabolites Trigger Epigenetic Changes in the Gut and Influence Beneficial Mood Dispositions. Microorganisms 2023; 11:1334. [PMID: 37317308 DOI: 10.3390/microorganisms11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
The effect of the intestinal microbiome on the gut-brain axis has received considerable attention, strengthening the evidence that intestinal bacteria influence emotions and behavior. The colonic microbiome is important to health and the pattern of composition and concentration varies extensively in complexity from birth to adulthood. That is, host genetics and environmental factors are complicit in shaping the development of the intestinal microbiome to achieve immunological tolerance and metabolic homeostasis from birth. Given that the intestinal microbiome perseveres to maintain gut homeostasis throughout the life cycle, epigenetic actions may determine the effect on the gut-brain axis and the beneficial outcomes on mood. Probiotics are postulated to exhibit a range of positive health benefits including immunomodulating capabilities. Lactobacillus and Bifidobacterium are genera of bacteria found in the intestines and so far, the benefits afforded by ingesting bacteria such as these as probiotics to people with mood disorders have varied in efficacy. Most likely, the efficacy of probiotic bacteria at improving mood has a multifactorial dependency, relying namely on several factors that include the agents used, the dose, the pattern of dosing, the pharmacotherapy used, the characteristics of the host and the underlying luminal microbial environment (e.g., gut dysbiosis). Clarifying the pathways linking probiotics with improvements in mood may help identify the factors that efficacy is dependent upon. Adjunctive therapies with probiotics for mood disorders could, through DNA methylation molecular mechanisms, augment the intestinal microbial active cohort and endow its mammalian host with important and critical co-evolutionary redox signaling metabolic interactions, that are embedded in bacterial genomes, and that in turn can enhance beneficial mood dispositions.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2005, Australia
| | - Matthew Bambling
- Faculty of Medicine and Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Esben Strodl
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4058, Australia
| |
Collapse
|
10
|
Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478:185-196. [PMID: 35764861 DOI: 10.1007/s11010-022-04496-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
The metabolic syndrome is a clustering condition of increased abdominal obesity in concert with hyperglycemia, insulin resistance, hypertension, and dyslipidemia. It confers higher risk of metabolic diseases such as diabetes and ischemic heart disease and has been observed to be associated with high morbidity and mortality. It is a progressive pathological process for diabetes-induced complications and appears to be multifactorial in origin. Several preclinical, clinical, and epidemiological reports have shown a persistent link between the metabolic syndrome and oxidative stress. There is pronounced imbalance between pro-oxidants and anti-oxidants with increased production of oxidizing molecules, depletion of anti-oxidants, and consequently accumulation of protein and lipid oxidation products in the cell in metabolic syndrome. The increased cellular pro-oxidant activity also results in altered molecular pathways, mitochondrial dysfunction, deregulation in cell cycle control, chromosomal aberrations, inflammation, and overall decreased biological activity as well as impairment of the antioxidant systems. Here, the focus of our review article will be on the formation of oxidative species, the interplay between metabolic syndrome and oxidative stress, and its potential implications in therapeutic approaches.
Collapse
|
11
|
Oliaei S, Karimi A, Shamsabadi A, Mirzapour P, Mojdeganlou H, Nazeri Z, Bagheri AB, Nazarian N, Jashaninejad R, Qodrati M, Amiri Fard I, Ghanadinezhad F, Afzalian A, Heydari M, Mehraeen E, SeyedAlinaghi S. Design, development, and evaluation of a registry system for hyperbaric oxygen therapy: A methodological study. Health Sci Rep 2022; 5:e768. [PMID: 35949684 PMCID: PMC9358536 DOI: 10.1002/hsr2.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 06/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Aims Hyperbaric oxygen therapy (HBOT), utilizes 100% oxygen at pressures greater than sea-level atmospheric pressure, for the treatment of conditions in which the tissues starve for oxygen. The Undersea and Hyperbaric Medical Society (UHMS) has granted HBOT approval for the treatment of various conditions. On the other hand, applying informatics registry systems can improve care delivery, ameliorate outcomes, and reduce the costs and medical errors for the patients receiving HBOT treatment. Therefore, we aimed to design, develop, and evaluate a registry system for patients undergoing HBOT. Methods In the first phase, the conceptual and logical models were designed after conducting symposiums with experts and having other experts review the models. In the second phase, the system was developed on the web using ASP.NET and C# programming languages frameworks. The last phase involved Nielsen's heuristic evaluation method for the system's usability. Five experts evaluated the system, including three health information management specialists and two medical informatics specialists. Results The hyperbaric patient information registry system (HPIRS) interacts with three types of users-a specialist physician, a nurse, and a system administrator. A scenario for each predefined activity was designed, and all the information was stored in the SQL servers. The five experts independently found 152 issues, of which 84 were duplicates. The 68 distinct issues of the system were then resolved. Conclusions The design and development of such registry systems can make data available and stored carefully to improve clinical care and medical research and decrease costs and errors. These registries can provide the healthcare systems with E-health applications, improved data management, more secure data transfer, and support for statistical reporting. The implemented heuristic evaluation method can also provide a low-cost and readily available system to fix the issues of the designed systems.
Collapse
Affiliation(s)
- Shahram Oliaei
- HBOT Research Center, Golestan Hospital, Islamic Republic of IranNavy and AJA Medical UniversityTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Ahmadreza Shamsabadi
- Department of Health Information TechnologyEsfarayen Faculty of Medical SciencesEsfarayenIran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | | | - Zahra Nazeri
- Department of Health Information ManagementTehran University of Medical SciencesTehranIran
| | - Amir B. Bagheri
- Michael E. DeBakey Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Interdisciplinary Consortium on Advanced Motion PerformanceBaylor College of MedicineHoustonTexasUSA
- Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Reyhaneh Jashaninejad
- Department of Epidemiology, School of Public HealthHamadan University of Medical SciencesHamadanIran
| | - Mohammad Qodrati
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Iman Amiri Fard
- Department of Community Health Nursing and Geriatric Nursing, School of Nursing and MidwiferyIran University of Medical SciencesTehranIran
| | | | - Arian Afzalian
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Heydari
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Esmaeil Mehraeen
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Network-Based Redox Communication Between Abiotic Interactive Materials. iScience 2022; 25:104548. [PMID: 35747390 PMCID: PMC9209720 DOI: 10.1016/j.isci.2022.104548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Recent observations that abiotic materials can engage in redox-based interactive communication motivates the search for new redox-active materials. Here we fabricated a hydrogel from a four-armed thiolated polyethylene glycol (PEG-SH) and the bacterial metabolite, pyocyanin (PYO). We show that: (i) the PYO-PEG hydrogel is reversibly redox-active; (ii) the molecular-switching and directed electron flow within this PYO-PEG hydrogel requires both a thermodynamic driving force (i.e., potential difference) and diffusible electron carriers that serve as nodes in a redox network; (iii) this redox-switching and electron flow is controlled by the redox network’s topology; and (iv) the ability of the PYO-PEG hydrogel to “transmit” electrons to a second insoluble redox-active material (i.e., a catechol-PEG hydrogel) is context-dependent (i.e., dependent on thermodynamic driving forces and appropriate redox shuttles). These studies provide an experimental demonstration of important features of redox-communication and also suggest technological opportunities for the fabrication of interactive materials. Thiol-pyocyanin reaction was used to create a redox-active and interactive hydrogel The electron flow and molecular switching requires diffusible mediators These mediators and pyocyanin hydrogel serve as “nodes” in a redox reaction network The networked flow of electrons between two separated hydrogels is reported
Collapse
|
13
|
Bauer KC, Littlejohn PT, Ayala V, Creus-Cuadros A, Finlay BB. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology 2022; 162:1858-1875.e2. [PMID: 35248539 DOI: 10.1053/j.gastro.2022.01.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition affecting one quarter of the global population. Although primarily linked to obesity and metabolic syndrome, undernutrition and the altered (dysbiotic) gut microbiome influence NAFLD progression. Both undernutrition and NAFLD prevalence are predicted to considerably increase, but how the undernourished gut microbiome contributes to hepatic pathophysiology remains far less studied. Here, we present undernutrition conditions with fatty liver features, including kwashiorkor and micronutrient deficiency. We then review the gut microbiota-liver axis, highlighting key pathways linked to NAFLD progression within both overnutrition and undernutrition. To conclude, we identify challenges and collaborative possibilities of emerging multiomic research addressing the pathology and treatment of undernourished NAFLD.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Thoracic and Gastrointestinal Malignancies Branch, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Paula T Littlejohn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain; Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
| | - Anna Creus-Cuadros
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Nagase N, Ikeda Y, Tsuji A, Kitagishi Y, Matsuda S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 2022; 13:150-160. [PMID: 35432750 PMCID: PMC8984564 DOI: 10.4239/wjd.v13.i3.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are insufficient. The number of patients with DN has been increasing in Asian countries because of westernization of dietary lifestyle, which may be associated with the following changes in gut microbiota. Alterations in the gut microbiota composition can lead to an imbalanced gastrointestinal environment that promotes abnormal production of metabolites and/or inflammatory status. Functional microenvironments of the gut could be changed in the different stages of DN. In particular, altered levels of short chain fatty acids, D-amino acids, and reactive oxygen species biosynthesis in the gut have been shown to be relevant to the pathogenesis of the DN. So far, evidence suggests that the gut microbiota may play a key role in determining networks in the development of DN. Interventions directing the gut microbiota deserve further investigation as a new protective therapy in DN. In this review, we discuss the potential roles of the gut microbiota and future perspectives in the protection and/or treatment of kidneys.
Collapse
Affiliation(s)
- Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
15
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
16
|
Singh V, Ahlawat S, Mohan H, Gill SS, Sharma KK. Balancing reactive oxygen species generation by rebooting gut microbiota. J Appl Microbiol 2022; 132:4112-4129. [PMID: 35199405 DOI: 10.1111/jam.15504] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS; free radical form O2 •‾ , superoxide radical; OH• , hydroxyl radical; ROO• , peroxyl; RO• , alkoxyl and non-radical form 1 O2 , singlet oxygen; H2 O2 , hydrogen peroxide) are inevitable companions of aerobic life with crucial role in gut health. But, overwhelming production of ROS can cause serious damage to biomolecules. In this review, we have discussed several sources of ROS production that can be beneficial or dangerous to the human gut. Microorganisms, organelles and enzymes play crucial role in ROS generation, where, NOX1 is the main intestinal enzyme, which produce ROS in the intestine epithelial cells. Previous studies have reported that probiotics play significant role in gut homeostasis by checking the ROS generation, maintaining the antioxidant level, immune system and barrier protection. With current knowledge, we have critically analyzed the available literature and presented the outcome in the form of bubble maps to suggest the probiotics that help in controlling the ROS-specific intestinal diseases, such as inflammatory bowel disease (IBD) and colon cancer. Finally, it has been concluded that rebooting of the gut microbiota with probiotics, postbiotics or fecal microbiota transplantation (FMT) can have crucial implications in the structuring of gut communities for the personalized management of the gastrointestinal (GI) diseases.
Collapse
Affiliation(s)
- Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.,Presently at SGT University, Badli Road Chandu, Budhera, Gurugr, Gurgaon, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sarvajeet Singh Gill
- Department of Plant Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
18
|
Altered microbiota-host metabolic cross talk preceding neutropenic fever in patients with acute leukemia. Blood Adv 2021; 5:3937-3950. [PMID: 34478486 PMCID: PMC8945620 DOI: 10.1182/bloodadvances.2021004973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
In 2 cohorts of patients with acute leukemia, Akkermansia expansion in the gut predicted a higher risk for neutropenic fever. Metabolomics analysis suggested oxidative stress as the mediating pathway, thus offering potential targets for personalized prophylaxis.
Despite antibiotic prophylaxis, most patients with acute leukemia receiving mucotoxic chemotherapy develop neutropenic fever (NF), many cases of which remain without a documented etiology. Antibiotics disrupt the gut microbiota, with adverse clinical consequences, such as Clostridioides difficile infection. A better understanding of NF pathogenesis could inform the development of novel therapeutics without deleterious effects on the microbiota. We hypothesized that metabolites absorbed from the gut to the bloodstream modulate pyrogenic and inflammatory pathways. Longitudinal profiling of the gut microbiota in 2 cohorts of patients with acute leukemia showed that Akkermansia expansion in the gut was associated with an increased risk for NF. As a prototype mucolytic genus, Akkermansia may influence the absorption of luminal metabolites; thus, its association with NF supported our metabolomics hypothesis. Longitudinal profiling of the serum metabolome identified a signature associated with gut Akkermansia and 1 with NF. Importantly, these 2 signatures overlapped in metabolites in the γ-glutamyl cycle, suggesting oxidative stress as a mediator involved in Akkermansia-related NF. In addition, the level of gut microbial–derived indole compounds increased after Akkermansia expansion and decreased before NF, suggesting their role in mediating the anti-inflammatory effects of Akkermansia, as seen predominantly in healthy individuals. These results suggest that Akkermansia regulates microbiota-host metabolic cross talk by modulating the mucosal interface. The clinical context, including factors influencing microbiota composition, determines the type of metabolites absorbed through the gut barrier and their net effect on the host. Our findings identify novel aspects of NF pathogenesis that could be targets for precision therapeutics. This trial was registered at www.clinicaltrials.gov as #NCT03316456.
Collapse
|
19
|
Luo L, Qing L, Yao C, Liu D, Li Y, Li T, Feng P. Efficacy and safety of hyperbaric oxygen therapy for moderate-to-severe ulcerative colitis: a protocol for a systematic review and meta-analysis. BMJ Open 2021; 11:e047543. [PMID: 34183344 PMCID: PMC8240565 DOI: 10.1136/bmjopen-2020-047543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a type of inflammatory bowel disease, and 62% of patients with UC felt that it is difficult for them to live a normal life. Furthermore, some researches have shown that about 15% of patients with UC undergo at least one extreme clinical course in their lifetime, and 10%-30% of patients with UC oblige colectomy. Although many investigations have demonstrated that HBO2 has a beneficial impact on UC treatment, a systematic review and meta-analysis are unavailable. Therefore, a meta-analysis is essential to assess the efficacy and safety of HBO2 in treating UC. METHODS AND ANALYSIS A systematic search plan will be performed in the following seven databases with a restriction of time from inception to September 2020 to filter the eligible studies: PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, Chinese Scientific Journal Database (VIP) and Chinese Biomedical Database WanFang. Other related resources will be also searched. Two independent reviewers will choose eligible researches and extract data. The risk of bias will be evaluated based on Cochrane Collaboration's Risk of Bias tool and Newcastle-Ottawa Scale. Eventually, a systematic review and meta-analysis will be performed via the Review Manager V.5.3 statistical software and STATA V.14.0 software. ETHICS AND DISSEMINATION This study will not involve the individual patient and any ethical problems since its outcomes are based on published data. Therefore, no ethical review and approval are required. We plan to publish the study in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020210244.
Collapse
Affiliation(s)
- Lihong Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lei Qing
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chengjiao Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dongying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yilin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tinglin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Peimin Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Lee NK, Paik HD. Prophylactic effects of probiotics on respiratory viruses including COVID-19: a review. Food Sci Biotechnol 2021; 30:773-781. [PMID: 34054314 PMCID: PMC8142068 DOI: 10.1007/s10068-021-00913-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is mainly transmitted through respiratory droplets. The symptoms include dry cough, fever, and fatigue; however, high propagation, mutation, and fatality rates have been reported for SARS-CoV-2. This review investigates the structure of SARS-CoV-2, antiviral mechanisms, preventive strategies, and remedies against it. Effective vaccines have been developed by Pfizer (95% effective), AstraZeneca (90% effective), Moderna (94.5% effective) vaccine, among others. However, herd immunity is also required. Probiotics play a major role in the gut health, and some are known to have therapeutic potential against viral infections. Their modes of antiviral activities include direct interaction with targeted viruses, production of antiviral metabolites, and immunomodulatory effects on the host. Hence, probiotics can be a useful prophylactic against COVID-19, and more studies are required on the effects of probiotics against other viral infections that may occur in future.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
21
|
Mach N, Moroldo M, Rau A, Lecardonnel J, Le Moyec L, Robert C, Barrey E. Understanding the Holobiont: Crosstalk Between Gut Microbiota and Mitochondria During Long Exercise in Horse. Front Mol Biosci 2021; 8:656204. [PMID: 33898524 PMCID: PMC8063112 DOI: 10.3389/fmolb.2021.656204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Endurance exercise has a dramatic impact on the functionality of mitochondria and on the composition of the intestinal microbiome, but the mechanisms regulating the crosstalk between these two components are still largely unknown. Here, we sampled 20 elite horses before and after an endurance race and used blood transcriptome, blood metabolome and fecal microbiome to describe the gut-mitochondria crosstalk. A subset of mitochondria-related differentially expressed genes involved in pathways such as energy metabolism, oxidative stress and inflammation was discovered and then shown to be associated with butyrate-producing bacteria of the Lachnospiraceae family, especially Eubacterium. The mechanisms involved were not fully understood, but through the action of their metabolites likely acted on PPARγ, the FRX-CREB axis and their downstream targets to delay the onset of hypoglycemia, inflammation and extend running time. Our results also suggested that circulating free fatty acids may act not merely as fuel but drive mitochondrial inflammatory responses triggered by the translocation of gut bacterial polysaccharides following endurance. Targeting the gut-mitochondria axis therefore appears to be a potential strategy to enhance athletic performance.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France ABI UMR 1313, INRAE, Université Paris-Saclay, AgroParisTech, Jouy-en-Josas, France.,MCAM UMR7245, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
22
|
Walter L, Canup B, Pujada A, Bui TA, Arbasi B, Laroui H, Merlin D, Garg P. Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis 2020; 11:767. [PMID: 32943603 PMCID: PMC7498454 DOI: 10.1038/s41419-020-02959-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Colitis-associated cancer (CAC) is a subtype of colon cancer that is driven by chronic inflammation and is prevalent in chronic ulcerative colitis patients. The development of CAC is associated with the inflammation-dysplasia-carcinoma pathway which is significantly different than adenoma-carcinoma pathway of sporadic colon cancer (CRC). Matrix Metalloproteinase 9 (MMP9) is a zinc-dependent endopeptidase against extracellular matrix (ECM) proteins expressed in the gastrointestinal tract during inflammation. We have previously shown that MMP9 plays a tumor suppressor role in CAC via “MMP9-Notch1-ARF-p53 axis” pathway. The aim of this study is to determine the role of MMP9 in maintaining genomic stability in CAC. Homozygous transgenic mice with constitutive-expression of MMP9 in the colonic epithelium (TgM9) with their wild-type littermates (WT) and stably transfected HCT116 cells with/without MMP9 were used for in vivo and in vitro experiments, respectively. As ‘proof of concept’ model, nanoparticles (NPs) loaded with MMP9 siRNA were used to examine the effect of MMP9 silencing in the colonic epithelium. In CAC, colonic epithelium of TgM9 mice exhibited lower amounts of reactive oxygen species (ROS), less DNA damage, and increased expression of mismatch repair genes compared to WTs. Our study showed that MMP9 expression correlates with the reduced ROS levels, decreased DNA damage, and upregulated mismatch repair pathway. This suggests that MMP9 expression is a natural biological way to suppress CAC by limiting ROS accumulation and DNA damage in the colon. Therefore, MMP9 inhibition could be deleterious for CAC patient.
Collapse
Affiliation(s)
- Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Brandon Canup
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Tien Anh Bui
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Behafarin Arbasi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Hamed Laroui
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
| |
Collapse
|
23
|
Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM. Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes. Antioxidants (Basel) 2020; 9:antiox9090848. [PMID: 32927712 PMCID: PMC7554719 DOI: 10.3390/antiox9090848] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and metabolism. Moreover, microbiota metabolites seem to interfere with mitochondrial oxidative/nitrosative stress and autophagosome formation, thus regulating the activation of the inflammasome and the production of inflammatory cytokines, key players in chronic metabolic disorders. This review focuses on the association between intestinal microbiota and mitochondrial function and examines the mechanisms that may be the key to their use as potential therapeutic strategies in obesity and T2D management.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | | | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| | - Víctor Manuel Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| |
Collapse
|
24
|
Khan MF, Wang H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front Immunol 2020; 10:3094. [PMID: 31998327 PMCID: PMC6970196 DOI: 10.3389/fimmu.2019.03094] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Environmental agents have been gaining more attention in recent years for their role in the pathogenesis of autoimmune diseases (ADs). Increasing evidence has linked environmental exposures, including trichloroethene (TCE), silica, mercury, pristane, pesticides, and smoking to higher risk for ADs. However, potential mechanisms by which these environmental agents contribute to the disease pathogenesis remains largely unknown. Dysbiosis of the gut microbiome is another important environmental factor that has been linked to the onset of different ADs. Altered microbiota composition is associated with impaired intestinal barrier function and dysregulation of mucosal immune system, but it is unclear if gut dysbiosis is a causal factor or an outcome of ADs. In this review article, we first describe the recent epidemiological and mechanistic evidences linking environmental/occupational exposures with various ADs (especially SLE). Secondly, we discuss how changes in the gut microbiome composition (dysbiosis) could contribute to the disease pathogenesis, especially in response to exposure to environmental chemicals.
Collapse
Affiliation(s)
- M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | | |
Collapse
|
25
|
Lactobacillus rhamnosus GG-induced Expression of Leptin in the Intestine Orchestrates Epithelial Cell Proliferation. Cell Mol Gastroenterol Hepatol 2019; 9:627-639. [PMID: 31874255 PMCID: PMC7160578 DOI: 10.1016/j.jcmgh.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Identifying the functional elements that mediate efficient gut epithelial growth and homeostasis is essential for understanding intestinal health and disease. Many of these processes involve the Lactobacillus-induced generation of reactive oxygen species by NADPH oxidase (Nox1). However, the downstream signaling pathways that respond to Nox1-generated reactive oxygen species and mediate these events have not been described. METHODS Wild-type and knockout mice were fed Lactobacillus rhamnosus GG and the transcriptional and cell signaling pathway responses in the colon measured. Corroboration of data generated in mice was done using in organoid tissue culture and in vivo gut injury models. RESULTS Ingestion of L rhamnosus GG induces elevated levels of leptin in the gut epithelia, which as well as functioning in the context of metabolism, has pleiotropic activity as a chemokine that triggers cell proliferation. Consistently, using gut epithelial-specific knockout mice, we show that L rhamnosus GG-induced elevated levels of leptin is dependent on a functional Nox1 protein in the colonic epithelium, and that L rhamnosus GG-induced cell proliferation is dependent on Nox1, leptin, and leptin receptor. We also show that L rhamnosus GG induces the JAK-STAT signaling pathway in the gut in a Nox1, leptin, and leptin receptor-dependent manner. CONCLUSIONS These results demonstrate a novel role for leptin in the response to colonization by lactobacilli, where leptin functions in the transduction of signals from symbiotic bacteria to subepithelial compartments, where it modulates intestinal growth and homeostasis.
Collapse
|
26
|
Cai C, Zhang Z, Morales M, Wang Y, Khafipour E, Friel J. Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: A prospective cohort study. Free Radic Biol Med 2019; 142:146-154. [PMID: 30851363 DOI: 10.1016/j.freeradbiomed.2019.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Knowledge about the development of the preterm infant gut microbiota is emerging and is critical to their health. Very-low-birth-weight (VLBW; birth weight, <1500 g) infants usually have special dietary needs while showing increased oxidative stress related to intensive care. This prospective cohort study assessed the effect of feeding practice on gut microbiome development and oxidative stress in preterm infants. Fecal samples were collected from each infant in the early (1-2 weeks of enteral feeding) and late (2-4 weeks of enteral feeding) feeding stages. We performed high-throughput sequencing of V3-V4 regions of the 16S rRNA gene to analyze the fecal microbiome composition of 20 VLBW preterm infants and to determine the association of gut bacterial composition with feeding practice using an oxidative stress marker (urinary F2-isoprostane). Our results showed that feeding practices in the late stage significantly influenced the gut microbiome composition and oxidative stress in preterm infants. Preterm infants fed human milk + human milk fortifier and only formula diets showed a significant increase in F2-isoprostane levels (P < 0.05) compared with those fed human milk + formula diet. The gut microbiome of the infants fed the human milk + Human milk fortifier diet showed the lower relative abundance of Veillonella (P < 0.05) compared with that of the infants fed the human milk + formula diet. The gut microbiome of the infants fed the only formula diet showed the lowest microbial diversity and the highest relative abundance of Terrisporobacter (P < 0.05) compared with the gut microbiome of the infants fed the other diets. Correlation network analysis showed that urinary F2-isoprostane level was positively correlated with Terrisporobacter and Enterobacteriaceae abundance (P < 0.05) in the preterm infants. In conclusion, these data suggest that feeding practice affects the bacterial diversity and composition in the gut microbiome and is associated with oxidative stress in VLBW preterm infants.
Collapse
Affiliation(s)
- Chenxi Cai
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Zhengxiao Zhang
- Department of Animal Science, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Maria Morales
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Yanan Wang
- Department of Animal Science, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - James Friel
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, 208A Human Ecology Building, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
27
|
Yin X, Heeney DD, Srisengfa YT, Chen SY, Slupsky CM, Marco ML. Sucrose metabolism alters Lactobacillus plantarum survival and interactions with the microbiota in the digestive tract. FEMS Microbiol Ecol 2019; 94:4996782. [PMID: 29771345 DOI: 10.1093/femsec/fiy084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated whether sucrose metabolism by probiotic Lactobacillus plantarum influences the intestinal survival and microbial responses to this organism when administered to mice fed a sucrose-rich, Western diet. A L. plantarum mutant unable to metabolize sucrose was constructed by deleting scrB, coding for beta-fructofuranosidase, in a rifampicin-resistant strain of L. plantarum NCIMB8826. The ScrB deficient mutant survived in 8-fold higher numbers compared to the wild-type strain when measured 24 h after administration on two consecutive days. According to 16S rRNA marker gene sequencing, proportions of Faecalibacterium and Streptococcus were elevated in mice fed the L. plantarum ΔscrB mutant. Metagenome predictions also indicated those mice contained a higher abundance of lactate dehydrogenases. This was further supported by a trend in elevated fecal lactate concentrations among mice fed the ΔscrB mutant. L. plantarum also caused other changes to the fecal metabolomes including higher concentrations of glycerol in mice fed the ΔscrB mutant and increased uracil, acetate and propionate levels among mice fed the wild-type strain. Taken together, these results suggest that sucrose metabolism alters the properties of L. plantarum in the digestive tract and that probiotics can differentially influence intestinal metabolomes via their carbohydrate consumption capabilities.
Collapse
Affiliation(s)
- Xiaochen Yin
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dustin D Heeney
- Department of Food Science and Technology, University of California, Davis, USA
| | - Yanin Tab Srisengfa
- Department of Food Science and Technology, University of California, Davis, USA
| | - Shin-Yu Chen
- Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA.,Department of Nutrition, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA
| |
Collapse
|
28
|
Komanduri M, Gondalia S, Scholey A, Stough C. The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology (Berl) 2019; 236:1559-1571. [PMID: 31055629 DOI: 10.1007/s00213-019-05231-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
Gut microbiota plays an intrinsic role in communication between the gut and the brain and is capable of influencing the host brain by producing neurotransmitters and neurotrophins, the modulation of inflammatory processes amongst other key mechanisms. Increased age is also associated with changes in these key biological processes and impairments in a range of cognitive processes. We hypothesise several mechanisms in which gut microbiota may modulate changes in cognitive function with age. In this review, we discuss issues related to the measurement of cognition in the elderly and in particular outline a standardised model of cognition that could be utilised to better understand cognitive outcomes in future studies examining the relationship between gut microbiota and cognition in the elderly. We then review biological processes such as oxidative stress and inflammation which are related to cognitive changes with age and which are also influenced by our gut microbiota. Finally, we outline other potential mechanisms by which the gut microbiota may influence cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Darby TM, Owens JA, Saeedi BJ, Luo L, Matthews JD, Robinson BS, Naudin CR, Jones RM. Lactococcus Lactis Subsp. cremoris Is an Efficacious Beneficial Bacterium that Limits Tissue Injury in the Intestine. iScience 2019; 12:356-367. [PMID: 30739017 PMCID: PMC6369221 DOI: 10.1016/j.isci.2019.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
The use of beneficial bacteria to promote health is widely practiced. However, experimental evidence corroborating the efficacy of bacteria promoted with such claims remains limited. We address this gap by identifying a beneficial bacterium that protects against tissue damage and injury-induced inflammation in the gut. We first employed the Drosophila animal model to screen for the capacity of candidate beneficial bacteria to protect the fly gut against injury. From this screen, we identified Lactococcus lactis subsp. cremoris as a bacterium that elicited potent cytoprotective activity. Then, in a murine model, we demonstrated that the same strain confers powerful cytoprotective influences against radiological damage, as well as anti-inflammatory activity in a gut colitis model. In summary, we demonstrate the positive salutary effects of a beneficial bacterium, namely, L. lactis subsp. cremoris on intestinal tissue and propose the use of this strain as a therapeutic to promote intestinal health. Drosophila can be used as an animal model to screen for beneficial bacteria Lactococcus lactis subsp. cremoris elicited potent cytoprotection in the fly gut L. lactis cremoris elicited anti-inflammatory activity in a mouse colitis model L. lactis cremoris activated the cytoprotective Nrf2 pathway in flies and mice
Collapse
Affiliation(s)
- Trevor M Darby
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Joshua A Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Liping Luo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Crystal R Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Rheinallt M Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA.
| |
Collapse
|
30
|
Proteomic analysis of microbial induced redox-dependent intestinal signaling. Redox Biol 2018; 20:526-532. [PMID: 30508697 PMCID: PMC6275846 DOI: 10.1016/j.redox.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Intestinal homeostasis is regulated in-part by reactive oxygen species (ROS) that are generated in the colonic mucosa following contact with certain lactobacilli. Mechanistically, ROS can modulate protein function through the oxidation of cysteine residues within proteins. Recent advances in cysteine labeling by the Isotope Coded Affinity Tags (ICATs) technique has facilitated the identification of cysteine thiol modifications in response to stimuli. Here, we used ICATs to map the redox protein network oxidized upon initial contact of the colonic mucosa with Lactobacillus rhamnosus GG (LGG). We detected significant LGG-specific redox changes in over 450 proteins, many of which are implicated to function in cellular processes such as endosomal trafficking, epithelial cell junctions, barrier integrity, and cytoskeleton maintenance and formation. We particularly noted the LGG-specific oxidation of Rac1, which is a pleiotropic regulator of many cellular processes. Together, these data reveal new insights into lactobacilli-induced and redox-dependent networks involved in intestinal homeostasis.
Collapse
|
31
|
Dulai PS, Buckey JC, Raffals LE, Swoger JM, Claus PL, OʼToole K, Ptak JA, Gleeson MW, Widjaja CE, Chang JT, Adler JM, Patel N, Skinner LA, Haren SP, Goldby-Reffner K, Thompson KD, Siegel CA. Hyperbaric oxygen therapy is well tolerated and effective for ulcerative colitis patients hospitalized for moderate-severe flares: a phase 2A pilot multi-center, randomized, double-blind, sham-controlled trial. Am J Gastroenterol 2018; 113:1516-1523. [PMID: 29453383 DOI: 10.1038/s41395-018-0005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) markedly increases tissue oxygen delivery. Case series suggest it may have a potential therapeutic benefit in ulcerative colitis (UC). We investigated the therapeutic potential of HBOT as an adjunct to steroids for UC flares requiring hospitalization. METHODS The study was terminated early due to poor recruitment with 18 of the planned 70 patients enrolled. UC patients hospitalized for moderate-severe flares (Mayo score ≥6, endoscopic sub-score ≥2) were block randomized to steroids + daily HBOT (n = 10) or steroids + daily sham hyperbaric air (n = 8). Patients were blinded to study assignment, and assessments were performed by a blinded gastroenterologist. Primary outcome was the clinical remission rate at study day 5 (partial Mayo score ≤2 with no sub-score >1). Key secondary outcomes were: clinical response (reduction in partial Mayo score ≥2, rectal bleeding sub-score of 0-1) and progression to second-line therapy (colectomy or biologic therapy) during the hospitalization. RESULTS A significantly higher proportion of HBOT-treated patients achieved clinical remission at study day 5 and 10 (50 vs. 0%, p = 0.04). HBOT-treated patients less often required progression to second-line therapy during the hospitalization (10 vs. 63%, p = 0.04). The proportion requiring in-hospital colectomy specifically as second-line therapy for medically refractory UC was lower in the HBOT group compared to sham (0 vs. 38%, p = 0.07). There were no serious adverse events. CONCLUSION In this small, proof-of-concept, phase 2A trial, the use of HBOT as an adjunctive therapy to steroids for UC patients hospitalized for moderate-severe flares resulted in higher rates of clinical remission, and a reduction in rates of progression to second-line therapy during the hospitalization. Larger well-powered trials are needed, however, to provided definitive evidence of therapeutic benefit.
Collapse
Affiliation(s)
- Parambir S Dulai
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jay C Buckey
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laura E Raffals
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jason M Swoger
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul L Claus
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin OʼToole
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Judy A Ptak
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael W Gleeson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christella E Widjaja
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John T Chang
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffery M Adler
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nihal Patel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laurie A Skinner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shawn P Haren
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly Goldby-Reffner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly D Thompson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Corey A Siegel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Moll F, Walter M, Rezende F, Helfinger V, Vasconez E, De Oliveira T, Greten FR, Olesch C, Weigert A, Radeke HH, Schröder K. NoxO1 Controls Proliferation of Colon Epithelial Cells. Front Immunol 2018; 9:973. [PMID: 29867954 PMCID: PMC5951971 DOI: 10.3389/fimmu.2018.00973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Aim Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. Results NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. Conclusion NoxO1 affects colon epithelium homeostasis and prevents inflammation.
Collapse
Affiliation(s)
- Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Estefania Vasconez
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Tiago De Oliveira
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | | | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| |
Collapse
|
33
|
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9:688-704. [DOI: 10.1039/c7fo01820g] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diet has shaped microbiota profiles through human evolution.
Collapse
Affiliation(s)
- T. Requena
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - M. C. Martínez-Cuesta
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - C. Peláez
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| |
Collapse
|
34
|
Vaughn AR, Notay M, Clark AK, Sivamani RK. Skin-gut axis: The relationship between intestinal bacteria and skin health. World J Dermatol 2017; 6:52-58. [DOI: 10.5314/wjd.v6.i4.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is an emerging area of interest in medicine. Imbalances in the gut microbiome have been linked to a number of disease states such as obesity and type 2 diabetes. The relationship between normally residing intestinal bacteria (the gut microbiota) and their potential role in the pathogenesis of skin diseases is an area of research for which we are only beginning to understand. Small studies have demonstrated underlying changes in the gut microbiome of patients with certain dermatological diseases. Interestingly, studies suggest that probiotics may have a role in the treatment of atopic dermatitis. However, the concept of the “skin-gut axis” is a newly emerging and important avenue of investigation, still lacking in pathobiological explanations. This review will introduce and describe the intestinal microbiome as it relates to skin health in a complex communication network between the immune system, endocrine system, metabolic system, and nervous system.
Collapse
Affiliation(s)
- Alexandra R Vaughn
- Drexel University College of Medicine, Philadelphia, PA 19129, United States
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Manisha Notay
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Ashley K Clark
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Raja K Sivamani
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| |
Collapse
|
35
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
36
|
MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget 2017; 8:71456-71470. [PMID: 29069719 PMCID: PMC5641062 DOI: 10.18632/oncotarget.16886] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
The mucus layer in the intestine affects several aspects of intestinal biology, encompassing physical, chemical protection, immunomodulation and growth, thus contributing to homeostasis. Mice with genetic inactivation of the Muc2 gene, encoding the MUC2 mucin, the major protein component of mucus, exhibit altered intestinal homeostasis, which is strictly dependent on the habitat, likely due to differing complements of intestinal microbes. Our previous work established that Muc2 deficiency was linked to low chronic inflammation resulting in tumor development in the small, large intestine including the rectum. Here, we report that inactivation of Muc2 alters metabolic pathways in the normal appearing mucosa of Muc2-/- mice. Comparative analysis of gene expression profiling of isolated intestinal epithelial cells (IECs) and the entire intestinal mucosa, encompassing IECs, immune and stromal cells underscored that more than 50% of the changes were common to both sets of data, suggesting that most alterations were IEC-specific. IEC-specific expression data highlighted perturbation of lipid absorption, processing and catabolism linked to altered Pparα signaling in IECs. Concomitantly, alterations of glucose metabolism induced expression of genes linked to de novo lipogenesis, a characteristic of tumor cells. Importantly, gene expression alterations characterizing Muc2-/- IECs are similar to those observed when analyzing the gene expression signature of IECs along the crypt-villus axis in WT B6 mice, suggesting that Muc2-/- IECs display a crypt-like gene expression signature. Thus, our data strongly suggest that decreased lipid metabolism, and alterations in glucose utilization characterize the crypt proliferative compartment, and may represent a molecular signature of pre-neoplastic lesions.
Collapse
|
37
|
Jones RM, Neish AS. Redox signaling mediated by the gut microbiota. Free Radic Biol Med 2017; 105:41-47. [PMID: 27989756 DOI: 10.1016/j.freeradbiomed.2016.10.495] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022]
Abstract
The microbiota that inhabits the mammalian intestine can influence a range of physiological functions, including the modulation of immune responses, enhancement epithelial barrier function, and the stimulation of cell proliferation. While the mechanisms by which commensal prokaryotes stimulate immune signaling networks are well-characterized, less is known about the mechanistic control over homeostatic pathways within tissues. Recent reports by our research group have demonstrated that contact between the gut epithelia and some groups of enteric commensal bacteria prompts the rapid generation of reactive oxygen species (ROS) within host cells. Whereas the bacterial-induced production of ROS in phagocytes in response to ligand binding to Formyl Peptide Receptors (FPRs) and ensuing activation of NADPH oxidase 2 (Nox2) is a well-defined mechanism, ROS generated by other cell types such as intestinal epithelia in response to microbial signals via FPRs and the NADPH oxidase 1 (Nox1) is less appreciated. Importantly, enzymatically generated ROS have been shown to function as second messengers in many signal transduction pathways via the transient oxidative activity on sensor proteins bearing oxidant-sensitive thiol groups. Examples of redox sensitive proteins include tyrosine phosphatases that serve as regulators of MAPK pathways, focal adhesion kinase, as well as components involved NF-kB activation. Here, we review the leading edge discoveries gleaned from investigations that focus on microbial-induced generation of ROS and their functional effects on host physiology. These studies identify the functional molecular elements and mechanistic events that mediate the established effects of the normal microbiota on intestinal physiology.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michaels St, Room 105-L, Atlanta, GA 30322, United States
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michaels St, Room 105-L, Atlanta, GA 30322, United States.
| |
Collapse
|
38
|
Jones RM. The Influence of the Gut Microbiota on Host Physiology: In Pursuit of Mechanisms. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:285-297. [PMID: 27698613 PMCID: PMC5045138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results generated from the NIH funded Human Microbiome Project (HMP) are necessarily tied to the overall mission of the agency, which is to foster scientific discoveries as a basis for protecting and improving health. The investment in the HMP phase 1 accomplished many of its goals including the preliminary characterization of the human microbiome and the identification of links between microbiome diversity and disease states. Going forward, the next step in these studies must involve the identification of the functional molecular elements that mediate the positive influence of a eubiotic microbiome on health and disease. This review will focus on recent advances describing mechanistic events in the intestine elicited by the microbiome. These include symbiotic bacteria-induced activation of redox-dependent cell signaling, the bacterial production of short chain fatty acids and ensuing cellular responses, and the secretion of bacteriocins by bacteria that have anti-microbial activities against potential pathogens.
Collapse
|
39
|
The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate? Eur J Clin Nutr 2016; 70:1348-1353. [DOI: 10.1038/ejcn.2016.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/27/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023]
|
40
|
Arifa RDN, Paula TPD, Madeira MFM, Lima RL, Garcia ZM, Ÿvila TV, Pinho V, Barcelos LS, Pinheiro MVB, Ladeira LO, Krambrock K, Teixeira MM, Souza DG. The reduction of oxidative stress by nanocomposite Fullerol decreases mucositis severity and reverts leukopenia induced by Irinotecan. Pharmacol Res 2016; 107:102-110. [PMID: 26987941 DOI: 10.1016/j.phrs.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
Irinotecan is a useful chemotherapeutic agent for the treatment of several solid tumors. However, this therapy is associated with side effects, including leukopenia and mucositis. Reactive oxygen species (ROS) activate inflammatory pathways and contribute to Irinotecan-induced mucositis. Fullerol is a nanocomposite with anti-oxidant properties that may reduce tissue damage after inflammatory stimuli. In this paper, the effects of Fullerol and mechanisms of protection were investigated in a model of Irinotecan-induced mucositis. Mucositis was induced by an injection of Irinotecan per 4 days in C57BL/6. Fullerol or a vehicle was injected every 12h. On day 7, the intestines were removed to evaluate histological changes, leukocyte influx, and the production of cytokines and ROS. Irinotecan therapy resulted in weight loss, an increased clinical score and intestinal injury. Treatment with Fullerol attenuated weight loss, decreased clinical score and intestinal damage. Irinotecan also induced increased ROS production in enterocytes, oxidative stress, IL-1β production, neutrophil and eosinophil influx in the ileum. Fullerol treatment decreased production of ROS in the enterocytes, oxidative stress, IL-1β production, neutrophil and eosinophil influx in the ileum. Irinotecan therapy also induced leukopenia in an ROS-dependent manner because leukopenia reverted in WT mice treated with Fullerol or Apocynin or in Gp91phox(-/-) mice. Mice treated with Irinotecan presented less melanoma tumor growth compared to the control group. Fullerol does not interfere in the anti-tumor action of Irinotecan. Fullerol has a great pharmacology potential to decreases the severity of mucositis and of leukopenia during chemotherapy treatment.
Collapse
Affiliation(s)
- Raquel Duque Nascimento Arifa
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Talles Prosperi de Paula
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Mila Fernandes Moreira Madeira
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Renata Lacerda Lima
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Zélia Menezes Garcia
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Thiago Vinícius Ÿvila
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil; Núcleo de Estudos em Inflamação, Departamento de Morfologia, Belo Horizonte, MG, Brazil
| | - Lucíola Silva Barcelos
- Laboratório de Angiogênese, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil
| | | | - Luiz Orlando Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Klaus Krambrock
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Danielle Glória Souza
- Laboratório Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Belo Horizonte, MG, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol 2015; 45:925-38. [DOI: 10.1016/j.ijpara.2015.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
|
42
|
Vieira AT, Rocha VM, Tavares L, Garcia CC, Teixeira MM, Oliveira SC, Cassali GD, Gamba C, Martins FS, Nicoli JR. Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 5(1A). Microbes Infect 2015; 18:180-9. [PMID: 26548605 DOI: 10.1016/j.micinf.2015.10.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Klebsiella pneumoniae (Kp) a common cause of pneumonia leads to intense lung injury and mortality that are correlated with infective exacerbations. Probiotics are a class of microorganisms that have immunomodulatory effects to benefit health. We investigated whether the probiotic Bifidobacterium longum 5(1A) induces protection in mice against lung infection induced by Kp and the potential involved mechanisms. Kp infection induced secretion of pro-inflammatory cytokines, neutrophil recruitment, significant bacterial load in the lung and 50% lethality. However, treatment with live B. longum 5(1A) induced faster resolution of inflammation associated with an increased production of IL-10, decreased lung damage with significantly reduction of bacterial burden that contributed to rescue 100% of mice from death. We found that these effects could be attributed, at least in part, to activation of the Toll-like receptor (TLR) adapter protein Mal, since B. longum 5(1A) treatment in Mal-deficient infected mice did not show the protection observed in wild type infected mice. Thus, we propose that live B. longum 5(1A) activates TLR-signaling pathway that results in ROS production and protects the host against pneumonia-induced death by finely tuning the inflammatory response and contributing to faster return to lung homeostasis.
Collapse
Affiliation(s)
- Angélica T Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Victor M Rocha
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luciana Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Sérgio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Geovanni D Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Conrado Gamba
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jacques R Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
43
|
Saint-Georges-Chaumet Y, Edeas M. Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathog Dis 2015; 74:ftv096. [DOI: 10.1093/femspd/ftv096] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
|
44
|
Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, Ardita CS, Reedy AR, Keebaugh ES, Neish AS. Lactobacilli Modulate Epithelial Cytoprotection through the Nrf2 Pathway. Cell Rep 2015; 12:1217-25. [PMID: 26279578 PMCID: PMC4640184 DOI: 10.1016/j.celrep.2015.07.042] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 07/16/2015] [Indexed: 12/26/2022] Open
Abstract
An optimal gut microbiota influences many beneficial processes in the metazoan host. However, the molecular mechanisms that mediate and function in symbiont-induced host responses have not yet been fully characterized. Here, we report that cellular ROS enzymatically generated in response to contact with lactobacilli in both mice and Drosophila has salutary effects against exogenous insults to the intestinal epithelium via the activation of Nrf2 responsive cytoprotective genes. These data show that the xenobiotic-inducible Nrf2 pathway participates as a signaling conduit between the prokaryotic symbiont and the eukaryotic host. Indeed, our data imply that the capacity of lactobacilli to induce redox signaling in epithelial cells is a highly conserved hormetic adaptation to impel cellular conditioning to exogenous biotic stimuli. These data also highlight the role the microbiota plays in eukaryotic cytoprotective pathways and may have significant implications in the characterization of a eubiotic microbiota.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chirayu Desai
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Trevor M Darby
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexandra A Wolfarth
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Immunology and Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Courtney S Ardita
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - April R Reedy
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin S Keebaugh
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Sellge G, Kufer TA. PRR-signaling pathways: Learning from microbial tactics. Semin Immunol 2015; 27:75-84. [PMID: 25911384 DOI: 10.1016/j.smim.2015.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022]
Abstract
Recognition of bacterial pathogens by the mammalian host relies on the induction of early innate immune responses initiated by the activation of pattern-recognition receptors (PRRs) upon sensing of their cognate microbe-associated-patterns (MAMPs). Successful pathogens have evolved to intercept PRR activation and signaling at multiple steps. The molecular dissection of the underlying mechanisms revealed many of the basic mechanisms used by the immune system. Here we provide an overview of the different strategies used by bacterial pathogens and commensals to subvert and reprogram PPR-mediated innate immune responses. A particular attention is given to recent discoveries highlighting novel molecular details of the host inflammatory response in mammalian cells and current advances in our understanding of the interaction of commensals with PRR-mediated responses.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Medicine III, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| |
Collapse
|
46
|
Mendes V, Costa V, Mateus N. Involvement of the modulation of cancer cell redox status in the anti-tumoral effect of phenolic compounds. RSC Adv 2015. [DOI: 10.1039/c4ra10590g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The association between the anti-tumoral properties of phenolics, the generation of ROS in culture medium and modulation of redox homeostasis was analyzed. In AGS cells, the anti-proliferative effect of quercetin was not reverted by catalase or SOD.
Collapse
Affiliation(s)
- Vanda Mendes
- Centro de Investigação em Química
- Faculdade de Ciências da Universidade do Porto
- 4169-007 Porto
- Portugal
- IBMC
| | - Vítor Costa
- IBMC
- Instituto de Biologia Molecular e Celular
- Universidade do Porto
- 4150-180 Porto
- Portugal
| | - Nuno Mateus
- Centro de Investigação em Química
- Faculdade de Ciências da Universidade do Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
47
|
Newell PD, Chaston JM, Wang Y, Winans NJ, Sannino DR, Wong ACN, Dobson AJ, Kagle J, Douglas AE. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Front Microbiol 2014; 5:576. [PMID: 25408687 PMCID: PMC4219406 DOI: 10.3389/fmicb.2014.00576] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023] Open
Abstract
Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut.
Collapse
Affiliation(s)
- Peter D Newell
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - John M Chaston
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Yiping Wang
- Department of Nutritional Science, Cornell University Ithaca, NY, USA
| | - Nathan J Winans
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - David R Sannino
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - Adam C N Wong
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Adam J Dobson
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Jeanne Kagle
- Department of Biology, Mansfield University Mansfield, PA, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University Ithaca, NY, USA ; Department of Molecular Biology and Genetics, Cornell University Ithaca, NY, USA
| |
Collapse
|
48
|
Abstract
The microbiota that occupies the mammalian intestine can modulate a range of physiological functions, including control over immune responses, epithelial barrier function, and cellular proliferation. While commensal prokaryotic organisms are well known to stimulate inflammatory signaling networks, less is known about control over homeostatic pathways. Recent work has shown that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced production of ROS in professional phagocytes via stimulation of formyl peptide receptors (FPRs) and activation of NADPH oxidase 2 (Nox2) is a well-studied process, ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals via FPRs and the epithelial NADPH oxidase 1 (Nox1). ROS generated by Nox enzymes have been shown to function as critical second messengers in multiple signal transduction pathways via the rapid and transient oxidative inactivation of a distinct class of sensor proteins bearing oxidant-sensitive thiol groups. These redox-sensitive proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, focal adhesion kinase, as well as components involved in NF-κB activation. As microbe-elicited ROS has been shown to stimulate cellular proliferation and motility, and to modulate innate immune signaling, we hypothesize that many of the established effects of the normal microbiota on intestinal physiology may be at least partially mediated by this ROS-dependent mechanism.
Collapse
Affiliation(s)
- Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|