1
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025; 11:2550-2583. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Moon KB, Park JS, Kim HG, Jeon JH, Kwon TH, Chung KS, Lee HJ, Kim HS. Functional Analysis of Mature Activin A Produced by Enterokinase in Plant Cells. RICE (NEW YORK, N.Y.) 2025; 18:16. [PMID: 40082306 PMCID: PMC11906942 DOI: 10.1186/s12284-025-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Molecular farming for producing biopharmaceuticals in plants is considered an excellent method to replace some of the production methods currently used, and a significant number of recombinant proteins have already shown the potential to facilitate this. In particular, production of activin A, which has a variety of important biological functions in humans, is limited. The purpose of this study was to develop a safe, stable, and efficient plant-based in vitro production system for activin A, assess its biological activity in cancer cells, and demonstrate its potential for use in cancer research. We evaluated the expression and production of activin A in plant cells through a mass culture and secretion system. The formation of mature activin A homodimers, produced by enterokinase, was also assessed. Southern blot and inverse PCR were performed to investigate the gene insertion sites in the plants, and the stability of activin A was evaluated over six months under various pH conditions. The activity of plant-derived activin A was analyzed in HEK293T, Huh7, MCF7, and MDA-MB-231 cancer cell lines using luciferase reporter, migration, phosphorylation, and gelatin zymography assays. We developed cell line #71, which showed the highest levels of mature activin A expression (8.44 μg/g calli fresh weight) and had multicopy gene insertions. Pro-activin A was converted to mature activin A using enterokinase. We demonstrated that the optimal stability of plant-derived activin A was maintained for six months at pH 7 below 4 °C. Plant-derived activin A significantly enhanced activin A signaling activity in HEK293T, Huh7, and MCF7 cancer cells. Additionally, we confirmed that plant-derived activin A inhibited the growth of Huh7 cancer cells by activating the Smad pathway without affecting the MAPK pathway. Contrastingly, in MDA-MB-231 breast cancer cells, plant-derived activin A promoted cell migration. Our results confirm that plant-derived activin A, produced using a mass production system, exhibits full biological activity and affects cancer cell behavior in a manner similar to activin A derived from traditional mammalian systems. Furthermore, this study highlights the importance of considering cellular context when determining the functional outcomes of activin A treatment.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Han-Gyeul Kim
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Tae-Ho Kwon
- Genecell Biotech Inc., 87, Wanjusandan 5-ro, Wanju-Gun, Jeollabuk-do, 55322, South Korea
| | - Kyung-Sook Chung
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
3
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
4
|
Shanmugaraj B, Jirarojwattana P, Phoolcharoen W. Molecular Farming Strategy for the Rapid Production of Protein-Based Reagents for Use in Infectious Disease Diagnostics. PLANTA MEDICA 2023; 89:1010-1020. [PMID: 37072112 DOI: 10.1055/a-2076-2034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.
Collapse
Affiliation(s)
| | - Perawat Jirarojwattana
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Su H, van Eerde A, Rimstad E, Bock R, Branza-Nichita N, Yakovlev IA, Clarke JL. Plant-made vaccines against viral diseases in humans and farm animals. FRONTIERS IN PLANT SCIENCE 2023; 14:1170815. [PMID: 37056490 PMCID: PMC10086147 DOI: 10.3389/fpls.2023.1170815] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
6
|
Mathew M, Thomas J. Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. Mol Biotechnol 2022:10.1007/s12033-022-00627-5. [PMID: 36528727 PMCID: PMC9759281 DOI: 10.1007/s12033-022-00627-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases have vigorously devastated the global economy and health sector; cost-effective plant-based vaccines (PBV) can be the potential solution to withstand the current health economic crisis. The prominent role of tobacco as an efficient expression system for PBV has been well-established for decades, through this review we highlight the importance of tobacco-based vaccines (TBV) against evolving infectious diseases in humans. Studies focusing on the use of TBV for human infectious diseases were searched in PubMed, Google Scholar, and science direct from 1995 to 2021 using the keywords Tobacco-based vaccines OR transgenic tobacco OR Nicotiana benthamiana vaccines AND Infectious diseases or communicable diseases. We carried out a critical review of the articles and studies that fulfilled the eligibility criteria and were included in this review. Of 976 studies identified, only 63 studies fulfilling the eligibility criteria were included, which focused on either the in vitro, in vivo, or clinical studies on TBV for human infectious diseases. Around 43 in vitro studies of 23 different infectious pathogens expressed in tobacco-based systems were identified and 23 in vivo analysis studies were recognized to check the immunogenicity of vaccine candidates while only 10 of these were subjected to clinical trials. Viral infectious pathogens were studied more than bacterial pathogens. From our review, it was evident that TBV can be an effective health strategy to combat the emerging viral infectious diseases which are very difficult to manage with the current health facilities. The timely administration of cost-effective TBV can prevent the outburst of viral infections, thereby can protect the global healthcare system to a greater extent.
Collapse
Affiliation(s)
- Mintu Mathew
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| |
Collapse
|
7
|
Affinity of Phenolic Compounds for Transition Metal Ions Immobilized on Cation-Exchange Columns. J Chromatogr A 2022; 1676:463277. [DOI: 10.1016/j.chroma.2022.463277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
|
8
|
Khalid F, Tahir R, Ellahi M, Amir N, Rizvi SFA, Hasnain A. Emerging trends of edible vaccine therapy for combating human diseases especially
COVID
‐19: Pros, cons, and future challenges. Phytother Res 2022; 36:2746-2766. [PMID: 35499291 PMCID: PMC9347755 DOI: 10.1002/ptr.7475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
The researchers are still doing efforts to develop an effective, reliable, and easily accessible vaccine candidate to protect against COVID‐19. As of the August 2020, nearly 30 conventional vaccines have been emerged in clinical trials, and more than 200 vaccines are in various development stages. Nowadays, plants are also considered as a potential source for the production of monoclonal antibodies, vaccines, drugs, immunomodulatory proteins, as well as used as bioreactors or factories for their bulk production. The scientific evidences enlighten that plants are the rich source of oral vaccines, which can be given either by eating the edible parts of plants and/or by oral administration of highly refined proteins. The use of plant‐based edible vaccines is an emerging trend as it possesses minimum or no side effects compared with synthetic vaccines. This review article gives insights into different types of vaccines, the use of edible vaccines, advantages of edible vaccines over conventional vaccines, and mechanism of action of edible vaccines. This review article also focuses on the applications of edible vaccines in wide‐range of human diseases especially against COVID‐19 with emphasis on future perspectives of the use of edible vaccines.
Collapse
Affiliation(s)
- Fatima Khalid
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Reema Tahir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Manahil Ellahi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Nilofer Amir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Syed Faheem Askari Rizvi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP.R. China
| | - Ammarah Hasnain
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| |
Collapse
|
9
|
Development of Plant-Based Vaccines for Prevention of Avian Influenza and Newcastle Disease in Poultry. Vaccines (Basel) 2022; 10:vaccines10030478. [PMID: 35335110 PMCID: PMC8952014 DOI: 10.3390/vaccines10030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.
Collapse
|
10
|
Volokhov DV, Fry AM, Furtak V, Jones RM, Musiychuk K, Norikane J, Green BJ, Srinivas GB, Streatfield SJ, Yusibov V. An ELISA-based antigenicity test of rabies recombinant glycoprotein cannot predict its protective potency in vivo. Mol Cell Probes 2022; 63:101815. [DOI: 10.1016/j.mcp.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 11/15/2022]
|
11
|
Recent advances in molecular farming using monocot plants. Biotechnol Adv 2022; 58:107913. [DOI: 10.1016/j.biotechadv.2022.107913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
12
|
Singh R, Ren Z, Shi Y, Lin S, Kwon K, Balamurugan S, Rai V, Mante F, Koo H, Daniell H. Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2113-2125. [PMID: 34076337 PMCID: PMC8486246 DOI: 10.1111/pbi.13643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 05/09/2023]
Abstract
Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome. Antibiotic resistance gene used to engineer foreign genes into the chloroplast genome were subsequently removed using direct repeats flanking the aadA gene and enzymes were successfully expressed in marker-free lettuce transplastomic lines. Equivalent enzyme units of plant-derived lipase performed better than purified commercial enzymes against biofilms, specifically targeting fungal hyphae formation. Combination of lipase with dextranase and mutanase suppressed biofilm development by degrading the biofilm matrix, with concomitant reduction of bacterial and fungal accumulation. In chewing gum tablets formulated with freeze-dried plant cells, expressed protein was stable up to 3 years at ambient temperature and was efficiently released in a time-dependent manner using a mechanical chewing simulator device. Development of edible plant cells expressing enzymes eliminates the need for purification and cold-chain transportation, providing a potential translatable therapeutic approach. Biofilm disruption through plant enzymes and chewing gum-based delivery offers an effective and affordable dental biofilm control at home particularly for populations with minimal oral care access.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Zhi Ren
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yao Shi
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kwang‐Chul Kwon
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shanmugaraj Balamurugan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Francis Mante
- Department of Preventive and Restorative DentistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hyun Koo
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
13
|
Su H, Yakovlev IA, van Eerde A, Su J, Clarke JL. Plant-Produced Vaccines: Future Applications in Aquaculture. FRONTIERS IN PLANT SCIENCE 2021; 12:718775. [PMID: 34456958 PMCID: PMC8397579 DOI: 10.3389/fpls.2021.718775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 05/19/2023]
Abstract
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
14
|
Mirzaee M, Holásková E, Mičúchová A, Kopečný DJ, Osmani Z, Frébort I. Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants. Antibiotics (Basel) 2021; 10:898. [PMID: 34438948 PMCID: PMC8388648 DOI: 10.3390/antibiotics10080898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.
Collapse
Affiliation(s)
- Malihe Mirzaee
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Edita Holásková
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Alžbeta Mičúchová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - David J. Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic;
| | - Zhila Osmani
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Ivo Frébort
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| |
Collapse
|
15
|
Mardanova ES, Ravin NV. Transient expression of recombinant proteins in plants using potato virus X based vectors. Methods Enzymol 2021; 660:205-222. [PMID: 34742389 DOI: 10.1016/bs.mie.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Agroinfiltration of plant leaves with a plant viral vector carrying a gene of interest is a rapid and efficient method for protein production in plants. Currently this method is in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, and protein nanoparticles such as virus-like particles. A number of pharmaceutical proteins produced by transient expression are currently in clinical development. Here, we describe potato virus X based vector pEff-GFP enabling fast and high-level expression of recombinant proteins in Nicotiana benthamiana plants. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein (about 1mg per g of fresh leaf tissue) and was successfully applied for the production of the immunogens of potential clinical interest.
Collapse
Affiliation(s)
- Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Transient Gene Expression: an Approach for Recombinant Vaccine Production. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
18
|
Yiemchavee S, Wong-Arce A, Romero-Maldonado A, Shanmugaraj B, Monsivais-Urenda AE, Phoolcharoen W, Rosales-Mendoza S. Expression and immunogenicity assessment of a plant-made immunogen targeting the cytotoxic T-lymphocyte associated antigen-4: a possible approach for cancer immunotherapy. J Biotechnol 2021; 329:29-37. [PMID: 33485860 DOI: 10.1016/j.jbiotec.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023]
Abstract
Cancer immunotherapy is a promising intervention to fight against this global health problem. In particular targeting immune checkpoints, such as cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed-death protein 1 (PD-1), by specific monoclonal antibodies is a current treatment for many malignances. A possible innovation in this field is based on the induction of humoral responses in the host by suppressing the effects of such immune checkpoints and as consequence favoring the activation of cellular immunity against the tumor cells. In this study, chimeric protein comprising the B subunit of Escherichia coli heat-labile enterotoxin as carrier and the extracellular domain of CTLA-4 (LTB-CTLA4) was produced in Nicotiana benthamiana by transient expression. The recombinant protein was accumulated up to 1.29 μg/g of leaves fresh weight on 4 day-post-infiltration. The integrity of the plant-made LTB-CTLA4 antigen was confirmed by western blot analysis and ELISA. Immunogenicity of the plant-made LTB-CTLA4 was assessed in BALB/c mice and the results showed that humoral responses were induced against both the LTB and CTLA-4 moieties. The plant-made LTB-CTLA4 stands as a promising candidate for the design of advanced protection studies against cancer in murine models.
Collapse
Affiliation(s)
- Sutita Yiemchavee
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Alejandra Wong-Arce
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av.Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico
| | - Andrea Romero-Maldonado
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av.Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico
| | - Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Adriana E Monsivais-Urenda
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av.Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico.
| |
Collapse
|
19
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
20
|
Cebadera Miranda E, Castillo Ruiz-Cabello MV, Cámara Hurtado M. Food biopharmaceuticals as part of a sustainable bioeconomy: Edible vaccines case study. N Biotechnol 2020; 59:74-79. [PMID: 32688060 DOI: 10.1016/j.nbt.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
Abstract
The lack of immunization in developing countries is undoubtedly the most serious consequence of the difficulty in accessing traditional vaccination systems. The World Health Organization (WHO) has aimed to find low-cost vaccines, which are accessible to the population and are easy to store and distribute without the need for refrigeration. There is literature support that orally administered edible vaccines are promising agents to reduce the incidence of diseases such as hepatitis and diarrhoea, especially in the developing world. This article focuses on the study of the suitability of edible vaccines as biopharmaceuticals in the context of the 2030 Agenda for Sustainable Development, allowing to comprehensively address both malnutrition and the degree of immunization, mainly in the child population in developing countries. This is embedded within the scope of a new concept promulgated by the UN and FAO called' Therapeutic Food' or 'Ready to Use Therapeutic Food'. Biopharmaceuticals such as edible processed vaccines have the potential to play an important role in increasing global health to achieve the 2030 - Sustainable Development Goals (SDGs), and beyond, as a solution to the dual problem of malnutrition and immunoprophylaxis as part of a sustainable bioeconomy. This article reviews their most promising applications, as well as the problems of a scientific and socioeconomic nature, including the complex current legislation that restricts their implementation.
Collapse
Affiliation(s)
- Elena Cebadera Miranda
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, E-28040, Madrid, Spain
| | - Mª Victoria Castillo Ruiz-Cabello
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, E-28040, Madrid, Spain
| | - Montaña Cámara Hurtado
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, E-28040, Madrid, Spain.
| |
Collapse
|
21
|
Wang X, Karki U, Abeygunaratne H, UnnoldCofre C, Xu J. Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells. Process Biochem 2020; 100:39-48. [PMID: 33071562 DOI: 10.1016/j.procbio.2020.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ex vivo generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) used for blood transfusion represents one of the focuses in current regenerative medicine. However, massive production of HSCs-based RBCs requires a significant quantity of erythropoietic growth factors, making manufacturing at large scale cost prohibitive. Plant cell culture is proposed to be a promising bioproduction platform for functional human proteins in a safe and cost-efficient manner. This study exploited a proprietary technology, named HypGP engineering technology, for high-yield production of one of the key erythropoietic growth factors--stem cell factor (SCF)--in plant cell culture. Specifically, a designer hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) comprised of 20 tandem repeats of the "Ser-Pro" motif, or (SP)20, was engineered at either the N-terminus or C-terminus of SCF in tobacco BY-2 cells. The (SP)20 tag dramatically increased the secreted yields of SCF up to 2.5 μg/ml. The (SP)20-tagged SCF showed bioactivity in promoting the proliferation of the TF-1 cell line, although the SCF-(SP)20 was 8.4-fold more potent than the (SP)20-SCF. Both the (SP)20-SCF and SCF-(SP)20 exhibited desired function in stimulating the expansion and differentiation of human umbilical cord blood CD34+ cells towards RBCs.
Collapse
Affiliation(s)
- Xiaoting Wang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Hasara Abeygunaratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Carmela UnnoldCofre
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
22
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sohrab SS. An edible vaccine development for coronavirus disease 2019: the concept. Clin Exp Vaccine Res 2020; 9:164-168. [PMID: 32864373 PMCID: PMC7445323 DOI: 10.7774/cevr.2020.9.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
A novel coronavirus was emerged in December 2019 from Wuhan city, China and has now become a global threat to human health. Currently, the coronavirus disease 2019 (COVID-19) has spread to more than 34 countries with 2,445 deaths and 78,811 confirmed cases. Currently, there is no vaccine available against COVID-19. The traditional vaccines development requires more time and high cost and due to this, the disease outbreaks becomes more challenging. Now a days, plants have become more attractive platform for edible vaccine production than the other system. The development of an edible vaccine in a selected plant system has many significant advantages such as; easy and efficient oral delivery, low cost with higher scale production, avoidance of any trained medical personnel for delivery, lack of any pathogenic infection, multicomponent expression in a single plant, and so forth. In this manuscript, the concept, development, and importance of an edible vaccine have been discussed. By using this plant-based platform, an edible vaccines can be produced in many crops like banana, cucumber, carrot, lettuce, and tomato against various diseases. Due to increasing cases globally with COVID-19, there is an urgent requirement to develop an ideal vaccine and antiviral therapy against this virus to control the disease worldwide.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Song I, Kang YJ, Kim DH, Kim MK, Ko K. Expression and in vitro function of anti-cancer mAbs in transgenic Arabidopsis thaliana. BMB Rep 2020. [PMID: 31234954 PMCID: PMC7196188 DOI: 10.5483/bmbrep.2020.53.4.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anti-colorectal cancer monoclonal antibody CO17-1A (mAb CO), which recognizes the tumor-associated antigen EpCAM, was expressed in transgenic Arabidopsis plants. PCR and western blot analyses showed the insertion and expression of heavy chain (HC)/HC fused to the KDEL ER retention modif (HCK) and light chain (LC) of mAb CO and mAb CO with HCK (mAb COK) in Arabidopsis transformants. Both plant-derived mAbP CO and mAbP COK were purified from a biomass of approximately 1,000 seedlings grown in a greenhouse. In sandwich ELISA, both mAbP CO showed a slightly higher binding affinity for the target, EpCAM, compared to mAbM CO. In cell ELISA, both mAbsP COs showed binding affinity to the human colorectal cancer cell line SW480. Furthermore, mAbM CO, mAbP CO, and mAbP COK exhibited dose and time-dependent regression effects on SW480 cells in vitro. In summation, both mAbP CO and mAbP COK, expressed in Arabidopsis, recognized the target antigen EpCAM and showed anti-proliferative activity against human colorectal cancer cells.
Collapse
Affiliation(s)
- Ilchan Song
- Departments of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Departments of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Yang Joo Kang
- Departments of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Mi Kyung Kim
- Departments of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Kisung Ko
- Departments of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
25
|
Kim H, Kwon KW, Park J, Kang H, Lee Y, Sohn EJ, Hwang I, Eum SY, Shin SJ. Plant-Produced N-glycosylated Ag85A Exhibits Enhanced Vaccine Efficacy Against Mycobacterium tuberculosis HN878 Through Balanced Multifunctional Th1 T Cell Immunity. Vaccines (Basel) 2020; 8:vaccines8020189. [PMID: 32325740 PMCID: PMC7349862 DOI: 10.3390/vaccines8020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases worldwide and is caused by Mycobacterium tuberculosis (Mtb). An effective vaccine to prevent TB is considered the most cost-effective measure for controlling this disease. Many different vaccine antigen (Ag) candidates, including well-known and newly identified Ags, have been evaluated in clinical and preclinical studies. In this study, we took advantage of a plant system of protein expression using Nicotiana benthamiana to produce N-glycosylated antigen 85A (G-Ag85A), which is one of the most well-characterized vaccine Ag candidates in the field of TB vaccines, and compared its immunogenicity and vaccine efficacy with those of nonglycosylated Ag85A (NG-Ag85A) produced with an Escherichia coli system. Notably, G-Ag85A induced a more robust IFN-γ response than NG-Ag85A, which indicated that G-Ag85A is well recognized by the host immune system during Mtb infection. We subsequently compared the vaccine potential of G-Ag85A and NG-Ag85A by evaluating their immunological features and substantial protection efficacies. Interestingly, G-Ag85A yielded moderately enhanced long-term protective efficacy, as measured in terms of bacterial burden and lung inflammation. Strikingly, G-Ag85A-immunized mice showed a more balanced proportion of multifunctional Th1-biased immune responses with sustained IFN-γ response than did NG-Ag85A-immunized mice. Collectively, plant-derived G-Ag85A could induce protective and balanced Th1 responses and confer long-term protection against a hypervirulent Mtb Beijing strain infection, which indicated that plant-produced G-Ag85A might provide an excellent example for the production of an Mtb subunit vaccine Ag and could be an effective platform for the development of anti-TB vaccines.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.K.); (K.W.K.); (J.P.)
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.K.); (K.W.K.); (J.P.)
| | - Jaehun Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.K.); (K.W.K.); (J.P.)
| | - Hyangju Kang
- BioApplications Inc., Pohang 37668, Korea; (H.K.); (Y.L.); (E.-J.S.)
| | - Yongjik Lee
- BioApplications Inc., Pohang 37668, Korea; (H.K.); (Y.L.); (E.-J.S.)
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang 37668, Korea; (H.K.); (Y.L.); (E.-J.S.)
- School of Interdisciplinary Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon 51755, Korea;
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.K.); (K.W.K.); (J.P.)
- Correspondence:
| |
Collapse
|
26
|
Rosales-Mendoza S, Márquez-Escobar VA, González-Ortega O, Nieto-Gómez R, Arévalo-Villalobos JI. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19? Vaccines (Basel) 2020; 8:E183. [PMID: 32295153 PMCID: PMC7349371 DOI: 10.3390/vaccines8020183] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Verónica A. Márquez-Escobar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
| | - Ricardo Nieto-Gómez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Jaime I. Arévalo-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| |
Collapse
|
27
|
Ruiz Y, Ramos PL, Soto J, Rodríguez M, Carlos N, Reyes A, Callard D, Sánchez Y, Pujol M, Fuentes A. The M4 insulator, the TM2 matrix attachment region, and the double copy of the heavy chain gene contribute to the enhanced accumulation of the PHB-01 antibody in tobacco plants. Transgenic Res 2020; 29:171-186. [PMID: 31919795 DOI: 10.1007/s11248-019-00187-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/31/2019] [Indexed: 11/24/2022]
Abstract
The expression of recombinant proteins in plants is a valuable alternative to bioreactors using mammalian cell systems. Ease of scaling, and their inability to host human pathogens, enhance the use of plants to generate complex therapeutic products such as monoclonal antibodies. However, stably transformed plants expressing antibodies normally have a poor accumulation of these proteins that probably arise from the negative positional effects of their flanking chromatin. The induction of boundaries between the transgenes and the surrounding DNA using matrix attachment regions (MAR) and insulator elements may minimize these effects. With the PHB-01 antibody as a model, we demonstrated that the insertion of DNA elements, the TM2 (MAR) and M4 insulator, flanking the transcriptional cassettes that encode the light and heavy chains of the PHB-01 antibody, increased the protein accumulation that remained stable in the first plant progeny. The M4 insulator had a stronger effect than the TM2, with over a twofold increase compared to the standard construction. This effect was probably associated with an enhancer-promoter interference. Moreover, transgenic plants harboring two transcriptional units encoding for the PHB-01 heavy chain combined with both TM2 and M4 elements enhanced the accumulation of the antibody. In summary, the M4 combined with a double transcriptional unit of the heavy chain may be a suitable strategy for potentiating PHB-01 production in tobacco plants.
Collapse
Affiliation(s)
- Yoslaine Ruiz
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| | - Pedro Luis Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Department of Phytopathology and Plant Biochemistry, Instituto Biologico, São Paulo, Brazil
| | - Jeny Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Comparative Pathology Department, University of Miami, Miami, USA
| | - Meilyn Rodríguez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Natacha Carlos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Aneisi Reyes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Danay Callard
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Yadira Sánchez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Merardo Pujol
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandro Fuentes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| |
Collapse
|
28
|
Using carrot cells as biofactories and oral delivery vehicles of LTB-Syn: A low-cost vaccine candidate against synucleinopathies. J Biotechnol 2020; 309:75-80. [DOI: 10.1016/j.jbiotec.2019.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
|
29
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
30
|
Rodriguez-Hernandez M, Triggiani D, Ivison F, Demurtas OC, Illiano E, Marino C, Franconi R, Massa S. Expression of a Functional Recombinant Human Glycogen Debranching Enzyme (hGDE) in N. benthamiana Plants and in Hairy Root Cultures. Protein Pept Lett 2020; 27:145-157. [PMID: 31622193 DOI: 10.2174/0929866526666191014154047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/14/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSDIII, Cori/Forbes disease) is a metabolic disorder due to the deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (about 176 kDa) with two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Several mutations along the amylo-alpha-1,6-glucosidase,4-alphaglucanotransferase (Agl) gene are associated with loss of enzymatic activity. The unique treatment for GSDIII, at the moment, is based on diet. The potential of plants to manufacture exogenous engineered compounds for pharmaceutical purposes, from small to complex protein molecules such as vaccines, antibodies and other therapeutic/prophylactic entities, was shown by modern biotechnology through "Plant Molecular Farming". OBJECTIVE AND METHODS In an attempt to develop novel protein-based therapeutics for GSDIII, the Agl gene, encoding for the human GDE (hGDE) was engineered for expression as a histidinetagged GDE protein both in Nicotiana benthamiana plants by a transient expression approach, and in axenic hairy root in vitro cultures (HR) from Lycopersicum esculentum and Beta vulgaris. RESULTS In both plant-based expression formats, the hGDE protein accumulated in the soluble fraction of extracts. The plant-derived protein was purified by affinity chromatography in native conditions showing glycogen debranching activity. CONCLUSION These investigations will be useful for the design of a new generation of biopharmaceuticals based on recombinant GDE protein that might represent, in the future, a possible therapeutic option for GSDIII.
Collapse
Affiliation(s)
- Meilyn Rodriguez-Hernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Direction of Agricultural Biotechnology, Havana,Cuba
| | - Doriana Triggiani
- Italian Glycogen Storage Disease Association (AIG) NPO, Assago, Milan, Italy
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Fiona Ivison
- Department of Biochemistry, Manchester University NHS Foundation Trust, Manchester,United Kingdom
| | - Olivia C Demurtas
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| | - Elena Illiano
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Carmela Marino
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Rosella Franconi
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Silvia Massa
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| |
Collapse
|
31
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
32
|
Imamura T, Isozumi N, Higashimura Y, Miyazato A, Mizukoshi H, Ohki S, Mori M. Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:969-981. [PMID: 30451369 PMCID: PMC6587806 DOI: 10.1111/pbi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/18/2018] [Accepted: 11/14/2018] [Indexed: 05/02/2023]
Abstract
Betalains are plant pigments primarily produced by plants of the order Caryophyllales. Because betalain possesses anti-inflammatory and anticancer activities, it may be useful as a pharmaceutical agent and dietary supplement. Recent studies have identified the genes involved in the betalain biosynthesis of betanin. Amaranthin and celosianin II are abundant in the quinoa (Chenopodium quinoa Willd.) hypocotyl, and amaranthin comprises glucuronic acid bound to betanin; therefore, this suggests the existence of a glucuronyltransferase involved in the synthesis of amaranthin in the quinoa hypocotyl. To identify the gene involved in amaranthin biosynthesis, we performed a BLAST analysis and phylogenetic tree analysis based on sequences homologous to flavonoid glycosyltransferase, followed by expression analysis on the quinoa hypocotyl to obtain three candidate proteins. Production of amaranthin in a transient Nicotiana benthamiana expression system was evaluated for these candidates and one was identified as having the ability to produce amaranthin. The gene encoding this protein was quinoa amaranthin synthetase 1 (CqAmaSy1). We also created a transgenic tobacco bright yellow-2 (BY-2) cell line wherein four betalain biosynthesis genes were introduced to facilitate amaranthin production. This transgenic cell line produced 13.67 ± 4.13 μm (mean ± SEM) amaranthin and 26.60 ± 1.53 μm betanin, whereas the production of isoamaranthin and isobetanin could not be detected. Tests confirmed the ability of amaranthin and betanin to slightly suppress cancer cell viability. Furthermore, amaranthin was shown to significantly inhibit HIV-1 protease activity, whereas betanin did not.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | - Yasuki Higashimura
- Department of Food ScienceIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Akio Miyazato
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | | | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | - Masashi Mori
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiIshikawaJapan
| |
Collapse
|
33
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
34
|
Choi BH, Kim DY. A national project to build a business support facility for plant-derived vaccine. Clin Exp Vaccine Res 2019; 8:1-3. [PMID: 30775346 PMCID: PMC6369124 DOI: 10.7774/cevr.2019.8.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Bo-Hwa Choi
- Advanced Bio-convergence Center, Pohang Technopark, Pohang, Korea
| | - Do-Young Kim
- Advanced Bio-convergence Center, Pohang Technopark, Pohang, Korea
| |
Collapse
|
35
|
Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. FRONTIERS IN PLANT SCIENCE 2019; 10:803. [PMID: 31275344 PMCID: PMC6594412 DOI: 10.3389/fpls.2019.00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 05/03/2023]
Abstract
Plant molecular pharming has emerged as a reliable platform for recombinant protein expression providing a safe and low-cost alternative to bacterial and mammalian cells-based systems. Simultaneously, plant viruses have evolved from pathogens to molecular tools for recombinant protein expression, chimaeric viral vaccine production, and lately, as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and agroinfection, the development of non-enveloped viruses for various biotechnological applications, and the on-going research on enveloped plant viruses.
Collapse
|
36
|
Modarresi M, Javaran MJ, Shams-bakhsh M, Zeinali S, Behdani M, Mirzaee M. Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech 2018; 8:484. [PMID: 30467531 DOI: 10.1007/s13205-018-1500-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
In human, the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR2) is critical for tumor angiogenesis. This is a vital process for cancer tumor growth and metastasis. Blocking VEGF/VEGFR2 conjugation by antibodies inhibits the neovascularization and tumor metastasis. This investigation designed to use a transient expression platform for production of recombinant anti-VEGFR2 nanobody in tobacco plants. At first, anti-VEGFR2-specific nanobody gene was cloned in a Turnip mosaic virus (TuMV)-based vector, and then, it was expressed in Nicotiana benthamiana and Nicotiana tabacum cv. Xanthi transiently. The expression of nanobody in tobacco plants were confirmed by reverse transcription-polymerase chain reaction (RT-PCR), dot blot, enzyme-linked immunosorbent assays (ELISA), and Western blot analysis. It was shown that tobacco plants could accumulate nanobody up to level 0.45% of total soluble protein (8.3 µg/100 mg of fresh leaf). This is the first report of the successful expression of the camelied anti-VEFGR2 nanobody gene in tobacco plants using a plant viral vector. This system provides a fast solution for production of pharmaceutical and commercial proteins such as anti-cancer nanobodies in tobacco plants.
Collapse
|
37
|
Vasques RM, Lacorte C, da Luz LL, Aranda MA, Nagata T. Development of a new tobamovirus-based viral vector for protein expression in plants. Mol Biol Rep 2018; 46:97-103. [PMID: 30367403 DOI: 10.1007/s11033-018-4449-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Abstract
Plants are becoming an interesting alternative system for the heterologous production of pharmaceutical proteins, providing a more scalable, cost-effective, and biologically safer option than the current expression systems. The development of plant virus expression vectors has allowed rapid and high-level transient expression of recombinant genes, and, in turn, provided an attractive plant-based production platform. Here we report the development of vectors based on the tobamovirus Pepper mild mottle virus (PMMoV) to be used in transient expression of foreign genes. In this PMMoV vector, a middle part of the viral coat protein gene was replaced by the green fluorescent protein (GFP) gene, and this recombinant genome was assembled in a binary vector suitable for plant agroinoculation. The accumulation of GFP was evaluated by observation of green fluorescent signals under UV light and by western blotting. Furthermore, by using this vector, the multiepitope gene for chikungunya virus was successfully expressed and confirmed by western blotting. This PMMoV-based vector represents an alternative system for a high-level production of heterologous protein in plants.
Collapse
Affiliation(s)
- Raquel Medeiros Vasques
- Departamento de Biologia Celular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70297-400, Brazil
| | - Leonardo Lopes da Luz
- Departamento de Biologia Celular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100, Murcia, Spain
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
38
|
Towards Food Security: Current State and Future Prospects of Agrobiotechnology. Trends Biotechnol 2018; 36:1219-1229. [PMID: 30262405 DOI: 10.1016/j.tibtech.2018.07.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022]
Abstract
The consistent increase in the global population, estimated to reach 9 billion people by 2050, poses a serious challenge for the achievement of global food security. Therefore, the need to feed an increasing world population and to respond adequately to the effects of climate change must be urgently considered. Progress may be achieved by applying knowledge of molecular and genetic mechanisms to create and/or improve agricultural and industrial processes. We highlight the importance of crops (wheat, maize, rice, rapeseed, and soybean) to the development of sustainable agriculture and agrobiotechnology in the EU and discuss possible solutions for ensuring food security, while also considering their social acceptance.
Collapse
|
39
|
Chichester JA, Green BJ, Jones RM, Shoji Y, Miura K, Long CA, Lee CK, Ockenhouse CF, Morin MJ, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine 2018; 36:5865-5871. [PMID: 30126674 PMCID: PMC6143384 DOI: 10.1016/j.vaccine.2018.08.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Abstract
Malaria continues to be one of the world's most devastating infectious tropical diseases, and alternative strategies to prevent infection and disease spread are urgently needed. These strategies include the development of effective vaccines, such as malaria transmission blocking vaccines (TBV) directed against proteins found on the sexual stages of Plasmodium falciparum parasites present in the mosquito midgut. The Pfs25 protein, which is expressed on the surface of gametes, zygotes and ookinetes, has been a primary target for TBV development. One such vaccine strategy based on Pfs25 is a plant-produced malaria vaccine candidate engineered as a chimeric non-enveloped virus-like particle (VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein. This Pfs25 VLP-FhCMB vaccine candidate has been engineered and manufactured in Nicotiana benthamiana plants at pilot plant scale under current Good Manufacturing Practice guidelines. The safety, reactogenicity and immunogenicity of Pfs25 VLP-FhCMB was assessed in healthy adult volunteers. This Phase 1, dose escalation, first-in-human study was designed primarily to evaluate the safety of the purified plant-derived Pfs25 VLP combined with Alhydrogel® adjuvant. At the doses tested in this Phase 1 study, the vaccine was generally shown to be safe in healthy volunteers, with no incidence of vaccine-related serious adverse events and no evidence of any dose-limiting or dose-related toxicity, demonstrating that the plant-derived Pfs25 VLP-FhCMB vaccine had an acceptable safety and tolerability profile. In addition, although the vaccine did induce Pfs25-specific IgG in vaccinated patients in a dose dependent manner, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine adjuvant formulation. This study was registered at www.ClinicalTrials.gov under reference identifier NCT02013687.
Collapse
Affiliation(s)
| | - Brian J Green
- Fraunhofer USA Inc. Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - R Mark Jones
- Fraunhofer USA Inc. Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - Yoko Shoji
- Fraunhofer USA Inc. Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Cynthia K Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | | | | | - Vidadi Yusibov
- Fraunhofer USA Inc. Center for Molecular Biotechnology, Newark, DE 19711, USA.
| |
Collapse
|
40
|
Rosales-Mendoza S, Nieto-Gómez R. Green Therapeutic Biocapsules: Using Plant Cells to Orally Deliver Biopharmaceuticals. Trends Biotechnol 2018; 36:1054-1067. [PMID: 29980327 DOI: 10.1016/j.tibtech.2018.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
The use of innovative platforms to produce biopharmaceuticals cheaply and deliver them through noninvasive routes could expand their social benefits. Coverage should increase as a consequence of lower cost and higher patient compliance due to painless administration. For more than two decades of research, oral therapies that rely on genetically engineered plants for the production of biopharmaceuticals have been explored to treat or prevent high-impact diseases. Recent reports on the successful oral delivery of plant-made biopharmaceuticals raise new hopes for the field. Several candidates have shown protection in animal models, and efforts to establish their production on an industrial scale are ongoing. These advances and perspectives for the field are analyzed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Avenue Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico.
| | - Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Avenue Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, 78210, Mexico
| |
Collapse
|
41
|
Jiang Z, Kempinski C, Kumar S, Kinison S, Linscott K, Nybo E, Janze S, Wood C, Chappell J. Agronomic and chemical performance of field-grown tobacco engineered for triterpene and methylated triterpene metabolism. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1110-1124. [PMID: 29069530 PMCID: PMC5978867 DOI: 10.1111/pbi.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/08/2017] [Indexed: 05/13/2023]
Abstract
Squalene is a linear intermediate to nearly all classes of triterpenes and sterols and is itself highly valued for its use in wide range of industrial applications. Another unique linear triterpene is botryococcene and its methylated derivatives generated by the alga Botryococcus braunii race B, which are progenitors to fossil fuel deposits. Production of these linear triterpenes was previously engineered into transgenic tobacco by introducing the key steps of triterpene metabolism into the particular subcellular compartments. In this study, the agronomic characteristics (height, biomass accumulation, leaf area), the photosynthetic capacity (photosynthesis rate, conductance, internal CO2 levels) and triterpene content of select lines grown under field conditions were evaluated for three consecutive growing seasons. We observed that transgenic lines targeting enzymes to the chloroplasts accumulated 50-150 times more squalene than the lines targeting the enzymes to the cytoplasm, without compromising growth or photosynthesis. We also found that the transgenic lines directing botryococcene metabolism to the chloroplast accumulated 10- to 33-fold greater levels than the lines where the same enzymes were targeted to in the cytoplasm. However, growth of these high botryococcene accumulators was highly compromised, yet their photosynthesis rates remained unaffected. In addition, in the transgenic lines targeting a triterpene methyltransferase (TMT) to the chloroplasts of high squalene accumulators, 55%-65% of total squalene was methylated, whereas in the lines expressing a TMT in the cytoplasm, only 6%-13% of squalene was methylated. The growth of these methylated triterpene-accumulating lines was more compromised than that of nonmethylated squalene lines.
Collapse
Affiliation(s)
- Zuodong Jiang
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Chase Kempinski
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Santosh Kumar
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Scott Kinison
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Kristin Linscott
- Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKYUSA
| | - Eric Nybo
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Sarah Janze
- Department of StatisticsUniversity of KentuckyLexingtonKYUSA
| | - Connie Wood
- Department of StatisticsUniversity of KentuckyLexingtonKYUSA
| | - Joe Chappell
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
- Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
42
|
Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 PMCID: PMC5854594 DOI: 10.1038/s41598-018-22860-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
|
43
|
Kang H, Park Y, Lee Y, Yoo YJ, Hwang I. Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 DOI: 10.1038/s41598-018-22860-22862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 05/28/2023] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Youngmin Park
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yongjik Lee
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
44
|
Tokuhara D. Challenges in developing mucosal vaccines and antibodies against infectious diarrhea in children. Pediatr Int 2018; 60:214-223. [PMID: 29290097 DOI: 10.1111/ped.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea in children can be life-threatening and imposes a large economic burden on healthcare systems, therefore more effective prophylactic and therapeutic drugs are needed urgently. Because most of the pathogens responsible for childhood diarrhea infect the gastrointestinal mucosa, providing protective immunity at the mucosal surface is an ideal way to control pathogen invasion and toxic activity. Mucosal (e.g. oral, nasal) vaccines are superior to systemic (subcutaneous or intramuscular) vaccination for conferring both mucosal and systemic pathogen-specific immune responses. Therefore, great efforts has been focused on the development of cost-effective mucosal vaccines for the past 50 years. Recent progress in plant genetic engineering has revolutionized the production of inexpensive and safe recombinant vaccine antigens. For example, rice plant biotechnology has facilitated the development of a cold-chain-free rice-based oral subunit vaccine against Vibrio cholerae. Furthermore, this technology has led to the creation of a rice-based oral antibody for prophylaxis and treatment of rotavirus gastroenteritis. This review summarizes current perspectives regarding the mucosal immune system and the development of mucosal vaccines and therapeutic antibodies, particularly rice-based products, and discusses future prospects regarding mucosal vaccines for children.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abenoku, Osaka, Japan
| |
Collapse
|
45
|
Hefferon KL. Repurposing Plant Virus Nanoparticles. Vaccines (Basel) 2018; 6:vaccines6010011. [PMID: 29443902 PMCID: PMC5874652 DOI: 10.3390/vaccines6010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Plants have been explored for many years as inexpensive and versatile platforms for the generation of vaccines and other biopharmaceuticals. Plant viruses have also been engineered to either express subunit vaccines or act as epitope presentation systems. Both icosahedral and helical, filamentous-shaped plant viruses have been used for these purposes. More recently, plant viruses have been utilized as nanoparticles to transport drugs and active molecules into cancer cells. The following review describes the use of both icosahedral and helical plant viruses in a variety of new functions against cancer. The review illustrates the breadth of variation among different plant virus nanoparticles and how this impacts the immune response.
Collapse
|
46
|
Pierce OM, McNair GR, He X, Kajiura H, Fujiyama K, Kermode AR. N-glycan structures and downstream mannose-phosphorylation of plant recombinant human alpha-L-iduronidase: toward development of enzyme replacement therapy for mucopolysaccharidosis I. PLANT MOLECULAR BIOLOGY 2017; 95:593-606. [PMID: 29119347 DOI: 10.1007/s11103-017-0673-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy. Functional recombinant human alpha-L-iduronidase (IDUA; EC 3.2.1.76) enzymes were generated in seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) C5 background, which is deficient in the activity of N-acetylglucosaminyl transferase I, and in seeds of the Arabidopsis gm1 mutant, which lacks Golgi α-mannosidase I (GM1) activity. Both strategies effectively prevented N-glycan maturation and the resultant N-glycan structures on the consensus sites for N-glycosylation of the human enzyme revealed high-mannose N-glycans of predominantly Man5 (cgl-IDUA) or Man6-8 (gm1-IDUA) structures. Both forms of IDUA were equivalent with respect to their kinetic parameters characterized by cleavage of the artificial substrate 4-methylumbelliferyl-iduronide. Because recombinant lysosomal enzymes produced in plants require the addition of mannose-6-phosphate (M6P) in order to be suitable for lysosomal delivery in human cells, we characterized the two IDUA proteins for their amenability to downstream in vitro mannose phosphorylation mediated by a soluble form of the human phosphotransferase (UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine [GlcNAc]-1-phosphotransferase). Gm1-IDUA exhibited a slight advantage over the cgl-IDUA in the in vitro M6P-tagging process, with respect to having a better affinity (i.e. lower K m) for the soluble phosphotransferase. This may be due to the greater number of mannose residues comprising the high-mannose N-glycans of gm1-IDUA. Our elite cgl- line produces IDUA at > 5.7% TSP (total soluble protein); screening of the gm1 lines showed a maximum yield of 1.5% TSP. Overall our findings demonstrate the relative advantages and disadvantages associated with the two platforms to create enzyme replacement therapeutics for lysosomal storage diseases.
Collapse
Affiliation(s)
- Owen M Pierce
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Grant R McNair
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Xu He
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Osaka, 565, Japan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-hagashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Osaka, 565, Japan
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
47
|
Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, Si H, Manceva SD, Rhee A, Shamloul M, Norikane J, Guimarães RC, Caride E, Silva ANMR, Simões M, Neves PCC, Marchevsky R, Freire MS, Streatfield SJ, Yusibov V. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am J Trop Med Hyg 2017; 98:420-431. [PMID: 29231157 DOI: 10.4269/ajtmh.16-0293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Huaxin Si
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosane C Guimarães
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Elena Caride
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea N M R Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia C C Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos S Freire
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
48
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
49
|
Loh HS, Green BJ, Yusibov V. Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Curr Opin Virol 2017; 26:81-89. [PMID: 28800551 PMCID: PMC7102806 DOI: 10.1016/j.coviro.2017.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/17/2022]
Abstract
Concept of plant-based biofactories for therapeutics and biologics. Industrial preference of transient expression system — agroinfiltration. Advancement of virus-like particles from epitope presentation to nanomedicine. Recent progress of plant-made therapeutics and biologics against human diseases.
Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA.
| |
Collapse
|
50
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|