1
|
Wang X, Wang J, Han Y, Jiang X, Cao S, Xu D, Xiong T, Guo X, Wang C, Guo S, Song H, Dong T, Zhang L, An Z, Liu J, Han J, Wu H. Utilizing a hydrophobic primary container surface to reduce the formation of subvisible particles in monoclonal antibody solution caused by fluid shear. Eur J Pharm Biopharm 2024; 204:114502. [PMID: 39293723 DOI: 10.1016/j.ejpb.2024.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
The exposure of protein molecules to interfaces may cause protein aggregation and particle formation in protein formulations, especially hydrophobic interfaces, which may promote protein aggregation in solution. In this study, we found that modification of the surface properties by application of a hydrophobic Octadecyltrichlorosilane (OTS) could reduce the generation of protein aggregates and particles in protein solution induced by fluid shear. A stable protein adsorption layer was formed at the hydrophobic interface through the strong hydrophobic interaction between the protein and hydrophobic surface, which could prevent the aggregated protein from falling off into the bulk solution to form subvisible particles and insoluble protein aggregates. In addition, human complement enzyme linked immunosorbent assay results showed that the particles that were generated in the OTS-coated container did not activate human complement which indicated the OTS-coated container could be used as primary containers for certain types of monoclonal antibody formulation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Junjie Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Yang Han
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Xingchun Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Sixian Cao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Dongze Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Tiancheng Xiong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Xiang Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Cui Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Sha Guo
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | | | - Ting Dong
- Qilu Pharmaceutical, Shandong 250104, China
| | - Le Zhang
- Qilu Pharmaceutical, Shandong 250104, China
| | | | - Jun Liu
- Qilu Pharmaceutical, Shandong 250104, China
| | - Jing Han
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Liaoning 110016, China.
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China.
| |
Collapse
|
2
|
Milef G, Ghazvini S, Prajapati I, Chen YC, Wang Y, Boroumand M. Particle formation in response to different protein formulations and containers: Insights from machine learning analysis of particle images. J Pharm Sci 2024:S0022-3549(24)00424-6. [PMID: 39389538 DOI: 10.1016/j.xphs.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Subvisible particle count is a biotherapeutics stability indicator widely used by pharmaceutical industries. A variety of stresses that biotherapeutics are exposed to during development can impact particle morphology. By classifying particle morphological differences, stresses that have been applied to monoclonal antibodies (mAbs) can be identified. This study aims to evaluate common biotherapeutic drug storage and shipment conditions that are known to impact protein aggregation. Two different studies were conducted to capture particle images using micro-flow imaging and to classify particles using a convolutional neural network. The first study evaluated particles produced in response to agitation, heat, and freeze-thaw stresses in one mAb formulated in five different formulations. The second study evaluated particles from two common drug containers, a high-density polyethylene bottle and a glass vial, in six mAbs exposed solely to agitation stress. An extension of this study was also conducted to evaluate the impact of sequential stress exposure compared to exposure to one stress alone, on particle morphology. Overall, the convolutional neural network was able to classify particles belonging to a particular formulation or container. These studies indicate that storage and shipping stresses can impact particle morphology according to formulation composition and mAb.
Collapse
Affiliation(s)
- Gabriella Milef
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Saba Ghazvini
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yu-Chieh Chen
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yibo Wang
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mehdi Boroumand
- Data Science and Modeling, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
3
|
Moll F, Bechtold-Peters K, Friess W. The silicone depletion in combination products induced by biologics. Eur J Pharm Biopharm 2024; 203:114418. [PMID: 39079589 DOI: 10.1016/j.ejpb.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/14/2024]
Abstract
Silicone oil (SO) migration into the drug product of combination products for biopharmaceuticals during storage is a common challenge. As the inner barrel surface is depleted of SO the extrusion forces can increase compromising the container functionality. In this context we investigated the impact of different formulations on the increase in gliding forces in a spray-on siliconized pre-filled syringe upon storage at 2-8 °C, 25 °C and 40 °C for up to 6 months. We tested the formulation factors such as surfactant type, pH, and ionic strength in the presence of one monoclonal antibody (mAb) as well as compared three mAbs in one formulation. After 1 month at 40 °C, the extrusion forces were significantly increased due to SO detachment dependent on the fill medium. The storage at 40 °C enhanced the SO migration process but it could also be observed at lower storage temperatures. Regarding the formulation factors the tendency for SO migration was predominantly dependent on the presence and type of surfactant. Interestingly, when varying the mAb molecules, one of the proteins showed a rather stabilizing effect on the SO layer resulting into higher container stability. In contrast to the formulation factors, those different stability outcomes could not be explained by interfacial tension (IFT) measurements at the SO interface. Further characterization of the mAb molecules regarding interfacial rheology and conformational stability were not adequately able to explain the observed difference. Solely a hydrophobicity ranking of the molecules correlated to the stability outcome. Further investigations are needed to clarify the role of the protein in the SO detachment process and to understand the cause for the stabilization. However, the study clearly demonstrated that the protein itself plays a critical role in the SO detachment process and underlined the importance to include verum for container stability.
Collapse
Affiliation(s)
- Fabian Moll
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
4
|
Álvarez-Palencia Jiménez R, Maze A, Vian G, Bruckert F, Bensaid F, El-Kechai N, Weidenhaupt M. Development of an ELISA-based device to quantify antibody adsorption directly on medical plastic surfaces. Eur J Pharm Biopharm 2024; 203:114425. [PMID: 39059751 DOI: 10.1016/j.ejpb.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Monoclonal antibodies (mAbs) encounter numerous interfaces during manufacturing, storage, and administration. While protein adsorption at the solid/liquid interface has been widely explored on model surfaces, a key challenge remains - the detection of very small amounts of adsorbed mAb directly on real medical surfaces. This study introduces a novel ELISA-based device, ELIBAG, a new tool for measuring mAb adsorption on medical bags. The efficacy of this device was highlighted by successfully confirming the adsorption of an IgG1 on two medical bag types: a polypropylene IV administration bag and a low-density polyethylene pharmaceutical manufacturing bag. We also investigated IgG1 adsorption on plastic model surfaces, revealing a similar range of mAb bulk concentration for surface saturation on both model and bag surfaces. This innovative device, characterized by its high-throughput and rapid approach, paves the way for extensive investigations into therapeutic proteins, such as mAbs, adsorption on a variety of medical or pharmaceutical surfaces, diverse adsorption conditions, and the influence of excipients employed in mAb formulation, which could enhance the knowledge of mAb interactions with plastic surfaces throughout their lifecycle.
Collapse
Affiliation(s)
- Rosa Álvarez-Palencia Jiménez
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France; Sanofi, 94400 Vitry-sur-Seine, France
| | - Antoine Maze
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France
| | - Gilbert Vian
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France
| | - Franz Bruckert
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France
| | | | | | - Marianne Weidenhaupt
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000 Grenoble, France.
| |
Collapse
|
5
|
Cernosek T, Dalphin M, Jain N, Lor J, Richter N, Mellal M, Behrens S, Wunderli P. A case study application of AQbD to the re-development and validation of an affinity chromatography analytical procedure for mAb titer quantitation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124205. [PMID: 38880058 DOI: 10.1016/j.jchromb.2024.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Protein A (ProA) high-performance liquid chromatography (HPLC) is a common analytical procedure for measuring monoclonal antibody (mAb) titers due to its high specificity and efficiency. Accurate and reliable results of this procedure are imperative, as the quantitation of the total mAb present for in-process samples directly impacts downstream purification steps related to the removal of process-related impurities. This study aimed to improve a platform ProA HPLC analytical procedure which was previously developed using traditional approaches and was not always reliable. By retrospectively applying Analytical Quality by Design (AQbD) principles and statistical assessments of performance, a bias in the calibration standard due to protein-adsorption to common sample vial materials was identified. The inclusion of Tween® 20 into the mobile phase used as sample diluent was optimized to ensure procedure performance and improve analytical range. The resulting procedure robustness was evaluated using Design of Experiment (DoE) approaches and performance was verified against Analytical Target Profile (ATP) criteria as recommended by regulatory agencies. The resulting linearity displayed R2 values of 1.00 with intercept biases of 1.2 % (analyst 1) and 0.8 % (analyst 2), accuracy across all levels was reported at 99.2 % recovery, and intermediate precision was reported as 3.0 % RSD. Application of this new platform procedure has since reduced development timelines for new mAb products by 50 % and allowed for accurate titer determination to support >5 early phase product-specific process decisions without requiring extensive analytical procedure development. This work demonstrates the utility and relative ease of adopting AQbD concepts, even for established procedures, and supporting them with a lifecycle approach to managing procedure performance.
Collapse
Affiliation(s)
- Terezie Cernosek
- Catalent Biologics, Madison, WI, USA; Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA.
| | | | | | - Jason Lor
- Catalent Biologics, Madison, WI, USA
| | | | | | - Sue Behrens
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | |
Collapse
|
6
|
Saurabh S, Zhang Q, Li Z, Seddon JM, Kalonia C, Lu JR, Bresme F. Mechanistic Insights into the Adsorption of Monoclonal Antibodies at the Water/Vapor Interface. Mol Pharm 2024; 21:704-717. [PMID: 38194618 PMCID: PMC10848294 DOI: 10.1021/acs.molpharmaceut.3c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) are active components of therapeutic formulations that interact with the water-vapor interface during manufacturing, storage, and administration. Surface adsorption has been demonstrated to mediate antibody aggregation, which leads to a loss of therapeutic efficacy. Controlling mAb adsorption at interfaces requires a deep understanding of the microscopic processes that lead to adsorption and identification of the protein regions that drive mAb surface activity. Here, we report all-atom molecular dynamics (MD) simulations of the adsorption behavior of a full IgG1-type antibody at the water/vapor interface. We demonstrate that small local changes in the protein structure play a crucial role in promoting adsorption. Also, interfacial adsorption triggers structural changes in the antibody, potentially contributing to the further enhancement of surface activity. Moreover, we identify key amino acid sequences that determine the adsorption of antibodies at the water-air interface and outline strategies to control the surface activity of these important therapeutic proteins.
Collapse
Affiliation(s)
- Suman Saurabh
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Qinkun Zhang
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Zongyi Li
- Biological
Physics Group, School of Physics and Astronomy, Faculty of Science
and Engineering, the University of Manchester, Manchester M13 9PL, U.K.
| | - John M. Seddon
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Cavan Kalonia
- Dosage
Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Jian R. Lu
- Biological
Physics Group, School of Physics and Astronomy, Faculty of Science
and Engineering, the University of Manchester, Manchester M13 9PL, U.K.
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| |
Collapse
|
7
|
Hada S, Ji S, Na Lee Y, Hyun Kim K, Maharjan R, Ah Kim N, Rantanen J, Hoon Jeong S. Comparative study between a gravity-based and peristaltic pump for intravenous infusion with respect to generation of proteinaceous microparticles. Int J Pharm 2023:123091. [PMID: 37268032 DOI: 10.1016/j.ijpharm.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Subvisible particles generated during the preparation or administration of biopharmaceuticals might increase the risk of immunogenicity, inflammation, or organ dysfunction. To investigate the impact of an infusion system on the level of subvisible particles, we compared two types of infusion set based on peristaltic movement (Medifusion DI-2000 pump) and a gravity-based infusion system (Accu-Drip) using intravenous immunoglobulin (IVIG) as a model drug. The peristaltic pump was found to be more susceptible to particle generation compared to the gravity infusion set owing to the stress generated due to constant peristaltic motion. Moreover, the 5-µm in-line filter integrated into the tubing of the gravity-based infusion set further contributed to the reduction of particles mostly in the range ≥ 10 µm. Furthermore, the filter was also able to maintain the particle level even after the pre-exposure of samples to silicone oil lubricated syringes, drop shock, or agitation. Overall, this study suggests the need for the selection of an appropriate infusion set equipped with an in-line filter based on the sensitivity of the product.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Sunkyong Ji
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ye Na Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
8
|
Wedler V, Quinones D, Peisert H, Schäffer E. A Quick and Reproducible Silanization Method by Using Plasma Activation for Hydrophobicity-Based Kinesin Single Molecule Fluorescence-Microscopy Assays. Chemistry 2022; 28:e202202036. [PMID: 35925842 PMCID: PMC9826530 DOI: 10.1002/chem.202202036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Single-molecule assays often require functionalized surfaces. One approach for microtubule assays renders surfaces hydrophobic and uses amphiphilic blocking agents. However, the optimal hydrophobicity is unclear, protocols take long, produce toxic waste, and are susceptible to failure. Our method uses plasma activation with hydrocarbons for hexamethyldisilazane (HMDS) silanization in the gas phase. We measured the surface hydrophobicity, its effect on how well microtubule filaments were bound to the surface, and the number of nonspecific interactions with kinesin motor proteins. Additionally, we tested and discuss the use of different silanes and activation methods. We found that even weakly hydrophobic surfaces were optimal. Our environmentally friendly method significanty reduced the overall preparation effort and resulted in reproducible, high-quality surfaces with low variability. We expect the method to be applicable to a wide range of other single-molecule assays.
Collapse
Affiliation(s)
- Viktoria Wedler
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP)Auf der Morgenstelle 3272076TübingenGermany
| | - Dustin Quinones
- Eberhard Karls Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| | - Heiko Peisert
- Eberhard Karls Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| | - Erik Schäffer
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP)Auf der Morgenstelle 3272076TübingenGermany
| |
Collapse
|
9
|
Thite NG, Ghazvini S, Wallace N, Feldman N, Calderon CP, Randolph TW. Machine Learning Analysis Provides Insight into Mechanisms of Protein Particle Formation Inside Containers During Mechanical Agitation. J Pharm Sci 2022; 111:2730-2744. [PMID: 35835184 PMCID: PMC9481670 DOI: 10.1016/j.xphs.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Container choice can influence particle generation within protein formulations. Incompatibility between proteins and containers can manifest as increased particle concentrations, shifts in particle size distributions and changes in particle morphology distributions. In this study, flow imaging microscopy (FIM) combined with machine learning-based goodness-of-fit hypothesis testing algorithms were used in accelerated stability studies to investigate the impact of containers on particle formation. Containers in four major container categories subdivided into eleven container types were filled with monoclonal antibody formulations and agitated with and without headspace, producing subvisible particles. Digital images of the particles were recorded using flow imaging microscopy and analyzed with machine learning algorithms. Particle morphology distributions depended on container category and type, revealing differences that would not have been obvious by analysis of particle concentrations or container surface characteristics alone. Additionally, the algorithm was used to compare morphologies of particles generated in containers against those generated using isolated stresses at air-liquid and container-air-liquid interfaces. These comparisons showed that the morphology distributions of particles formed during agitation most closely resemble distributions that result from exposure of proteins to moving triple interface lines at points where container-air-liquid interfaces intersect. The approach described here can be used to identify dominant causes of particle generation due to protein-container interactions.
Collapse
Affiliation(s)
- Nidhi G Thite
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Saba Ghazvini
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | | | - Naomi Feldman
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
10
|
Tade RS, Patil PO. Biofabricated functionalized graphene quantum dots (fGQDs): Unravelling its fluorescence sensing mechanism of human telomerase reverse transcriptase (hTERT) antigen and in vitro bioimaging application. Biomed Mater 2022; 17. [PMID: 35896107 DOI: 10.1088/1748-605x/ac84ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer (LC) is a deadly malignancy that is posing a serious threat to human health. Therefore, early detection of LC biomarkers is the key to reducing LC-related fatalities. Herein, we present the first fluorescent-based selective detection of LC biomarker human telomerase reverse transcriptase (hTERT) using polyethyleneimine (PEI) functionalized graphene quantum dots (fGQDs). One-pot in situ synthesis of amine-functionalized GQDs was accomplished by hydrothermal carbonization of biowaste-derived cellulose and PEI. Synthesized fGQDs were characterized by various analytical techniques. Synthesized fGQDs not only exhibited enhanced fluorescence life-time but also excellent stability in the different solvents compared to bare GQDs. The surface activation of hTERT-Ab by carbodiimide chemistry (EDC-NHS) resulted in stacking interactions with fGQDs, involving adsorption-desorption as well as competitive mechanisms. The higher inherent affinity of hTERT-Ag (hTERT antigen) for hTERT-Ab (hTERT antibody) resulted in complex formation and recovery of fGQD fluorescence. As a result, this fluorescence sensing demonstrated a greater linear detection range (0.01 ng mL-1 to 100 µg mL-1) as well as a notable low detection limit (36.3 pg mL-1). Furthermore, the fabricated immunosensor (Ab@fGQDs) has excellent stability and performance in real samples, with an average recovery of 97.32%. The results of cytotoxicity and cellular bioimaging study in A549 cells show that fGQDs can be used for additional nanotherapeutics and biological applications.
Collapse
Affiliation(s)
- Rahul S Tade
- Pharmaceutics, HR Patel Institute of Pharmaceutical Education and Research, Shirsoli PB, Jalgaon, Shirpur, Maharashtra, 425405, INDIA
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Shirpur, Shirpur, 425405, INDIA
| |
Collapse
|
11
|
Hickey AJ, Stewart IE. Inhaled antibodies: Quality and performance considerations. Hum Vaccin Immunother 2022; 18:1940650. [PMID: 34191682 PMCID: PMC9116391 DOI: 10.1080/21645515.2021.1940650] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
The use of antibodies in the treatment of lung diseases is of increasing interest especially as the search for COVID-19 therapies has unfolded. Historically, the use of antibody therapy was based on multiple targets including receptors involved in local hyper-reactivity in asthma, viruses and micro-organisms involved in a variety of pulmonary infectious disease. Generally, protein therapeutics pose challenges with respect to formulation and delivery to retain activity and assure therapy. The specificity of antibodies amplifies the need for attention to molecular integrity not only in formulation but also during aerosol delivery for pulmonary administration. Drug product development can be viewed from considerations of route of administration, dosage form, quality, and performance measures. Nebulizers and dry powder inhalers have been used to deliver protein therapeutics and each has its advantages that should be matched to the needs of the drug and the disease. This review offers insight into quality and performance barriers and the opportunities that arise from meeting them effectively.
Collapse
|
12
|
Nicoliche CYN, Pascon AM, Bezerra ÍRS, de Castro ACH, Martos GR, Bettini J, Alves WA, Santhiago M, Lima RS. In Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2522-2533. [PMID: 34990106 DOI: 10.1021/acsami.1c18778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrochemical detection in complex biofluids is a long-standing challenge as electrode biofouling hampers its sensing performance and commercial translation. To overcome this drawback, pyrolyzed paper as porous electrode coupled with the drop casting of an off-the-shelf polysorbate, that is, Tween 20 (T20), is described here by taking advantage of the in situ formation of a hydrophilic nanocoating (2 nm layer of T20). The latter prevents biofouling while providing the capillarity of samples through paper pores, leveraging redox reactions across both only partially fouled and fresh electrodic surfaces with increasing detection areas. The nanometric thickness of this blocking layer is also essential by not significantly impairing the electron-transfer kinetics. These phenomena behave synergistically to enhance the sensibility that further increases over long-term exposures (4 h) in biological fluids. While the state-of-the-art antibiofouling strategies compromise the sensibility, this approach leads to peak currents that are up to 12.5-fold higher than the original currents after 1 h exposure to unprocessed human plasma. Label-free impedimetric immunoassays through modular bioconjugation by directly anchoring spike protein on gold nanoparticles are also allowed, as demonstrated for the COVID-19 screening of patient sera. The scalability and simplicity of the platform combined with its unique ability to operate in biofluids with enhanced sensibility provide the generation of promising biosensing technologies toward real-world applications in point-of-care diagnostics, mass testing, and in-home monitoring of chronic diseases.
Collapse
Affiliation(s)
- Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Aline M Pascon
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ítalo R S Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ana C H de Castro
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel R Martos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Faculty of Chemistry, Pontifical Catholic University of Campinas, Campinas, São Paulo 13087-571, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Wendel A Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
13
|
Linkuvienė V, Ross EL, Crawford L, Weiser SE, Man D, Kay S, Kolhe P, Carpenter JF. Effects of transportation of IV bags containing protein formulations via hospital pneumatic tube system: Particle characterization by multiple methods. J Pharm Sci 2022; 111:1024-1039. [DOI: 10.1016/j.xphs.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
|
14
|
Lefebvre G, Maze A, Alvarez-Palencia Jimenez R, Bruckert F, Filipe V, Huille S, Weidenhaupt M. Surfactant Protection Efficacy at Surfaces Varies with the Nature of Hydrophobic Materials. Pharm Res 2021; 38:2157-2166. [PMID: 34904200 DOI: 10.1007/s11095-021-03133-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Monoclonal antibodies are in contact with many different materials throughout their life cycle from production to patient administration. Plastic surfaces are commonly found in single use bags, syringes, perfusion bags and tubing and their hydrophobic nature makes them particularly prone for adsorption of therapeutic proteins. The addition of surfactants in therapeutic formulations aims at minimizing surface and interface adsorption of the active molecules. However, their protection efficacy related to the nature of the plastic material is still poorly investigated. METHODS We use real-time surface-sensitive techniques and immunosorbent assays, to quantify surfactant and monoclonal antibody adsorption on hydrophobic model surfaces and different plastic polymers to analyse the effect of material surface properties on the level of surfactant protection. RESULTS We show that Polysorbate 80 protects monoclonal antibodies significantly better from adsorption on a polystyrene surface than on a hexadecane self-assembled monolayer, used as a model surface with similar hydrophobicity. This enhanced protective effect on polystyrene is observed for different antibodies and also other surfactants, and its extent depends on the surfactant concentration for a given antibody concentration. A comparative adsorption study allows ranking different in-use plastics and highlights the dependence of Polysorbate 80 protection efficacy on the nature of the plastic material. CONCLUSION This study demonstrates that, beyond hydrophobicity, the nature of plastic polymer surfaces affects surfactant adsorption and thereby impacts their protection efficacy in therapeutic antibody formulations.
Collapse
Affiliation(s)
- Guillaume Lefebvre
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France.,Sanofi, 94400, Vitry-sur-Seine, France
| | - Antoine Maze
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France
| | - Rosa Alvarez-Palencia Jimenez
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France.,Sanofi, 94400, Vitry-sur-Seine, France
| | - Franz Bruckert
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France
| | | | | | - Marianne Weidenhaupt
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France. .,Phelma Minatec LMGP, 3 parvis Louis Neel, CS 50257, F- 38016, Grenoble cedex 1, France.
| |
Collapse
|
15
|
Johann F, Wöll S, Winzer M, Snell J, Valldorf B, Gieseler H. Miniaturized Forced Degradation of Therapeutic Proteins and ADCs by Agitation-Induced Aggregation Using Orbital Shaking of Microplates. J Pharm Sci 2021; 111:1401-1413. [PMID: 34563536 DOI: 10.1016/j.xphs.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Microplate-based formulation screening is a powerful approach to identify stabilizing excipients for therapeutic proteins while reducing material requirements. However, this approach is sometimes not representative of studies conducted in relevant container closures. The present study aimed to identify critical parameters for a microplate-based orbital shaking method to screen biotherapeutic formulations by agitation-induced aggregation. For this purpose, an in-depth methodological study was conducted using different shakers, microplates, and plate seals. Aggregation was monitored by size exclusion chromatography, turbidity, and backgrounded membrane imaging. Both shaker quality and liquid-seal contact had substantial impacts on aggregation during shaking and resulted in non-uniform sample treatment when parameters were not suitably selected. The well volume to fill volume ratio (Vwell/Vfill) was identified as an useful parameter for achieving comparable aggregation levels between different microplate formats. An optimized method (2400 rpm [ac 95 m/s2], Vfill 60-100 µL [Vwell/Vfill 6-3.6], 24 h, RT, heat-sealed) allowed for uniform sample treatment independent of surface tension and good agreement with vial shaking results. This study provides valuable guidance for miniaturization of shaking stress studies in biopharmaceutical drug development, facilitating method transfer and comparability between laboratories.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jared Snell
- EMD Serono Research and Development Institute, Department of Pharmaceutical Technologies, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Bernhard Valldorf
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
16
|
Naikoo GA, Awan T, Hassan IU, Salim H, Arshad F, Ahmed W, Asiri AM, Qurashi A. Nanomaterials-Based Sensors for Respiratory Viral Detection: A Review. IEEE SENSORS JOURNAL 2021; 21:17643-17656. [PMID: 35790098 PMCID: PMC8769020 DOI: 10.1109/jsen.2021.3085084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 06/15/2023]
Abstract
Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a real menace for public health and economic development worldwide. Therefore, timely diagnosis and treatments are the only life-saving strategy to overcome any epidemic and particularly the ongoing prevailing pandemic COVID-19 caused by SARS-CoV-2. A rapid identification, point of care, portable, highly sensitive, stable, and inexpensive device is needed which is exceptionally satisfied by sensor technology. Consequently, the researchers have directed their attention to employing sensors targeting multiple analyses of pathogenic detections across the world. Nanostructured materials (nanoparticles, nanowires, nanobundles, etc.), owing to their unique characteristics such as large surface-to-volume ratio and nanoscale interactions, are widely employed to fabricate facile sensors to meet all the immediate emerging challenges and threats. This review is anticipated to foster researchers in developing advanced nanomaterials-based sensors for the increasing number of COVID-19 cases across the globe. The mechanism of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvantages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges and future potential of these sensors for achieving efficient and rapid detection.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | | | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Fareeha Arshad
- Department of BiochemistryAligarh Muslim UniversityUttar Pradesh202002India
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnLN6 7TSU.K.
| | - Abdullah M. Asiri
- Department of ChemistryFaculty of ScienceKing Abdulaziz UniversityJeddahPC 21589Saudi Arabia
| | - Ahsanulhaq Qurashi
- Department of ChemistryKhalifa UniversityAbu DhabiPC 127788United Arab Emirates
| |
Collapse
|
17
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
18
|
Increasing robustness, reliability and storage stability of critical reagents by freeze-drying. Bioanalysis 2021; 13:829-840. [PMID: 33890493 DOI: 10.4155/bio-2020-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Results: Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress. Application to critical reagents used in pharmacokinetics and anti-drug antibodies assays demonstrated stable functional performance of the reagents after 11 month at +40°C. Conclusion: Stabilization and storage of critical assay reagents by freeze-drying is an attractive alternative to traditional deep freezing.
Collapse
|
19
|
Zhang Z, Marie Woys A, Hong K, Grapentin C, Khan TA, Zarraga IE, Wagner NJ, Liu Y. Adsorption of non-ionic surfactant and monoclonal antibody on siliconized surface studied by neutron reflectometry. J Colloid Interface Sci 2021; 584:429-438. [PMID: 33091867 PMCID: PMC11165629 DOI: 10.1016/j.jcis.2020.09.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/15/2022]
Abstract
The adsorption of monoclonal antibodies (mAbs) on hydrophobic surfaces is known to cause protein aggregation and degradation. Therefore, surfactants, such as Poloxamer 188, are widely used in therapeutic formulations to stabilize mAbs and protect mAbs from interacting with liquid-solid interfaces. Here, the adsorption of Poloxamer 188, one mAb and their competitive adsorption on a model hydrophobic siliconized surface is investigated with neutron scattering coupled with contrast variation to determine the molecular structure of adsorbed layers for each case. Small angle neutron scattering measurements of the affinity of Poloxamer 188 to this mAb indicate that there is negligible binding at these solution conditions. Neutron reflectometry measurements of the mAb show irreversible adsorption on the siliconized surface, which cannot be washed off with neat buffer. Poloxamer 188 can be adsorbed on the surface already occupied by mAb, which enables partial removal of some adsorbed mAb by washing with buffer. The adsorption of the surfactant introduces significant conformational changes for mAb molecules that remain on the surface. In contrast, if the siliconized surface is first saturated with the surfactant, no adsorption of mAb is observed. Competitive adsorption of mAb and Poloxamer 188 from solution leads to a surface dominantly occupied with surfactant molecules, whereas only a minor amount of mAb absorbs. These findings clearly indicate that Poloxamer 188 can protect against mAb adsorption as well as modify the adsorbed conformation of previously adsorbed mAb.
Collapse
Affiliation(s)
- Zhenhuan Zhang
- Center for Neutron Research, National Institute of Standards and Technology. Gaithersburg, MD 20899, USA; Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ann Marie Woys
- Department of Late Stage Pharmaceutical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Kunlun Hong
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christoph Grapentin
- Pharmaceutical Development and Supplies, Pharma Technical Development, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tarik A Khan
- Pharmaceutical Development and Supplies, Pharma Technical Development, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Isidro E Zarraga
- Department of Late Stage Pharmaceutical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology. Gaithersburg, MD 20899, USA; Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Vargo KB, Stahl P, Hwang B, Hwang E, Giordano D, Randolph P, Celentano C, Hepler R, Amin K. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations. Mol Pharm 2020; 18:148-157. [PMID: 33253579 DOI: 10.1021/acs.molpharmaceut.0c00743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological drug products are formulated with excipients to maintain stability over the shelf life of the product. Surfactants are added to the drug product to stabilize air-water interfaces known to induce protein aggregation. Early formulation development is focused on maintaining protein conformation and colloidal stability over the course of the drug product shelf life but rarely considers stability through dose preparation and administration. Specifically, intravenous (IV) bag preparation exposes the therapeutic protein to a different solution environment concurrently diluting the stabilizing excipients that had been added to the drug product formulation. Mixing in IV bags can generate dynamic changes in the air-water interfacial area known to cause protein aggregation if not sufficiently protected. Therefore, understanding the surfactant requirements for drug product end-to-end stability in early formulation development provides critical information for a right-first-time approach to drug product formulation and robust clinical preparation. The goal of these studies was to understand if interfacial properties of proteins could predict surfactant formulation requirements for end-to-end stability. Specifically, the interfacial properties of five proteins were measured in 0.9% saline and 5% dextrose. Furthermore, shaking studies were conducted to identify the minimum surfactant concentration required to prevent subvisible and visible particle formulation in each diluent. The impact of surfactant type and concentration on particle generation and size was explored. A mathematical model was generated to predict the minimum surfactant concentration required to prevent interface-driven aggregation in each diluent based on the change in surface pressure upon exposure of the protein to the interface. The model was tested under typical IV-preparation conditions with experimental output closely matching the model prediction. By employing this model and better understanding the role of surfactants in interfacial stability, drug product development can generate robust end-to-end large molecule formulations across shelf life, dose preparation, and administration.
Collapse
Affiliation(s)
- Kevin B Vargo
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Patrick Stahl
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Brian Hwang
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Erica Hwang
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Daniel Giordano
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Peyton Randolph
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Christina Celentano
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| | - Robert Hepler
- BioTherapeutics Cell and Developability Sciences (BioTD CDS), Janssen Research and Development (Janssen R&D), Spring House, Pennsylvania 19477, United States
| | - Ketan Amin
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, Pennsylvania 19355, United States
| |
Collapse
|
21
|
Grapentin C, Müller C, Kishore RS, Adler M, ElBialy I, Friess W, Huwyler J, Khan TA. Protein-Polydimethylsiloxane Particles in Liquid Vial Monoclonal Antibody Formulations Containing Poloxamer 188. J Pharm Sci 2020; 109:2393-2404. [DOI: 10.1016/j.xphs.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
|
22
|
Maruno T, Ohkubo T, Uchiyama S. Stirring rate affects thermodynamics and unfolding kinetics in isothermal titration calorimetry. J Biochem 2020; 168:53-62. [PMID: 32134445 DOI: 10.1093/jb/mvaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Isothermal titration calorimetry (ITC) directly provides thermodynamic parameters depicting the energetics of intermolecular interactions in solution. During ITC experiments, a titration syringe with a paddle is continuously rotating to promote a homogeneous mixing. Here, we clarified that the shape of the paddles (flat, corkscrew and small-pitched corkscrew) and the stirring rates influence on the thermodynamic parameters of protein-ligand interaction. Stirring with the flat paddle at lower and higher rate both yielded a lower exothermic heat due to different reasons. The complete reaction with no incompetent fractions was achieved only when the stirring was performed at 500 or 750 rpm using the small-pitched corkscrew paddle. The evaluation of the protein solution after 1,500 rpm stirring indicated that proteins in the soluble fraction decreased to 94% of the initial amount, among which 6% was at an unfolded state. In addition, a significant increase of micron aggregates was confirmed. Furthermore, a new approach for the determination of the unfolding kinetics based on the time dependence of the total reaction heat was developed. This study demonstrates that a proper stirring rate and paddle shape are essential for the reliable estimation of thermodynamic parameters in ITC experiments.
Collapse
Affiliation(s)
- Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
23
|
Graf T, Abstiens K, Wedekind F, Elger C, Haindl M, Wurth C, Leiss M. Controlled polysorbate 20 hydrolysis - A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur J Pharm Biopharm 2020; 152:318-326. [PMID: 32445968 DOI: 10.1016/j.ejpb.2020.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022]
Abstract
Hydrolysis of polysorbate in biopharmaceutical liquid formulations upon long-term storage represents a risk factor, since reduction of the intact surfactant concentration may compromise protein stability. Moreover, accumulation of polysorbate degradation products is associated with the formation of particulates potentially affecting drug product stability and quality. These effects are conventionally assessed by real-time end-of-shelf life studies constituting an integral yet lengthy process of formulation development. To accelerate this procedure, we describe here a powerful tool to conduct shake stress studies based on the controlled hydrolysis of polysorbate 20 by beads-immobilized lipases. For this purpose, the production of stable, partially degraded material characterized by a representative presence of non-emulsifying degradants such as ethoxylated sorbitan and free fatty acids was monitored by state-of-the-art chromatographic methods ensuring realistic pharmaceutical conditions. Freeze-thaw, shaking and shipping stress studies of a mAb formulation did not only demonstrate that this approach is useful to determine the critical degradation level impairing drug product quality, but furthermore revealed significant differences in protective effects depending on the hydrolysis pattern. As these results emphasize, the outlined strategy may support formulation scientists to unveil the interrelationship between polysorbate hydrolysis products and stabilization of the active pharmaceutical ingredient in a holistic and time-saving manner.
Collapse
Affiliation(s)
- Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Kathrin Abstiens
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Frank Wedekind
- Instrumental Analytics, Early Development & Reagent Design, Centralised and Point of Care Solutions, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Carsten Elger
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Markus Haindl
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Christine Wurth
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany.
| |
Collapse
|
24
|
Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules 2020; 25:molecules25092047. [PMID: 32353995 PMCID: PMC7249052 DOI: 10.3390/molecules25092047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device. MAbs, like any globular protein, are amphiphilic and readily adsorb to interfaces, potentially causing structural deformation and even unfolding. Desorption of structurally perturbed mAbs is often hypothesized to promote aggregation, potentially leading to the formation of subvisible particles and visible precipitates. Since mAbs are exposed to numerous interfaces during biomanufacturing, storage and administration, many studies have examined mAb adsorption to different interfaces under various mitigation strategies. This review examines recent published literature focusing on adsorption of bioengineered mAbs under well-defined solution and surface conditions. The focus of this review is on understanding adsorption features driven by distinct antibody domains and on recent advances in establishing model interfaces suitable for high resolution surface measurements. Our summary highlights the need to further understand the relationship between mAb interfacial adsorption and desorption, solution aggregation, and product instability during fill-finish, transport, storage and administration.
Collapse
|
25
|
Floyd JA, Shaver JM, Gillespie AJ, Park U, Rogers RS, Nightlinger NS, Ogata Y, James JJ, Kerwin BA. Evaluation of Crystal Zenith Microtiter Plates for High-Throughput Formulation Screening. J Pharm Sci 2019; 109:532-542. [PMID: 31669607 PMCID: PMC6941220 DOI: 10.1016/j.xphs.2019.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Formulation screening for biotherapeutics can cover a vast array of excipients and stress conditions. These studies consume quantities of limited material and, with higher concentrated therapeutics, more material is needed. Here, we evaluate the use of crystal zenith (CZ) microtiter plates in conjunction with FluoroTec-coated butyl rubber mats as a small-volume, high-throughput system for formulation stability studies. The system was studied for evaporation, edge effects, and stability with comparisons to type 1 glass and CZ vials for multiple antibodies and formulations. Evaporation was minimal at 4°C and could be reduced at elevated temperatures using sealed, mylar bags. Edge effects were not observed until 12 weeks at 40°C. The overall stability ranking as measured by the rate of change in high molecular weight and percent main peak species was comparable across both vials and plates at 4°C and 40°C out to 12 weeks. Product quality attributes as measured by the multi-attribute method were also comparable across all containers for each molecule formulation. A potential difference was measured for subvisible particle analysis, with the plates measuring lower particle counts than the vials. Overall, CZ plates are a viable alternative to traditional vials for small-volume, high-throughput formulation stability screening studies.
Collapse
Affiliation(s)
| | | | | | - Unjy Park
- Just Biotherapeutics, Inc., Seattle, Washington 98109
| | | | | | - Yuko Ogata
- Just Biotherapeutics, Inc., Seattle, Washington 98109
| | | | | |
Collapse
|
26
|
Grabarek AD, Bozic U, Rousel J, Menzen T, Kranz W, Wuchner K, Jiskoot W, Hawe A. What Makes Polysorbate Functional? Impact of Polysorbate 80 Grade and Quality on IgG Stability During Mechanical Stress. J Pharm Sci 2019; 109:871-880. [PMID: 31614127 DOI: 10.1016/j.xphs.2019.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022]
Abstract
Polysorbate 80 (PS80) is a commonly used surfactant in therapeutic protein formulations to mitigate adsorption and interface-induced protein aggregation. Several PS80 grades and qualities are available on the market for parenteral application. The role of PS80 grade on protein stability remains debatable, and the impact of (partially) degraded PS on protein aggregation is not yet well understood. In our study, a monoclonal antibody (IgG) was subjected to 3 different mechanical stress conditions in the presence of multicompendial (MC) and Chinese pharmacopeia (ChP) grade PS80. Furthermore, IgG formulations were spiked with (partly) hydrolyzed PS80 to investigate the effect of PS80 degradants on protein stability. PS80 functionality was assessed by measuring the extent of protein aggregation and particle formation induced during mechanical stress by using size-exclusion chromatography, dynamic light scattering, backgrounded membrane imaging, and flow imaging microscopy. No distinguishable differences in PS80 functionality between MC and ChP grade were observed in the 3 stress tests. However, with increasing degree of PS80 hydrolysis, higher counts of subvisible particles were measured after stress. Furthermore, higher levels of PS80 degradants at a constant PS80 concentration may destabilize the IgG. In conclusion, MC and ChP grade PS80 are equally protective, but PS80 degradants compromise IgG stability.
Collapse
Affiliation(s)
- Adam Dariusz Grabarek
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ula Bozic
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Jannik Rousel
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Wendelin Kranz
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Klaus Wuchner
- Janssen Research & Development, Pharmaceutical Development & Manufacturing Sciences, Large Molecule Analytical Development, Schaffhausen, Switzerland
| | - Wim Jiskoot
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany.
| |
Collapse
|
27
|
Protein adsorption dynamics to polymer surfaces revisited-A multisystems approach. Biointerphases 2019; 14:051005. [PMID: 31578069 DOI: 10.1116/1.5121249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Performance and safety of materials in contact with living matter are determined by sequential and competitive protein adsorption. However, cause and consequences of these processes remain hard to be generalized and predicted. In a new attempt to address that challenge, the authors compared and analyzed the protein adsorption and displacement on various thoroughly characterized polymer substrates using a combination of surface-sensitive techniques. A multiple linear regression approach was applied to model the dependence of protein adsorption, desorption, and exchange dynamics on protein and surface characteristics. While the analysis confirmed that protein properties primarily govern the observed adsorption and retention phenomena and hydrophobicity as well as surface charge are the most relevant polymer surface properties, the authors have identified several protein-surface combinations that deviate from these patterns and deserve further investigation.
Collapse
|
28
|
Barbosa AI, Barreto AS, Reis NM. Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing. ACS APPLIED BIO MATERIALS 2019; 2:2780-2790. [PMID: 35030812 DOI: 10.1021/acsabm.9b00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Current literature data is scarce and somehow contradictory in respect to the suitability of "nonstick" fluoropolymer surfaces for immobilization of biomolecules. We have previously shown empirically that transparent Teflon fluorinated ethylene propylene (FEP) offers rapid and sensitive optical biosensing of clinically relevant biomarkers. This study shows for the first time a comprehensive experimental analysis of passive adsorption of diagnostic IgG antibodies on actual Teflon FEP microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption were studied and modeled employing a protein titration method using hundreds of multibore microfluidic strips for a range of temperatures, pH, ionic strengths, and inner diameters, using both polyclonal and monoclonal antibody systems. Results were benchmarked against other plastic hydrophobic and glass hydrophilic capillary surfaces. For the first time, it was shown quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive adsorption of diagnostic antibodies for biosensing and is insensitive to the temperature of incubation and to ionic buffer strength. The mass of captured antigen increased with increasing antibody surface coverage up to ∼400 ng/cm2, with an optimal adsorbed antibody activity for 45-69% of full monolayer coverage, matching results of other biosensing surfaces. The equilibrium was reached fast, within 5-10 min, and surprisingly both the kinetics and equilibrium of antibody adsorption were dependent on the inner diameter of microcapillaries. This is a novel and relevant result that will generally impact on the design of miniaturized microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic plastic surfaces were 2- to 4-fold lower than for a hydrophilic, glass surface, however the former presented a monolayered adsorption with a higher level of irreversibility, as shown by the adsorption and desorption rates around 1 order of magnitude smaller than for glass, which is highly desirable for biosensing with surface-coated biomolecules.
Collapse
Affiliation(s)
- Ana Isabel Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Augusto Sampaio Barreto
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Nuno Miguel Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom.,Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
29
|
Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100022. [PMID: 31517287 PMCID: PMC6733290 DOI: 10.1016/j.ijpx.2019.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Structural dynamics in lyophilised protein formulations can be probed with terahertz spectroscopy and two glass transition processes, Tg,α and Tg,β, are observed. Vibrational confinement upon thermal activation is observed resulting in no detectable changes in secondary structure but strongly reduced the molecular mobility at temperatures above Tg,α. The confinement was found to be strongly dependent on the formulation. We hypothesise that confinement is linked to conformational states with potential effects on physical and chemical stability of the biomolecule during storage.
Characterising the structural dynamics of proteins and the effects of excipients are critical for optimising the design of formulations. In this work we investigated four lyophilised formulations containing bovine serum albumin (BSA) and three formulations containing a monoclonal antibody (mAb, here mAb1), and explored the role of the excipients polysorbate 80, sucrose, trehalose, and arginine on stabilising proteins. By performing temperature variable terahertz time-domain spectroscopy (THz-TDS) experiments it is possible to study the vibrational dynamics of these formulations. The THz-TDS measurements reveal two distinct glass transition processes in all tested formulations. The lower temperature transition, Tg,β, is associated with the onset of local motion due to the secondary relaxation whilst the higher temperature transition, Tg,α, marks the onset of the α-relaxation. For some of the formulations, containing globular BSA as well as mAb1, the absorption at terahertz frequencies does not increase further at temperatures above Tg,α. Such behaviour is in contrast to our previous observations for small organic molecules as well as linear polymers where absorption is always observed to steadily increase with temperature due to the stronger absorption of terahertz radiation by more mobile dipoles. The absence of such further increase in absorption with higher temperatures therefore suggests a localised confinement of the protein/excipient matrix at high temperatures that hinders any further increase in mobility. We found that subtle changes in excipient composition had an effect on the transition temperatures Tg,α and Tg,β as well as the vibrational confinement in the solid state. Further work is required to establish the potential significance of the vibrational confinement in the solid state on formulation stability and chemical degradation as well as what role the excipients play in achieving such confinement.
Collapse
|
30
|
Nogueira JCF, Greene MK, Richards DA, Furby AO, Steven J, Porter A, Barelle C, Scott CJ, Chudasama V. Oriented attachment of V NAR proteins, via site-selective modification, on PLGA-PEG nanoparticles enhances nanoconjugate performance. Chem Commun (Camb) 2019; 55:7671-7674. [PMID: 31204425 PMCID: PMC6873773 DOI: 10.1039/c9cc02655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Herein we report the construction of a nanoparticle-based drug delivery system which targets a key regulator in tumour angiogenesis. We exploit a Variable New Antigen Receptor (VNAR) domain, conjugated using site-specific chemistry, to direct poly lactic acid-co-glycolic acid-polyethylene glycol (PLGA-PEG) nanoparticles to delta like canonical Notch ligand 4 (DLL4). The importance of site-specific chemistry is demonstrated.
Collapse
Affiliation(s)
| | - Michelle K. Greene
- Centre for Cancer Research and Cell Biology
, School of Medicine
, Queen's University Belfast
,
Belfast
, UK
.
| | - Daniel A. Richards
- Department of Chemistry
, University College London
,
London
, UK
.
- Department of Materials
, Imperial College London
,
London
, UK
| | | | - John Steven
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Andrew Porter
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Caroline Barelle
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology
, School of Medicine
, Queen's University Belfast
,
Belfast
, UK
.
| | - Vijay Chudasama
- Department of Chemistry
, University College London
,
London
, UK
.
- Research Institute for Medicines (iMed.ULisboa)
, Faculty of Pharmacy
, Universidade de Lisboa
,
Lisbon
, Portugal
| |
Collapse
|
31
|
Abstract
Monoclonal antibodies (mAbs) are a group of drugs with predicted slow linear and target-mediated distribution and elimination. Visual inspection of published pharmacokinetic profiles of mAbs frequently reveals plateaus in the distribution phase or an increasing concentration many days after a single intravenous dose. A question which has been left unanswered until now is whether mAbs undergo recirculation mechanisms. If so, then which mechanisms are crucial for the fluctuation in their pharmacokinetics profiles? What is the impact of such mechanisms on mAb absorption, distribution and elimination? Current commentary accounts for the fluctuation of mAbs concentrations based on different mechanisms, as well in different phases of their in vivo disposition. Current knowledge shows significant impact of mAbs lymphatic recirculation on characteristics of their pharmacokinetics profiles. Fluctuating or plateau phases in pharmacokinetic profiles of mAbs are a consequence of multiple simultaneously occurring recirculatory as well as adsorption/desorption processes rather than only slow, continuous elimination. Lymphatic recirculation as well as other mechanisms appears to be an obvious element of the mAbs disposition. Periodic changes in the key factors affecting mAbs disposition can be responsible for the unpredictable concentration peaks in absorption, distribution and the elimination phase.
Collapse
|
32
|
Li Z, Pan F, Li R, Pambou E, Hu X, Ruane S, Ciumac D, Li P, Welbourn RJL, Webster JRP, Bishop SM, Narwal R, van der Walle CF, Lu JR. Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO 2/Water Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44257-44266. [PMID: 30500160 DOI: 10.1021/acsami.8b16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the formulation of therapeutic monoclonal antibodies (mAbs), nonionic surfactants are commonly added to attenuate structural rearrangement caused by adsorption/desorption at interfaces during processing, shipping, and storage. We examined the adsorption of a mAb (COE-3) at the SiO2/water interface in the presence of pentaethylene glycol monododecyl ether (C12E5), polysorbate 80 (PS80-20EO), and a polysorbate 80 analogue with seven ethoxylates (PS80-7EO). Spectroscopic ellipsometry was used to follow COE-3 dynamic adsorption, and neutron reflection was used to determine interfacial structure and composition. Neither PS80-20EO nor C12E5 had a notable affinity for COE-3 or the interface under the conditions studied and thus did not prevent COE-3 adsorption. In contrast, PS80-7EO did coadsorb but did not influence the dynamic process or the equilibrated amount of absorbed COE-3. Near equilibration, COE-3 underwent structural rearrangement and PS80-7EO started to bind the COE-3 interfacial layer and subsequently formed a well-defined surfactant bilayer via self-assembly. The resultant interfacial layer comprised an inner mAb layer of about 70 Å thickness and an outer surfactant layer of a further 70 Å, with distinct transitional regions across the mAb-surfactant and surfactant-bulk water boundaries. Once formed, such interfacial layers were very robust and worked to prevent further mAb adsorption, desorption, and structural rearrangement. Such robust interfacial layers could be anticipated to exist for formulated mAbs stored in type II glass vials; further research is required to understand the behavior of these layers for siliconized glass syringes.
Collapse
Affiliation(s)
- Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Fang Pan
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Elias Pambou
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Sean Ruane
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Daniela Ciumac
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| | - Peixun Li
- ISIS Neutron Facility , STFC , Chilton , Didcot OX11 0QZ , U.K
| | | | | | - Steven M Bishop
- MedImmune LLC , Gaithersburg , Maryland 20878 , United States
| | | | | | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Oxford Road, Schuster Building , Manchester M13 9PL , U.K
| |
Collapse
|
33
|
Maruno T, Watanabe H, Yoneda S, Uchihashi T, Adachi S, Arai K, Sawaguchi T, Uchiyama S. Sweeping of Adsorbed Therapeutic Protein on Prefillable Syringes Promotes Micron Aggregate Generation. J Pharm Sci 2018; 107:1521-1529. [PMID: 29421215 DOI: 10.1016/j.xphs.2018.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/17/2022]
Abstract
This study evaluated how differences in the surface properties of prefillable syringe barrels and in-solution sampling methods affect micron aggregates and protein adsorption levels. Three syringe types (glass barrel with silicone oil coating [GLS/SO+], glass barrel without silicone oil coating [GLS/SO-], and cyclo-olefin polymer [COP] barrel syringes) were tested with 3 therapeutic proteins (adalimumab, etanercept, and infliximab) using 2 sampling methods (aspiration or ejection). After quiescent incubation, solutions sampled by aspiration exhibited no significant change in micron aggregate concentration in any syringes, whereas those sampled by ejection exhibited increased micron aggregates in both GLS syringe types. Micron aggregate concentration in ejected solutions generally increased with increasing density of adsorbed proteins. Notably, COP syringes contained the lowest micron aggregate concentrations, which were independent of the sampling method. Correspondingly, the adsorbed protein density on COP syringes was the lowest at 1-2 mg/m2, which was much less compared with that on GLS syringes and was calculated to be equivalent to only 1-2 protein layers, as visually confirmed by high-speed atomic force microscopy. These data indicate that low-adsorption prefillable syringes should be used for therapeutic proteins because protein aggregate concentration in the ejected solution is elevated by increased protein adsorption to the syringe surface.
Collapse
Affiliation(s)
- Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Watanabe
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Saki Yoneda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Satoru Adachi
- Zeon Corporation, Specialty Plastics Lab, R&D Center, 1-2-1 Yako, Kawasaki-ku, Kawasaki, Kanagawa 210-9507, Japan
| | - Kunihito Arai
- Zeon Corporation, Specialty Plastics Lab, R&D Center, 1-2-1 Yako, Kawasaki-ku, Kawasaki, Kanagawa 210-9507, Japan
| | - Taichi Sawaguchi
- Zeon Corporation, Specialty Plastics Lab, R&D Center, 1-2-1 Yako, Kawasaki-ku, Kawasaki, Kanagawa 210-9507, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
34
|
Pan F, Li Z, Leyshon T, Rouse D, Li R, Smith C, Campana M, Webster JRP, Bishop SM, Narwal R, van der Walle CF, Warwicker J, Lu JR. Interfacial Adsorption of Monoclonal Antibody COE-3 at the Solid/Water Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1306-1316. [PMID: 29215260 DOI: 10.1021/acsami.7b13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spectroscopic ellipsometry (SE) and neutron reflection (NR) data for the adsorption of a monoclonal antibody (mAb, termed COE-3, pI 8.44) at the bare SiO2/water interface are compared here to the simulations based on Derjaguin-Landau-Verwey-Overbeek theory. COE-3 adsorption was characterized by an initial rapid increase in the surface-adsorbed amount (Γ) followed by a plateau. Only the initial rate of the increase in Γ was strongly correlated with the bulk concentration (0.002-0.2 mg/mL), with Γ at the plateau being about 2.2 mg/m2 (pH 5.5). Simulations captured COE-3 adsorption at equilibrium most accurately, the point at which the outgoing flux of molecules within the adsorbed plane matched the adsorption flux. Increasing the buffer pH from 5.5 to 9 increased Γ at equilibrium to ∼3 mg/m2 (0.02 mg/mL COE-3), revealing a dominant role for lateral repulsion between adsorbed mAb molecules. In contrast, increasing the buffer ionic strength (pH 6) reduced Γ, which was captured by simulations accounting for electrostatic screening by ions, in addition to mAb/SiO2 attractive forces and lateral repulsion. NR data at the same bulk concentrations corroborated the SE data, albeit with slightly higher Γ due to longer adsorption times for data acquisition; for example, at pH 9, Γ was 3.6 mg/m2 (0.02 mg/mL COE-3), equivalent to a relatively high volume fraction of 0.5. An adsorbed monolayer with a thickness of 50-52 Å was consistently determined by NR, corresponding to the short axial lengths of fragment antigen-binding and fragment crystallization and implying minimal structural perturbation. Thus, the simulations enabled a mechanistic interpretation of the experimental data of mAb adsorption at the SiO2/water interface.
Collapse
Affiliation(s)
- Fang Pan
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Thomas Leyshon
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Dominic Rouse
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Charles Smith
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| | - Mario Campana
- ISIS Neutron Facility, STFC, Chilton , Didcot OX11 0QZ, U.K
| | | | - Steven M Bishop
- Formulation Sciences, MedImmune LLC , Gaithersburg, Maryland 20878, United States
| | - Rojaramani Narwal
- Formulation Sciences, MedImmune LLC , Gaithersburg, Maryland 20878, United States
| | | | - Jim Warwicker
- School of Chemistry, University of Manchester , Oxford Road, Chemistry Building, Manchester M13 9PL, U.K
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, U.K
| |
Collapse
|
35
|
Röhm M, Carle S, Maigler F, Flamm J, Kramer V, Mavoungou C, Schmid O, Schindowski K. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm 2017; 532:537-546. [PMID: 28917988 DOI: 10.1016/j.ijpharm.2017.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold.
Collapse
Affiliation(s)
- Martina Röhm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefan Carle
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Applied Sciences Sigmaringen, Faculty of Life Sciences, Anton-Günther-Strasse 51, 72488 Sigmaringen, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Viktoria Kramer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
36
|
Li Z, Li R, Smith C, Pan F, Campana M, Webster JRP, van der Walle CF, Uddin S, Bishop SM, Narwal R, Warwicker J, Lu JR. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23202-23211. [PMID: 28613817 DOI: 10.1021/acsami.7b06131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.
Collapse
Affiliation(s)
- Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Charles Smith
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Fang Pan
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Mario Campana
- ISIS Neutron Facility, STFC , Chilton, Didcot OX11 0QZ, United Kingdom
| | - John R P Webster
- ISIS Neutron Facility, STFC , Chilton, Didcot OX11 0QZ, United Kingdom
| | - Christopher F van der Walle
- Formulation Sciences, MedImmune Ltd. , Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Shahid Uddin
- Formulation Sciences, MedImmune Ltd. , Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Steve M Bishop
- Formulation Sciences, MedImmune LLC , Gaithersburg, Maryland 20878, United States
| | - Rojaramani Narwal
- Formulation Sciences, MedImmune LLC , Gaithersburg, Maryland 20878, United States
| | - Jim Warwicker
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Oxford Road, Schuster Building, Manchester M13 9PL, United Kingdom
| |
Collapse
|
37
|
Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, Dai W, Qian F. Stabilizing two IgG1 monoclonal antibodies by surfactants: Balance between aggregation prevention and structure perturbation. Eur J Pharm Biopharm 2017; 114:263-277. [DOI: 10.1016/j.ejpb.2017.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
38
|
Mazzer AR, Clifton LA, Perevozchikova T, Butler PD, Roberts CJ, Bracewell DG. Neutron reflectivity measurement of protein A-antibody complex at the solid-liquid interface. J Chromatogr A 2017; 1499:118-131. [PMID: 28410804 PMCID: PMC5408906 DOI: 10.1016/j.chroma.2017.03.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023]
Abstract
The orientation of IgG4 adsorbed at the solid-liquid interface was probed. A chromatography resin was mimicked by attaching protein A to a silica surface. Neutron reflectivity was used to measure protein A and adsorbed IgG structures. Protein A-modified silica was blocked with either BSA or PEG before IgG adsorption. Adsorbed IgG extended up to 230 Å from the surface, depending on blocking strategy.
Chromatography is a ubiquitous unit operation in the purification of biopharmaceuticals yet few studies have addressed the biophysical characterisation of proteins at the solution-resin interface. Chromatography and other adsorption and desorption processes have been shown to induce protein aggregation which is undesirable in biopharmaceutical products. In order to advance understanding of how adsorption processes might impact protein stability, neutron reflectivity was used to characterise the structure of adsorbed immunoglobulin G (IgG) on model surfaces. In the first model system, IgG was adsorbed directly to silica and demonstrated a side-on orientation with high surface contact. A maximum dimension of 60 Å in the surface normal direction and high density surface coverage were observed under pH 4.1 conditions. In chromatography buffers, pH was found to influence IgG packing density and orientation at the solid-liquid interface. In the second model system, which was designed to mimic an affinity chromatography surface, protein A was attached to a silica surface to produce a configuration representative of a porous glass chromatography resin. Interfacial structure was probed during sequential stages from ligand attachment, through to IgG binding and elution. Adsorbed IgG structures extended up to 250 Å away from the surface and showed dependence on surface blocking strategies. The data was suggestive of two IgG molecules bound to protein A with a somewhat skewed orientation and close proximity to the silica surface. The findings provide insight into the orientation of adsorbed antibody structures under conditions encountered during chromatographic separations.
Collapse
Affiliation(s)
- Alice R Mazzer
- Dept. Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luke A Clifton
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK
| | - Tatiana Perevozchikova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Paul D Butler
- National Institute of Standards and Technology, 100 Bureau Drive, Bldg. 235, Gaithersburg, MD 20899-8562, USA
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Daniel G Bracewell
- Dept. Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
39
|
Smith C, Li Z, Holman R, Pan F, Campbell RA, Campana M, Li P, Webster JRP, Bishop S, Narwal R, Uddin S, van der Walle CF, Lu JR. Antibody adsorption on the surface of water studied by neutron reflection. MAbs 2017; 9:466-475. [PMID: 28353420 DOI: 10.1080/19420862.2016.1276141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody 'COE-3' as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied.
Collapse
Affiliation(s)
- Charles Smith
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Zongyi Li
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Robert Holman
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Fang Pan
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | | | - Mario Campana
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | - Peixun Li
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | | | - Steven Bishop
- d Formulation Sciences, MedImmune LLC , Gaithersburg , MD , USA
| | | | - Shahid Uddin
- e Formulation Sciences , MedImmune Ltd , Cambridge , UK
| | | | - Jian R Lu
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| |
Collapse
|
40
|
Torisu T, Maruno T, Hamaji Y, Ohkubo T, Uchiyama S. Synergistic Effect of Cavitation and Agitation on Protein Aggregation. J Pharm Sci 2017; 106:521-529. [DOI: 10.1016/j.xphs.2016.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
|
41
|
Frachon T, Bruckert F, Le Masne Q, Monnin E, Weidenhaupt M. Insulin Aggregation at a Dynamic Solid-Liquid-Air Triple Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13009-13019. [PMID: 27951683 DOI: 10.1021/acs.langmuir.6b03314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Therapeutic proteins are privileged in drug development because of their exquisite specificity, which is due to their three-dimensional conformation in solution. During their manufacture, storage, and delivery, interactions with material surfaces and air interfaces are known to affect their stability. The growing use of automated devices for handling and injection of therapeutics increases their exposure to protocols involving intermittent wetting, during which the solid-liquid and liquid-air interfaces meet at a triple contact line, which is often dynamic. Using a microfluidic setup, we analyze the effect of a moving triple interface on insulin aggregation in real time over a hydrophobic surface. We combine thioflavin T fluorescence and reflection interference microscopy to concomitantly monitor insulin aggregation and the morphology of the liquid as it dewets the surface. We demonstrate that insulin aggregates in the region of a moving triple interface and not in regions submitted to hydrodynamic shear stress alone, induced by the moving liquid. During dewetting, liquid droplets form on the surface anchored by adsorbed proteins, and the accumulation of amyloid aggregates is observed exclusively as fluorescent rings growing eccentrically around these droplets. The fluorescent rings expand until the entire channel surface sweeped by the triple interface is covered by amyloid fibers. On the basis of our experimental results, we propose a model describing the growth mechanism of insulin amyloid fibers at a moving triple contact line, where proteins adsorbed at a hydrophobic surface are exposed to the liquid-air interface.
Collapse
Affiliation(s)
- Thibaut Frachon
- LMGP, University Grenoble Alpes, CNRS , F-38000 Grenoble, France
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | - Franz Bruckert
- LMGP, University Grenoble Alpes, CNRS , F-38000 Grenoble, France
| | - Quentin Le Masne
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | - Emmanuel Monnin
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | | |
Collapse
|
42
|
Leiske DL, Shieh IC, Tse ML. A Method To Measure Protein Unfolding at an Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9930-9937. [PMID: 27643824 DOI: 10.1021/acs.langmuir.6b02267] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins are surface-active molecules that have a propensity to adsorb to hydrophobic interfaces, such as the air-liquid interface. Surface flow can increase aggregation of adsorbed proteins, which may be an undesirable consequence depending on the application. As changes in protein conformation upon adsorption are thought to induce aggregation, the ability to measure the folded state of proteins at interfaces is of particular interest. However, few techniques currently exist to measure protein conformation at interfaces. Here we describe a technique capable of measuring the hydrophobicity, and therefore the conformation and folded state, of proteins at air-liquid interfaces by exploiting the environmentally sensitive fluorophore Nile red. Two monoclonal antibodies (mAbs) with high (mAb1) and low (mAb2) surface activity were used to highlight the technique. Both mAbs showed low background fluorescence of Nile red in the liquid subphase and at a glass-liquid interface. In contrast, at the air-liquid interface Nile red fluorescence for mAb1 increased immediately after protein adsorption, whereas the Nile red fluorescence of the mAb2 film evolved more slowly in time even though the adsorbed quantity of protein remained constant. The results demonstrate that hydrophobicity upon mAb adsorption to the air-liquid interface evolves in a time-dependent manner. Interfacial hydrophobicity may be indicative of protein conformation or folded state, where rapid unfolding of mAb1 upon adsorption would be consistent with increased protein aggregation compared to mAb2. The ability to measure protein hydrophobicity at interfaces using Nile red, combined with small sample requirements and minimal sample preparation, fills a gap in existing interfacial techniques.
Collapse
Affiliation(s)
- Danielle L Leiske
- Early Stage Pharmaceutical Development and ‡Late Stage Pharmaceutical Development, Genentech , South San Francisco, California 94080, United States
| | - Ian C Shieh
- Early Stage Pharmaceutical Development and ‡Late Stage Pharmaceutical Development, Genentech , South San Francisco, California 94080, United States
| | - Martha Lovato Tse
- Early Stage Pharmaceutical Development and ‡Late Stage Pharmaceutical Development, Genentech , South San Francisco, California 94080, United States
| |
Collapse
|
43
|
Perevozchikova T, Nanda H, Nesta DP, Roberts CJ. Protein Adsorption, Desorption, and Aggregation Mediated by Solid-Liquid Interfaces. J Pharm Sci 2015; 104:1946-1959. [DOI: 10.1002/jps.24429] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 01/13/2023]
|
44
|
Kapp SJ, Larsson I, Van De Weert M, Cárdenas M, Jorgensen L. Competitive Adsorption of Monoclonal Antibodies and Nonionic Surfactants at Solid Hydrophobic Surfaces. J Pharm Sci 2015; 104:593-601. [DOI: 10.1002/jps.24265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023]
|
45
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
46
|
Longo E, Santis ED, Hussain R, van der Walle CF, Casas-Finet J, Uddin S, Santos AD, Siligardi G. The effect of palmitoylation on the conformation and physical stability of a model peptide hormone. Int J Pharm 2014; 472:156-64. [PMID: 24928136 DOI: 10.1016/j.ijpharm.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 02/08/2023]
Abstract
Peptides are ideal drug candidates due to their potency and specificity, but suffer from a short half-life and low membrane permeability. Acylation can overcome these limitations but the consequences to stability under different formulation conditions and stresses are largely unreported. Using synchrotron radiation circular dichroism (SRCD), we show that palmitoylation of a 28 amino acid peptide hormone (pI 9.82) induced a structural transition from 310-helix to α-helix, irrespective of buffer type and pH investigated (5.5-8.0) when compared to the non acylated analogues. These conformational preferences were retained in the presence of non-ionic micelles but not anionic micelles, which induced an α-helical structure for all peptides. Palmitoylation promoted an irreversible peptide denaturation under thermal stress at pH ≥ 6.5 and increased the propensity for loss of helical structure under high photon flux (here used as a novel accelerated photostability test). The presence of either ionic or non-ionic micelles did not recover these conformational changes over the same irradiation period. These results demonstrate that acylation can change peptide conformation and decrease thermal-/photo-stability, with important consequences for drug-development strategies.
Collapse
Affiliation(s)
- Edoardo Longo
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Emiliana De Santis
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom.
| | | | - Jose Casas-Finet
- MedImmune LLC, Analytical Biochemistry, Gaithersburg, MD 20878, USA
| | - Shahid Uddin
- MedImmune Ltd., Formulation Sciences, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Ana Dos Santos
- MedImmune Ltd., Formulation Sciences, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|