1
|
Saravanan V, Chagaleti BK, Narayanan PL, Anandan VB, Manoharan H, Anjana GV, Peraman R, Namasivayam SKR, Kavisri M, Arockiaraj J, Muthu Kumaradoss K, Moovendhan M. Discovery and development of COVID-19 vaccine from laboratory to clinic. Chem Biol Drug Des 2024; 103:e14383. [PMID: 37953736 DOI: 10.1111/cbdd.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
The world has recently experienced one of the biggest and most severe public health disasters with severe acute respiratory syndrome coronavirus (SARS-CoV-2). SARS-CoV-2 is responsible for the coronavirus disease of 2019 (COVID-19) which is one of the most widespread and powerful infections affecting human lungs. Current figures show that the epidemic had reached 216 nations, where it had killed about 6,438,926 individuals and infected 590,405,710. WHO proclaimed the outbreak of the Ebola virus disease (EVD), in 2014 that killed hundreds of people in West Africa. The development of vaccines for SARS-CoV-2 becomes more difficult due to the viral mutation in its non-structural proteins (NSPs) especially NSP2 and NSP3, S protein, and RNA-dependent RNA polymerase (RdRp). Continuous monitoring of SARS-CoV-2, dynamics of the genomic sequence, and spike protein mutations are very important for the successful development of vaccines with good efficacy. Hence, the vaccine development for SARS-CoV-2 faces specific challenges starting from viral mutation. The requirement of long-term immunity development, safety, efficacy, stability, vaccine allocation, distribution, and finally, its cost is discussed in detail. Currently, 169 vaccines are in the clinical development stage, while 198 vaccines are in the preclinical development stage. The majority of these vaccines belong to the Ps-Protein subunit type which has 54, and the minor BacAg-SPV (Bacterial antigen-spore expression vector) type, at least 1 vaccination. The use of computational methods and models for vaccine development has revolutionized the traditional methods of vaccine development. Further, this updated review highlights the upcoming vaccine development strategies in response to the current pandemic and post-pandemic era, in the field of vaccine development.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Vijay Babu Anandan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Haritha Manoharan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - G V Anjana
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, India
| | - S Karthik Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - M Kavisri
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS Deemed University, Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Kathiravan Muthu Kumaradoss
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col. Dr. Jeppiar Research Park, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
3
|
Feng H, Yamashita M, Wu L, Jose da Silva Lopes T, Watanabe T, Kawaoka Y. Food Additives as Novel Influenza Vaccine Adjuvants. Vaccines (Basel) 2019; 7:E127. [PMID: 31554190 PMCID: PMC6963695 DOI: 10.3390/vaccines7040127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Influenza is a major threat to public health. Vaccination is an effective strategy to control influenza; however, the current inactivated influenza vaccine has mild immunogenicity and exhibits suboptimal efficacy in clinical use. Vaccine efficacy can be improved by the addition of adjuvants, but few adjuvants have been approved for human use. To explore novel and effective adjuvants for influenza vaccines, here we screened 145 compounds from food additives approved in Japan. Of these 145 candidates, we identified 41 compounds that enhanced the efficacy of the split influenza hemagglutinin (HA) vaccine against lethal virus challenge in a mouse model. These 41 compounds included 18 novel adjuvant candidates and 15 compounds with previously reported adjuvant effects for other antigens but not for the influenza vaccine. Our results are of value to the development of novel and effective adjuvanted influenza or other vaccines for human use.
Collapse
Affiliation(s)
- Huapeng Feng
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Li Wu
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Tiago Jose da Silva Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
4
|
Egarnes B, Blanchet MR, Gosselin J. Treatment with the NR4A1 agonist cytosporone B controls influenza virus infection and improves pulmonary function in infected mice. PLoS One 2017; 12:e0186639. [PMID: 29053748 PMCID: PMC5650162 DOI: 10.1371/journal.pone.0186639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023] Open
Abstract
The transcription factor NR4A1 has emerged as a pivotal regulator of the inflammatory response and immune homeostasis. Although contribution of NR4A1 in the innate immune response has been demonstrated, its role in host defense against viral infection remains to be investigated. In the present study, we show that administration of cytosporone B (Csn-B), a specific agonist of NR4A1, to mice infected with influenza virus (IAV) reduces lung viral loads and improves pulmonary function. Our results demonstrate that administration of Csn-B to naive mice leads to a modest production of type 1 IFN. However, in IAV-infected mice, such production of IFNs is markedly increased following treatment with Csn-B. Our study also reveals that alveolar macrophages (AMs) appear to have a significant role in Csn-B effects, since selective depletion of AMs with clodronate liposome correlates with a marked reduction of IFN production, viral clearance and morbidity in IAV-infected mice. Furthermore, when reemergence of AMs is observed following clodronate liposome administration, an increased production of IFNs was detected in bronchoalveolar fluids of IAV-infected mice treated with Csn-B, supporting the contribution of AMs in Csn-B effects. While treatment of mice with Csn-B induces phosphorylation of transcriptional factors IRF3 and IRF7, the latter appears to be less indispensable since effects of Csn-B treatment on the synthesis of IFNs were slightly affected in IAV-infected mice lacking functional IRF7. Together, our results highlight the capacity of Csn-B and consequently of NR4A1 transcription factor in controlling IAV infection.
Collapse
Affiliation(s)
- Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
- * E-mail:
| |
Collapse
|
5
|
Manini I, Trombetta CM, Lazzeri G, Pozzi T, Rossi S, Montomoli E. Egg-Independent Influenza Vaccines and Vaccine Candidates. Vaccines (Basel) 2017; 5:E18. [PMID: 28718786 PMCID: PMC5620549 DOI: 10.3390/vaccines5030018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022] Open
Abstract
Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.
Collapse
Affiliation(s)
- Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Teresa Pozzi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Stefania Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- VisMederi S.r.l., Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy.
| |
Collapse
|
6
|
Vector-based genetically modified vaccines: Exploiting Jenner's legacy. Vaccine 2016; 34:6436-6448. [PMID: 28029542 PMCID: PMC7115478 DOI: 10.1016/j.vaccine.2016.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of ’smarter’ vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner’s vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors that may help us control other major scourges of mankind.
Collapse
|
7
|
Leirs K, Tewari Kumar P, Decrop D, Pérez-Ruiz E, Leblebici P, Van Kelst B, Compernolle G, Meeuws H, Van Wesenbeeck L, Lagatie O, Stuyver L, Gils A, Lammertyn J, Spasic D. Bioassay Development for Ultrasensitive Detection of Influenza A Nucleoprotein Using Digital ELISA. Anal Chem 2016; 88:8450-8. [DOI: 10.1021/acs.analchem.6b00502] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karen Leirs
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
| | | | | | | | | | | | - Griet Compernolle
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | - Ann Gils
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
8
|
Yang JR, Chen CY, Kuo CY, Cheng CY, Lee MS, Cheng MC, Yang YC, Wu CY, Wu HS, Liu MT, Hsiao PW. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses. Antiviral Res 2015; 126:8-17. [PMID: 26593980 DOI: 10.1016/j.antiviral.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taiwan
| | - Chih-Yuan Chen
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chuan-Yi Kuo
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chieh-Yu Cheng
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Min-Shiuh Lee
- Animal Health Research Institute, Council of Agriculture, Taipei, Taiwan
| | - Ming-Chu Cheng
- Animal Health Research Institute, Council of Agriculture, Taipei, Taiwan
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan
| | - Chia-Ying Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan
| | - Ho-Sheng Wu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| | - Pei-Wen Hsiao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taiwan.
| |
Collapse
|
9
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Emerging Influenza Strains in the Last Two Decades: A Threat of a New Pandemic? Vaccines (Basel) 2015; 3:172-85. [PMID: 26344952 PMCID: PMC4494236 DOI: 10.3390/vaccines3010172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
In the last 20 years, novel non-seasonal influenza viruses have emerged, most of which have originated from birds. Despite their apparent inability to cause pandemics, with the exception of H1N1 swine influenza virus, these viruses still constitute a constant threat to public health. While general concern has decreased after the peak of the H5N1 virus, in recent years several novel reassorted influenza viruses (e.g., H7N9, H9N2, H10N8) have jumped the host-species barrier and are under surveillance by the scientific community and public health systems. It is still unclear whether these viruses can actually cause pandemics or just isolated episodes. The purpose of this review is to provide an overview of old and novel potential pandemic strains of recent decades.
Collapse
|
11
|
Kreijtz JHCM, Goeijenbier M, Moesker FM, van den Dries L, Goeijenbier S, De Gruyter HLM, Lehmann MH, Mutsert GD, van de Vijver DAMC, Volz A, Fouchier RAM, van Gorp ECM, Rimmelzwaan GF, Sutter G, Osterhaus ADME. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. THE LANCET. INFECTIOUS DISEASES 2014; 14:1196-207. [PMID: 25455987 DOI: 10.1016/s1473-3099(14)70963-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Modified vaccinia virus Ankara (MVA) is a promising viral vector platform for the development of an H5N1 influenza vaccine. Preclinical assessment of MVA-based H5N1 vaccines showed their immunogenicity and safety in different animal models. We aimed to assess the safety and immunogenicity of the MVA-haemagglutinin-based H5N1 vaccine MVA-H5-sfMR in healthy individuals. METHODS In a single-centre, double-blind phase 1/2a study, young volunteers (aged 18-28 years) were randomly assigned with a computer-generated list in equal numbers to one of eight groups and were given one injection or two injections intramuscularly at an interval of 4 weeks of a standard dose (10(8) plaque forming units [pfu]) or a ten times lower dose (10(7) pfu) of the MVA-H5-sfMR (vector encoding the haemagglutinin gene of influenza A/Vietnam/1194/2004 virus [H5N1 subtype]) or MVA-F6-sfMR (empty vector) vaccine. Volunteers and physicians who examined and administered the vaccine were masked to vaccine assignment. Individuals who received the MVA-H5-sfMR vaccine were eligible for a booster immunisation 1 year after the first immunisation. Primary endpoint was safety. Secondary outcome was immunogenicity. The trial is registered with the Dutch Trial Register, number NTR3401. FINDINGS 79 of 80 individuals who were enrolled completed the study. No serious adverse events were identified. 11 individuals reported severe headache and lightheadedness, erythema nodosum, respiratory illness (accompanied by influenza-like symptoms), sore throat, or injection-site reaction. Most of the volunteers had one or more local (itch, pain, redness, and swelling) and systemic reactions (rise in body temperature, headache, myalgia, arthralgia, chills, malaise, and fatigue) after the first, second, and booster immunisations. Individuals who received the 10(7) dose had fewer systemic reactions. The MVA-H5-sfMR vaccine at 10(8) pfu induced significantly higher antibody responses after one and two immunisations than did 10(7) pfu when assessed with haemagglutination inhibition geometric mean titre at 8 weeks against H5N1 A/Vietnam/1194/2004 (30·2 [SD 3·8] vs 9·2 [2·3] and 108·1 [2·4] vs 15·8 [3·2]). 27 of 39 eligible individuals were enrolled in the booster immunisation study. A single shot of MVA-H5-sfMR 10(8) pfu prime immunisation resulted in higher antibody responses after the booster immunisation than did two shots of MVA-H5-sfMR at the ten times lower dose. INTERPRETATION The MVA-based H5N1 vaccine was well tolerated and immunogenic and therefore the vaccine candidates arising from the MVA platform hold great promise for rapid development in response to a future influenza pandemic threat. However, the immunogenicity of this vaccine needs to be compared with conventional H5N1 inactivated non-adjuvanted vaccine candidates in head-to-head clinical trials. FUNDING European Research Council.
Collapse
Affiliation(s)
| | | | - Fleur M Moesker
- Viroscience Lab, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University of Munich, Munich, Germany; German Centre for Infection Research, Munich, Germany
| | | | | | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University of Munich, Munich, Germany; German Centre for Infection Research, Munich, Germany
| | | | | | | | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University of Munich, Munich, Germany; German Centre for Infection Research, Munich, Germany
| | - Albert D M E Osterhaus
- Viroscience Lab, Erasmus Medical Center, Rotterdam, Netherlands; Artemis, Utrecht, Netherlands; Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
12
|
Kreijtz JHCM, Wiersma LCM, De Gruyter HLM, Vogelzang-van Trierum SE, van Amerongen G, Stittelaar KJ, Fouchier RAM, Osterhaus ADME, Sutter G, Rimmelzwaan GF. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. J Infect Dis 2014; 211:791-800. [PMID: 25246535 DOI: 10.1093/infdis/jiu528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center Viroclinics Biosciences, Rotterdam, the Netherlands Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
13
|
Halbroth BR, Heil A, Distler E, Dass M, Wagner EM, Plachter B, Probst HC, Strand D, Hartwig UF, Karner A, Aichinger G, Kistner O, Landfester K, Herr W. Superior in vitro stimulation of human CD8+ T-cells by whole virus versus split virus influenza vaccines. PLoS One 2014; 9:e103392. [PMID: 25072749 PMCID: PMC4114834 DOI: 10.1371/journal.pone.0103392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations.
Collapse
Affiliation(s)
- Benedict R. Halbroth
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Heil
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Eva Distler
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Martin Dass
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Eva M. Wagner
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute of Virology – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Hans Christian Probst
- Institute of Immunology – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Dennis Strand
- Department of Medicine I – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Udo F. Hartwig
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | - Wolfgang Herr
- Department of Medicine III – University Medical Center of Johannes Gutenberg-University, Mainz, Germany
- Department of Medicine III – University Medical Center of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Immunization with baculovirus displayed H6 hemagglutinin vaccine protects mice against lethal H6 influenza virus challenge. Antiviral Res 2014; 109:42-53. [PMID: 24973759 DOI: 10.1016/j.antiviral.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022]
Abstract
Low pathogenic influenza viruses of H6 hemagglutinin (HA) subtype have a high prevalence among aquatic and domestic birds and have caused outbreaks in poultry worldwide. The first human infection with wild avian influenza H6N1 virus was reported in Taiwan and these subtype viruses may continue to evolve and accumulate changes which increasing the potential risk of human-to-human transmission. To develop a vaccine against influenza viruses of the H6 subtype, we displayed the HA gene on the baculovirus surface (Bac-HA), and studied its vaccine efficacy against a lethal challenge with mouse-adapted RG-H6(Shorebird) virus carrying the H6 HA gene from A/shorebird/DE/12/2004 (H6N8) virus and 7 genes from A/Puerto Rico/8/1934 (H1N1) virus. Immunization with 256 HA units of Bac-HA via the intranasal route triggered HA-specific serum and mucosal antibodies in mice besides increased HA inhibition titers compared to mice immunized subcutaneously. Moreover, we observed an increase in cellular immune response (IL-4) and improved in vitro neutralization activity in the mice immunized intranasally with live Bac-HA compared to mice immunized with inactivated influenza virus (IV). Interestingly, Bac-HA intranasal immunized mice showed one fold higher neutralization titer against heterologous H6 influenza virus compared to inactivated IV immunized mice. In addition, the live Bac-HA, administered through either immunization route, as well as the adjuvanted inactivated Bac-HA, administered subcutaneously, conferred 100% protection to mice challenged with homologous mouse-adapted RG-H6(Shorebird) virus. The reduction in viral titers and extend of histopathological changes of Bac-HA immunized mice lungs further demonstrated the protective efficacy of Bac-HA. Hence, the recombinant baculovirus subunit vaccine is an alternative candidate against H6 subtypes that could be propagated and administered with minimal biosafety concerns.
Collapse
|
15
|
Baniasadi V, Lal SK. A novel method to produce Influenza A virus matrix protein M1 Capsid Like Particles (CLPs). J Virol Methods 2014; 205:1-2. [PMID: 24797458 DOI: 10.1016/j.jviromet.2014.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
Avian influenza viruses represent a growing threat for an influenza pandemic. The currently licensed influenza vaccines have inherent drawbacks which has led many research groups to explore different approaches of vaccine development among which Virus Like particles (VLPs) seem like a promising alternative in the near future. Although it is known that the Matrix 1 protein (M1) of influenza plays an essential role in VLP formation and it is documented that M1 is able to form dimers, it is not clear if M1 is capable of forming higher order structures without the interference of other influenza proteins or cell derived envelope. Here, for the first time we have demonstrated that expression of M1 alone is enough to form a Capsid Like Particle (CLP) without the requirement of any other external factor.
Collapse
Affiliation(s)
- Vahid Baniasadi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Sunil K Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
16
|
Perdue ML, Arnold F, Li S, Donabedian A, Cioce V, Warf T, Huebner R. The future of cell culture-based influenza vaccine production. Expert Rev Vaccines 2014; 10:1183-94. [DOI: 10.1586/erv.11.82] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Jegerlehner A, Zabel F, Langer A, Dietmeier K, Jennings GT, Saudan P, Bachmann MF. Bacterially produced recombinant influenza vaccines based on virus-like particles. PLoS One 2013; 8:e78947. [PMID: 24260136 PMCID: PMC3832520 DOI: 10.1371/journal.pone.0078947] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.
Collapse
Affiliation(s)
- Andrea Jegerlehner
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| | - Franziska Zabel
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| | - Alice Langer
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| | - Klaus Dietmeier
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| | - Gary T. Jennings
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| | - Philippe Saudan
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
- * E-mail:
| | - Martin F. Bachmann
- Immunodrugs Department, Cytos Biotechnology AG, Schlieren, Zurich, Switzerland
| |
Collapse
|
18
|
Deng Y, Shen S, Vorobeychik Y. Optimization methods for decision making in disease prevention and epidemic control. Math Biosci 2013; 246:213-27. [PMID: 24121040 DOI: 10.1016/j.mbs.2013.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 11/27/2022]
Abstract
This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease transmission and human interaction. We use a bipartite graph to represent individuals' propensities of visiting a set of location, and formulate two integer nonlinear programming models to optimize choices of individuals to vaccinate and locations to close. Our first model assumes that if a location is closed, its visitors stay in a safe location and will not visit other locations. Our second model incorporates compensatory behavior by assuming multiple behavioral groups, always visiting the most preferred locations that remain open. The paper develops algorithms based on a greedy strategy, dynamic programming, and integer programming, and compares the computational efficacy and solution quality. We test problem instances derived from daily behavior patterns of 100 randomly chosen individuals (corresponding to 195 locations) in Portland, Oregon, and provide policy insights regarding the use of the two DPEC models.
Collapse
Affiliation(s)
- Yan Deng
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
19
|
Development of influenza H7N9 virus like particle (VLP) vaccine: Homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 2013; 31:4305-13. [DOI: 10.1016/j.vaccine.2013.07.043] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/08/2013] [Accepted: 07/17/2013] [Indexed: 11/20/2022]
|
20
|
Production of avian influenza virus vaccine using primary cell cultures generated from host organs. ACTA ACUST UNITED AC 2013; 40:625-32. [DOI: 10.1007/s10295-013-1256-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Abstract
The global availability of a therapeutically effective influenza virus vaccine during a pandemic remains a major challenge for the biopharmaceutical industry. Long production time, coupled with decreased supply of embryonated chicken eggs (ECE), significantly affects the conventional vaccine production. Transformed cell lines have attained regulatory approvals for vaccine production. Based on the fact that the avian influenza virus would infect the cells derived from its natural host, the viral growth characteristics were studied on chicken embryo-derived primary cell cultures. The viral propagation was determined on avian origin primary cell cultures, transformed mammalian cell lines, and in ECE. A comparison was made between these systems by utilizing various cell culture-based assays. In-vitro substrate susceptibility and viral infection characteristics were evaluated by performing hemagglutination assay (HA), 50 % tissue culture infectious dose (TCID50) and monitoring of cytopathic effects (CPE) caused by the virus. The primary cell culture developed from chicken embryos showed stable growth characteristics with no contamination. HA, TCID50, and CPE exhibited that these cell systems were permissive to viral infection, yielding 2–10 times higher viral titer as compared to mammalian cell lines. Though the viral output from the ECE was equivalent to the chicken cell culture, the time period for achieving it was decreased to half. Some of the prerequisites of inactivated influenza virus vaccine production include generation of higher vial titer, independence from exogenous sources, and decrease in the production time lines. Based on the tests, it can be concluded that chicken embryo primary cell culture addresses these issues and can serve as a potential alternative for influenza virus vaccine production.
Collapse
|
21
|
Clearance of influenza virus infections by T cells: risk of collateral damage? Curr Opin Virol 2013; 3:430-7. [PMID: 23721864 DOI: 10.1016/j.coviro.2013.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Influenza A viruses are a major cause of respiratory infections in humans. To protect against influenza, vaccines mainly aim at the induction of antibodies against the two surface proteins and do not protect against influenza A viruses from other subtypes. There is an increasing interest in heterosubtypic immunity that does protect against different subtypes. CD8 and CD4 T cells have a beneficial effect on the course of influenza A virus infection and can recognize conserved IAV epitopes. The T cell responses are tightly regulated to avoid collateral damage due to overreaction. Different studies have shown that an aberrant T cell response to an influenza virus infection could be harmful and could contribute to immunopathology. Here we discuss the recent findings on the balance between the beneficial and detrimental effects of T cell responses in influenza virus infections.
Collapse
|
22
|
van der Vries E, Anber J, van der Linden A, Wu Y, Maaskant J, Stadhouders R, van Beek R, Rimmelzwaan G, Osterhaus A, Boucher C, Schutten M. Molecular Assays for Quantitative and Qualitative Detection of Influenza Virus and Oseltamivir Resistance Mutations. J Mol Diagn 2013; 15:347-54. [DOI: 10.1016/j.jmoldx.2012.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022] Open
|
23
|
La Gruta N, Kelso A, Brown LE, Chen W, Jackson DC, Turner SJ. Role of CD8(+) T-cell immunity in influenza infection: potential use in future vaccine development. Expert Rev Respir Med 2012; 3:523-37. [PMID: 20477341 DOI: 10.1586/ers.09.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continued circulation of the highly pathogenic avian H5N1 influenza A virus has many people worried that an influenza pandemic is imminent. Compounding this is the realization that H5N1 vaccines based on current influenza vaccine technology (designed to generate protective antibody responses) may be suboptimal at providing protection. As a consequence, there is recent interest in vaccine strategies that elicit cellular immunity, particularly the cytotoxic T lymphocyte response, in an effort to provide protection against a potential pandemic. A major issue is the lack of information about the precise role that these 'hitmen' of the immune system have in protecting against both pandemic and seasonal influenza. We need to know more about how the induction and maintenance of cytotoxic T lymphocytes after influenza infection can impact protection from further infection. The challenge is then to use this information in the design of vaccines that will protect against pandemic influenza and will help optimize CD8(+) killer T-cell responses in other infections.
Collapse
Affiliation(s)
- Nicole La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
24
|
van der Vries E, Collins PJ, Vachieri SG, Xiong X, Liu J, Walker PA, Haire LF, Hay AJ, Schutten M, Osterhaus ADME, Martin SR, Boucher CAB, Skehel JJ, Gamblin SJ. H1N1 2009 pandemic influenza virus: resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis. PLoS Pathog 2012; 8:e1002914. [PMID: 23028314 PMCID: PMC3447749 DOI: 10.1371/journal.ppat.1002914] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/05/2012] [Indexed: 12/16/2022] Open
Abstract
Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, K(M) values for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (K(I)) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodated in the I223R mutant structure in a similar way to wild type, thus explaining the kinetic data. Our structural data also show that, in contrast to a recently reported structure, the active site of 2009 pandemic neuraminidase can adopt an open conformation.
Collapse
Affiliation(s)
| | - Patrick J. Collins
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Sebastien G. Vachieri
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Xiaoli Xiong
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Junfeng Liu
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Philip A. Walker
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Lesley F. Haire
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Alan J. Hay
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Martin Schutten
- Erasmus Medical Centre, Department of Virology, Rotterdam, The Netherlands
| | | | - Steve R. Martin
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | - John J. Skehel
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| | - Steve J. Gamblin
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| |
Collapse
|
25
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Employing Live Microbes for Vaccine Delivery. DEVELOPMENT OF NOVEL VACCINES 2012. [PMCID: PMC7123214 DOI: 10.1007/978-3-7091-0709-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
27
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Rimmelzwaan GF, Joyce Verburgh R, Nieuwkoop NJ, Bestebroer TM, Fouchier RA, Osterhaus AD. Use of GFP-expressing influenza viruses for the detection of influenza virus A/H5N1 neutralizing antibodies. Vaccine 2011; 29:3424-30. [DOI: 10.1016/j.vaccine.2011.02.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 11/29/2022]
|
29
|
Kreijtz JHCM, Süzer Y, Bodewes R, Schwantes A, van Amerongen G, Verburgh RJ, de Mutsert G, van den Brand J, van Trierum SE, Kuiken T, Fouchier RAM, Osterhaus ADME, Sutter G, Rimmelzwaan GF. Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model. J Gen Virol 2010; 91:2745-52. [PMID: 20719991 DOI: 10.1099/vir.0.024885-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zoonotic transmissions of highly pathogenic avian influenza viruses of the H5N1 subtype that have occurred since 1997 have sparked the development of novel influenza vaccines. The advent of reverse genetics technology, cell-culture production techniques and novel adjuvants has improved the vaccine strain preparation, production process and immunogenicity of the vaccines, respectively, and has accelerated the availability of pandemic influenza vaccines. However, there is still room for improvement, and alternative vaccine preparations can be explored, such as viral vectors. Modified vaccinia virus Ankara (MVA), originally developed as a safe smallpox vaccine, can be exploited as a viral vector and has many favourable properties. Recently, we have demonstrated that an MVA-based vaccine could protect mice and macaques against infection with highly pathogenic influenza viruses of the H5N1 subtype. In the present study, recombinant MVA expressing the haemagglutinin (HA) gene of pandemic influenza A/H1N1 virus was evaluated in the ferret model. A single immunization induced modest antibody responses and afforded only modest protection against the development of severe disease upon infection with a 2009(H1N1) strain. In contrast, two immunizations induced robust antibody responses and protected ferrets from developing severe disease, confirming that MVA is an attractive influenza vaccine production platform.
Collapse
|
30
|
Kuiken T, van den Brand J, van Riel D, Pantin-Jackwood M, Swayne DE. Comparative pathology of select agent influenza a virus infections. Vet Pathol 2010; 47:893-914. [PMID: 20682805 DOI: 10.1177/0300985810378651] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza A virus infections may spread rapidly in human populations and cause variable mortality. Two of these influenza viruses have been designated as select agents: 1918 H1N1 virus and highly pathogenic avian influenza (HPAI) virus. Knowledge of the pathology of these virus infections in humans, other naturally infected species, and experimental animals is important to understand the pathogenesis of influenza, to design appropriate models for evaluation of medical countermeasures, and to make correct diagnoses. The most important complication of influenza in humans is viral pneumonia, which often occurs with or is followed by bacterial pneumonia. Viremia and extrarespiratory disease are uncommon. HPAI viruses, including HPAI H5N1 virus, cause severe systemic disease in galliform species as well as in anseriform species and bird species of other orders. HPAI H5N1 virus infection also causes severe disease in humans and several species of carnivores. Experimental animals are used to model different aspects of influenza in humans, including uncomplicated influenza, pneumonia, and virus transmission. The most commonly used experimental animal species are laboratory mouse, domestic ferret, and cynomolgus macaque. Experimental influenza virus infections are performed in various other species, including domestic pig, guinea pig, and domestic cat. Each of these species has advantages and disadvantages that need to be assessed before choosing the most appropriate model to reach a particular goal. Such animal models may be applied for the development of more effective antiviral drugs and vaccines to protect humans from the threat of these virus infections.
Collapse
Affiliation(s)
- T Kuiken
- Erasmus MC, Department of Virology, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Zimmer G. RNA replicons - a new approach for influenza virus immunoprophylaxis. Viruses 2010; 2:413-434. [PMID: 21994644 PMCID: PMC3185613 DOI: 10.3390/v2020413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/07/2023] Open
Abstract
RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.
Collapse
Affiliation(s)
- Gert Zimmer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| |
Collapse
|
32
|
Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of H5N1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J Virol 2009; 84:1489-503. [PMID: 19923177 DOI: 10.1128/jvi.01946-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 x 10(7) PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol delivery of NDV-vectored vaccines.
Collapse
|
33
|
Li Y, Larrimer A, Curtiss T, Kim J, Jones A, Baird‐Tomlinson H, Pekosz A, Olivo PD. Influenza virus assays based on virus-inducible reporter cell lines. Influenza Other Respir Viruses 2009; 3:241-51. [PMID: 21462401 PMCID: PMC4940803 DOI: 10.1111/j.1750-2659.2009.00095.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Virus-inducible reporter genes have been used as the basis of virus detection and quantitation assays for a number of viruses. A strategy for influenza A virus-induction of a reporter gene was recently described. In this report, we describe the extension of this strategy to influenza B virus, the generation of stable cell lines with influenza A and B virus-inducible reporter genes, and the use of these cells in various clinically relevant viral assays. Each of the cell lines described herein constitutively express an RNA transcript that contains a reporter gene coding region flanked by viral 5¢- and 3¢-untranslated regions (UTR) and therefore mimics an influenza virus genomic segment. Upon infection of the cells with influenza virus the virus-inducible reporter gene segment (VIRGS) is replicated and transcribed by the viral polymerase complex resulting in reporter gene expression. FINDINGS Reporter gene induction occurs after infection with a number of laboratory strains and clinical isolates of influenza virus including several H5N1 strains. The induction is dose-dependent and highly specific for influenza A or influenza B viruses. CONCLUSIONS These cell lines provide the basis of simple, rapid, and objective assays that involve virus quantitation such as determination of viral titer, assessment of antiviral susceptibility, and determination of antibody neutralization titer. These cell lines could be very useful for influenza virus researchers and vaccine manufacturers.
Collapse
Affiliation(s)
| | | | | | | | - Abby Jones
- Diagnostic Hybrids Inc., Athens, OH, USA
| | | | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Hodge JW, Higgins J, Schlom J. Harnessing the unique local immunostimulatory properties of modified vaccinia Ankara (MVA) virus to generate superior tumor-specific immune responses and antitumor activity in a diversified prime and boost vaccine regimen. Vaccine 2009; 27:4475-82. [PMID: 19450631 PMCID: PMC3518379 DOI: 10.1016/j.vaccine.2009.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/28/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
Recombinant poxviruses expressing tumor-associated antigens (TAAs) are currently being evaluated in clinical trials as an approach to treat various cancers. We have previously generated poxviral vectors expressing a TAA and a TRIad of COstimulatory Molecules (B7-1, ICAM-1, and LFA-3; TRICOM) as transgenes, including replication competent recombinant vaccinia (rV) or replication-defective modified vaccinia Ankara (MVA), to prime tumor-specific immune responses, and a replication-defective recombinant fowlpox (rF) to boost these responses. MVA is a potentially safer, replication-defective form of vaccinia virus with unique immunostimulatory properties that could make it a superior priming vaccine. Here, an MVA vector encoding a tumor antigen (CEA) and TRICOM was utilized (rMVA). A single rMVA-CEA/TRICOM vaccination induced greater expression of several serum cytokines associated with enhanced T-cell immunity than that seen with vaccinia. We hypothesized that this effect might "precondition" the vaccination site for a more effective boost. An rMVA-CEA/TRICOM prime followed 7 days later (but not 30 days later) by an rF-CEA/TRICOM boost at the same injection site (but not at a distal site) induced more potent CEA-specific T-cell responses, and superior CEA-specific immunity and antitumor activity, than rV-CEA/TRICOM followed by rF-CEA/TRICOM. This preconditioning effect was also observed using a heterologous antigen model, where priming with rMVA-CEA/TRICOM followed 7 days later by rF-LacZ/TRICOM enhanced beta-gal-specific immunity compared to rF-LacZ/TRICOM only. The studies reported here show for the first time that priming with rMVA followed 7 days later by an rF boost at the same injection site, versus a distal site, generates superior tumor-specific immunity and antitumor activity.
Collapse
Affiliation(s)
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Affiliation(s)
- Peter C Doherty
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
36
|
Sahni R, Mossad SB. Controlling pandemic influenza through vaccination programs. Future Virol 2009. [DOI: 10.2217/fvl.09.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite its high impact on global mortality, morbidity and cost, seasonal influenza has been regarded as a self-limiting and controllable disease process. With the recent outbreaks of human infection owing to the virulent H5N1 avian influenza virus, the occurrence of the next flu pandemic appears to be closer than ever. With the lessons learnt from the three pandemics of the last century, we are preparing for this. Although not totally preventable, it appears to be possible to decrease the morbidity and mortality from influenza during a pandemic by taking appropriate and timely public health measures. This article aims to summarize the problem at hand and the possible tools available to at least offset the potentially massive impact of such a pandemic.
Collapse
Affiliation(s)
- Rajiv Sahni
- Department of Infectious Diseases, The Cleveland Clinic, 9500 Euclid Avenue, S 32, Cleveland, OH 44195, USA
| | - Sherif B Mossad
- Department of Infectious Diseases, The Cleveland Clinic, 9500 Euclid Avenue, S 32, Cleveland, OH 44195, USA
| |
Collapse
|