1
|
Wang H, Koob T, Fromm JR, Gopal A, Carter D, Lieber A. CD46 and CD59 inhibitors enhance complement-dependent cytotoxicity of anti-CD38 monoclonal antibodies daratumumab and isatuximab in multiple myeloma and other B-cell malignancy cells. Cancer Biol Ther 2024; 25:2314322. [PMID: 38361357 PMCID: PMC10877974 DOI: 10.1080/15384047.2024.2314322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect in vitro in primary MM cells as well as in vivo in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46high/CD59high MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo Koob
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan R. Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ajay Gopal
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Darrick Carter
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- R&D, Compliment Corp, Seattle, WA, USA
| |
Collapse
|
2
|
Kallolimath S, Sun L, Palt R, Föderl-Höbenreich E, Hermle A, Voss L, Kleim M, Nimmerjahn F, Gach JS, Hitchcock L, Chen Q, Melnik S, Eminger F, Lux A, Steinkellner H. IgG1 versus IgG3: influence of antibody-specificity and allotypic variance on virus neutralization efficacy. Front Immunol 2024; 15:1490515. [PMID: 39512357 PMCID: PMC11540624 DOI: 10.3389/fimmu.2024.1490515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the unique advantages of IgG3 over other IgG subclasses, such as mediating enhanced effector functions and increased flexibility in antigen binding due to a long hinge region, the therapeutic potential of IgG3 remains largely unexplored. This may be attributed to difficulties in recombinant expression and the reduced plasma half-life of most IgG3 allotypes. Here, we report plant expression of two SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding. P5C3 and H4-IgG1 mAbs were subclass-switched to IgG3 formats, designed for efficient production and increased PK values, carrying three allotypic variations, referred to as -WT, -H, and -KVH. A total of eight mAbs were produced in glycoengineered plants that synthesize fucose-free complex N-glycans with great homogeneity. Antigen, IgG-FcγR immune complex and complement binding studies demonstrated similar activities of all mAbs. In accordance, P5C3 Abs showed minor alterations in SARS-CoV-2 neutralization (NT) and antibody-dependent cell-mediated virus inhibition (ADCVI). Clear functional differences were observed between H4 variants with superior ADCVI and NT potencies of H4 IgG3 H. Our comparative study demonstrates the production of an IgG3 variant carrying an Fc domain with equivalent or enhanced functions compared to IgG3-WT, but with the stability and PK values of IgG1. Our data also demonstrate that both allotypic variability and antibody specificity are important for fine-tuning of activities, an important information for the development of future therapeutics.
Collapse
Affiliation(s)
- Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Roman Palt
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | | | - Antonia Hermle
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Voss
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Kleim
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Lauren Hitchcock
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Qiang Chen
- The Bio design Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Florian Eminger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| |
Collapse
|
3
|
Iversen KF. Mechanisms of resistance to daratumumab in patients with multiple myeloma. Basic Clin Pharmacol Toxicol 2024; 135:401-408. [PMID: 39183578 DOI: 10.1111/bcpt.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer in the bone marrow. The treatment of MM has developed significantly during the last 20 years, which has resulted in increased survival. Daratumumab is the first CD38 antibody approved for the treatment of MM. It has improved the treatment of MM even further. This is an evaluation of the modes of action of daratumumab and a description of the development of resistance with a focus on inhibitory checkpoint receptors on CD8+ T-cells, complement activation and extracellular vesicles.
Collapse
Affiliation(s)
- Katrine Fladeland Iversen
- Institute of Regional Health Science, University of Southern Denmark, and Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
4
|
Saporiti S, Bianchi D, Ben Mariem O, Rossi M, Guerrini U, Eberini I, Centola F. In silico evaluation of the role of Fab glycosylation in cetuximab antibody dynamics. Front Immunol 2024; 15:1429600. [PMID: 39185413 PMCID: PMC11342397 DOI: 10.3389/fimmu.2024.1429600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux®) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers. Additionally, it can trigger antibody-dependent cell cytotoxicity (ADCC), a response that typically is influenced by N-glycosylation at Fc level. However, the role of Fab glycosylation in cetuximab remains poorly understood. Hence, this study aims to investigate the structural role of Fab glycosylation on the conformational behavior of cetuximab. Methods The study was performed in silico via accelerated molecular dynamics simulations. The commercial cetuximab was compared to its form without Fab glycosylation and structural descriptors were evaluated to establish conformational differences. Results The results clearly show a correlation between the Fab glycosylation and structural descriptors that may modulate the conformational freedom of the antibody, potentially affecting Fc effector functions, and suggesting a negative role of Fab glycosylation on the interaction with FcγRIIIa. Conclusion Fab glycosylation of cetuximab is the most critical challenge for biosimilar development, but the differences highlighted in this work with respect to its aglycosylated form can improve the knowledge and represent also a great opportunity to develop novel strategies of biotherapeutics.
Collapse
Affiliation(s)
- Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mara Rossi
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Milan, Italy
| | - Fabio Centola
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| |
Collapse
|
5
|
Li Y, Lin H, Hong H, Li D, Gong L, Zhao J, Wang Z, Wu Z. Multivalent Rhamnose-Modified EGFR-Targeting Nanobody Gains Enhanced Innate Fc Effector Immunity and Overcomes Cetuximab Resistance via Recruitment of Endogenous Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307613. [PMID: 38286668 PMCID: PMC10987161 DOI: 10.1002/advs.202307613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Cetuximab resistance is a significant challenge in cancer treatment, requiring the development of novel therapeutic strategies. In this study, a series of multivalent rhamnose (Rha)-modified nanobody conjugates are synthesized and their antitumor activities and their potential to overcome cetuximab resistance are investigated. Structure-activity relationship studies reveal that the multivalent conjugate D5, bearing sixteen Rha haptens, elicits the most potent innate fragment crystallizable (Fc) effector immunity in vitro and exhibits an excellent in vivo pharmacokinetics by recruiting endogenous antibodies. Notably, it is found that the optimal conjugate D5 represents a novel entity capable of reversing cetuximab-resistance induced by serine protease (PRSS). Moreover, in a xenograft mouse model, conjugate D5 exhibits significantly improved antitumor efficacy compared to unmodified nanobodies and cetuximab. The findings suggest that Rha-Nanobody (Nb) conjugates hold promise as a novel therapeutic strategy for the treatment of cetuximab-resistant tumors by enhancing the innate Fc effector immunity and enhancing the recruitment of endogenous antibodies to promote cancer cell clearance by innate immune cells.
Collapse
Affiliation(s)
- Yanchun Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Han Lin
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Liang Gong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Jie Zhao
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zheng Wang
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
6
|
Nakamura N, Arima N, Takakuwa T, Yoshioka S, Imada K, Fukushima K, Hotta M, Fuchida SI, Kanda J, Uoshima N, Shimura Y, Tanaka H, Ohta K, Kosugi S, Yagi H, Yoshihara S, Yamamura R, Adachi Y, Hanamoto H, Shibayama H, Hosen N, Ito T, Shimazaki C, Takaori-Kondo A, Kuroda J, Matsumura I, Hino M. Efficacy of elotuzumab for multiple myeloma deteriorates after daratumumab: a multicenter retrospective study. Ann Hematol 2024:10.1007/s00277-024-05705-z. [PMID: 38492020 DOI: 10.1007/s00277-024-05705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Elotuzumab-based regimens are sometimes selected for multiple myeloma treatment after daratumumab-based regimens. However, there has been insufficient discussion on the efficacy of elotuzumab after daratumumab. We used Kansai Myeloma Forum registration data in a multicenter retrospective evaluation of the efficacy of elotuzumab after daratumumab. Overall survival (OS) rate and time to next treatment (TTNT) were significantly worse in the cohort given elotuzumab after daratumumab (Dara cohort, n = 47) than in the cohort with no history of daratumumab administration before elotuzumab (No-Dara cohort, n = 80, OS: P = 0.03; TTNT: P = 0.02; best response: P < 0.01). In the Dara cohort, OS and TTNT rates were worse with sequential elotuzumab use after daratumumab than with non-sequential (OS: P = 0.02; TTNT: P = 0.03). In patients given elotuzumab < 180 days after daratumumab, OS (P = 0.08) and best response (P = 0.21) tended to be worse, and TTNT was significantly worse (P = 0.01), than in those given elotuzumab after ≥ 180 days. These findings were confirmed by subgroup analyses and multivariate analyses. Monoclonal-antibody-free treatment might be preferable after daratumumab-based regimens. If possible, elotuzumab-based regimens should be considered only ≥ 180 days after daratumumab use.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-Ku, Kobe, Hyogo, 651-0072, Japan.
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-Ku, Kobe, Hyogo, 651-0072, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Yoshioka
- Department of Hematology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kazunori Imada
- Department of Hematology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaaki Hotta
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Shin-Ichi Fuchida
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | | | - Satoru Kosugi
- Department of Internal Medicine (Hematology), Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Hideo Yagi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Nara, Japan
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ryosuke Yamamura
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, Nakatsu, Japan
| | - Yoko Adachi
- Department of Internal Medicine, JCHO Kobe Central Hospital, Kobe, Japan
| | - Hitoshi Hanamoto
- Department of Hematology, Kindai University Nara Hospital, Nara, Japan
| | - Hirohiko Shibayama
- Department of Hematology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Chihiro Shimazaki
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Grandclément C, Estoppey C, Dheilly E, Panagopoulou M, Monney T, Dreyfus C, Loyau J, Labanca V, Drake A, De Angelis S, Rubod A, Frei J, Caro LN, Blein S, Martini E, Chimen M, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoelen C, Pellat-Deceunynck C, Moreau P, Mbow ML, Srivastava A, Dyson MR, Zhukovsky EA, Perro M, Sammicheli S. Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma. Nat Commun 2024; 15:2054. [PMID: 38448430 PMCID: PMC10917784 DOI: 10.1038/s41467-024-46310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.
Collapse
Affiliation(s)
| | - C Estoppey
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Dheilly
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | | | - T Monney
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - C Dreyfus
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Loyau
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - V Labanca
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Drake
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S De Angelis
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Rubod
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Frei
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - L N Caro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S Blein
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Martini
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Chimen
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - T Matthes
- Haematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland
| | - Z Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - C M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - J R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - E Menoret
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Kervoelen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Pellat-Deceunynck
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - P Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - M L Mbow
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Srivastava
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M R Dyson
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E A Zhukovsky
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Perro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| | - S Sammicheli
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| |
Collapse
|
8
|
van Nieuwenhuijzen N, Cuenca M, Abbink L, Jak M, Peperzak V, Minnema MC. Identifying clinical response to daratumumab therapy in relapsed/refractory multiple myeloma using a patient-derived in vitro model. EJHAEM 2024; 5:141-146. [PMID: 38406516 PMCID: PMC10887349 DOI: 10.1002/jha2.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 02/27/2024]
Abstract
Response to daratumumab in patients with relapsed/refractory multiple myeloma is heterogeneous, and a reliable biomarker of response is lacking. We aimed to develop a method that identifies response to daratumumab therapy. Patient-derived MM cells were collected before start of daratumumab treatment and were cultured in a hydrogel-based culture system. The extent of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro was associated with both clinical response and progression-free survival in corresponding patients. Together, our results demonstrate that in vitro sensitivity to daratumumab therapy in a hydrogel culture with primary MM cells might be used to identify patients most likely to benefit from treatment.
Collapse
Affiliation(s)
- Niels van Nieuwenhuijzen
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Marta Cuenca
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Leonie Abbink
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Margot Jak
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Victor Peperzak
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Monique C. Minnema
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
9
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
10
|
Noble A, Paudyal B, Schwartz JC, Mwangi W, Munir D, Tchilian E, Hammond JA, Graham SP. Distinct effector functions mediated by Fc regions of bovine IgG subclasses and their interaction with Fc gamma receptors. Front Immunol 2023; 14:1286903. [PMID: 38077405 PMCID: PMC10702552 DOI: 10.3389/fimmu.2023.1286903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Cattle possess three IgG subclasses. However, the key immune functions, including complement and NK cell activation, and enhancement of phagocytosis, are not fully described for bovine IgG1, 2 and 3. We produced chimeric monoclonal antibodies (mAbs) consisting of a defined variable region linked to the constant regions of bovine IgG1, 2 and 3, and expressed His-tagged soluble recombinant bovine Fc gamma receptors (FcγRs) IA (CD64), IIA (CD32A), III (CD16) and Fcγ2R. Functional assays using bovinized mAbs were developed. IgG1 and IgG3, but not IgG2, activated complement-dependent cytotoxicity. Only IgG1 could activate cattle NK cells to mobilize CD107a after antigen crosslinking, a surrogate assay for antibody-dependent cell cytotoxicity. Both IgG1 and IgG2 could trigger monocyte-derived macrophages to phagocytose fluorescently labelled antigen-expressing target cells. IgG3 induced only weak antibody-dependent cellular phagocytosis (ADCP). By contrast, monocytes only exhibited strong ADCP when triggered by IgG2. IgG1 bound most strongly to recombinant FcγRs IA, IIA and III, with weaker binding by IgG3 and none by IgG2, which bound exclusively to Fcγ2R. Immune complexes containing IgG1, 2 and 3 bound differentially to leukocyte subsets, with IgG2 binding strongly to neutrophils and monocytes and all subclasses binding platelets. Differential expression of the FcγRs on leukocyte subsets was demonstrated by surface staining and/or RT-qPCR of sorted cells, e.g., Fcγ2R mRNA was expressed in monocytes/macrophages, neutrophils, and platelets, potentially explaining their strong interactions with IgG2, and FcγRIII was expressed on NK cells, presumably mediating IgG1-dependent NK cell activation. These data reveal differences in bovine IgG subclass functionality, which do not correspond to those described in humans, mice or pigs, which is relevant to the study of these IgG subclasses in vaccine and therapeutic antibody development.
Collapse
|
11
|
Liu X, Liang C, Meng Q, Qu Y, He Z, Dong R, Qin L, Mao M, Hu Y. Inhibitory effects of circulating natural autoantibodies to CD47-derived peptides on OSCC cells. Oral Dis 2023; 29:445-457. [PMID: 34028935 DOI: 10.1111/odi.13922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Natural autoantibodies serve as an important anti-tumorigenic component in the body. This study was thus designed to investigate whether circulating natural IgG autoantibodies against a cluster of differentiation 47 (CD47) could exert inhibitory effects on oral squamous cell carcinoma (OSCC). SUBJECTS AND METHODS The expression levels of 13 tumor-targeted genes in three OSCC cell lines were analyzed by qPCR, and CD47 expression in OSCC tissues was also verified with IHC staining. An in-house ELISA was performed to analyze circulating anti-CD47 IgG levels in control subjects, oral benign tumor, and OSCC patients, and to detect anti-CD47 IgG-abundant plasma. Three OSCC cell lines were treated with anti-CD47 IgG-abundant and -deficient plasma, respectively, followed by the analysis of cell proliferation, apoptosis, and invasion/metastasis. RESULTS The CD47 gene showed the highest expression among 13 genes detected in three OSCC cell lines; its expression was significantly higher in OSCC tissues than adjacent tissues. Plasma anti-CD47 IgG levels showed the differences between control subjects, oral benign tumor, and OSCC patients. Anti-CD47 IgG-abundant plasma could evidently reduce cell viability via suppressing p-AKT expression and inducing cell apoptosis and inhibit the invasion of all three OSCC cell lines. CONCLUSIONS Natural autoantibodies against CD47 may be a potential agent for OSCC immunotherapy.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chao Liang
- Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qingyong Meng
- Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ziyi He
- Department of Transfusion Research, Dongguan Blood Center, Dongguan, China
| | - Rui Dong
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Bhatt P, Kloock C, Comenzo R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr Oncol 2023; 30:2322-2347. [PMID: 36826140 PMCID: PMC9954856 DOI: 10.3390/curroncol30020179] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple myeloma remains an incurable disease with the usual disease course requiring induction therapy, autologous stem cell transplantation for eligible patients, and long-term maintenance. Risk stratification tools and cytogenetic alterations help inform individualized therapeutic choices for patients in hopes of achieving long-term remissions with preserved quality of life. Unfortunately, relapses occur at different stages of the course of the disease owing to the biological heterogeneity of the disease. Addressing relapse can be complex and challenging as there are both therapy- and patient-related factors to consider. In this broad scoping review of available therapies in relapsed/refractory multiple myeloma (RRMM), we cover the pharmacologic mechanisms underlying active therapies such as immunomodulatory agents (IMiDs), proteasome inhibitors (PIs), monoclonal antibodies (mAbs), traditional chemotherapy, and Venetoclax. We then review the clinical data supporting the use of these therapies, organized based on drug resistance/refractoriness, and the role of autologous stem cell transplant (ASCT). Approaches to special situations during relapse such as renal impairment and extramedullary disease are also covered. Lastly, we look towards the future by briefly reviewing the clinical data supporting the use of chimeric antigen receptor (CAR-T) therapy, bispecific T cell engagers (BITE), and Cereblon E3 Ligase Modulators (CELMoDs).
Collapse
Affiliation(s)
- Parva Bhatt
- Correspondence: (P.B.); (R.C.); Tel.: +1-617-636-6454
| | | | | |
Collapse
|
13
|
Huang CY, Lok YY, Lin CH, Lai SL, Wu YY, Hu CY, Liao CB, Ho CH, Chou YP, Hsu YH, Lo YH, Chern E. Highly reliable GIGA-sized synthetic human therapeutic antibody library construction. Front Immunol 2023; 14:1089395. [PMID: 37180155 PMCID: PMC10174300 DOI: 10.3389/fimmu.2023.1089395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) and their derivatives are the fastest expanding category of pharmaceuticals. Efficient screening and generation of appropriate therapeutic human antibodies are important and urgent issues in the field of medicine. The successful in vitro biopanning method for antibody screening largely depends on the highly diverse, reliable and humanized CDR library. To rapidly obtain potent human antibodies, we designed and constructed a highly diverse synthetic human single-chain variable fragment (scFv) antibody library greater than a giga in size by phage display. Herein, the novel TIM-3-neutralizing antibodies with immunomodulatory functions derived from this library serve as an example to demonstrate the library's potential for biomedical applications. Methods The library was designed with high stability scaffolds and six complementarity determining regions (CDRs) tailored to mimic human composition. The engineered antibody sequences were optimized for codon usage and subjected to synthesis. The six CDRs with variable length CDR-H3s were individually subjected to β-lactamase selection and then recombined for library construction. Five therapeutic target antigens were used for human antibody generation via phage library biopanning. TIM-3 antibody activity was verified by immunoactivity assays. Results We have designed and constructed a highly diverse synthetic human scFv library named DSyn-1 (DCB Synthetic-1) containing 2.5 × 1010 phage clones. Three selected TIM-3-recognizing antibodies DCBT3-4, DCBT3-19, and DCBT3-22 showed significant inhibition activity by TIM-3 reporter assays at nanomolar ranges and binding affinities in sub-nanomolar ranges. Furthermore, clone DCBT3-22 was exceptionally superior with good physicochemical property and a purity of more than 98% without aggregation. Conclusion The promising results illustrate not only the potential of the DSyn-1 library for biomedical research applications, but also the therapeutic potential of the three novel fully human TIM-3-neutralizing antibodies.
Collapse
Affiliation(s)
- Chao-Yang Huang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Ying-Yung Lok
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chia-Hui Lin
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Szu-Liang Lai
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yen-Yu Wu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chih-Yung Hu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chu-Bin Liao
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chen-Hsuan Ho
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Ping Chou
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yi-Hsuan Hsu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Hsun Lo
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Edward Chern,
| |
Collapse
|
14
|
CD46 protects the bladder cancer cells from cetuximab-mediated cytotoxicity. Sci Rep 2022; 12:22420. [PMID: 36575233 PMCID: PMC9794803 DOI: 10.1038/s41598-022-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.
Collapse
|
15
|
Gehlert CL, Rahmati P, Boje AS, Winterberg D, Krohn S, Theocharis T, Cappuzzello E, Lux A, Nimmerjahn F, Ludwig RJ, Lustig M, Rösner T, Valerius T, Schewe DM, Kellner C, Klausz K, Peipp M. Dual Fc optimization to increase the cytotoxic activity of a CD19-targeting antibody. Front Immunol 2022; 13:957874. [PMID: 36119088 PMCID: PMC9471254 DOI: 10.3389/fimmu.2022.957874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Targeting CD19 represents a promising strategy for the therapy of B-cell malignancies. Although non-engineered CD19 antibodies are poorly effective in mediating complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP), these effector functions can be enhanced by Fc-engineering. Here, we engineered a CD19 antibody with the aim to improve effector cell-mediated killing and CDC activity by exchanging selected amino acid residues in the Fc domain. Based on the clinically approved Fc-optimized antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two amino acid exchanges in the Fc domain (S239D/I332E), we additionally added the E345K amino acid exchange to favor antibody hexamerization on the target cell surface resulting in improved CDC. The dual engineered CD19-DEK antibody bound CD19 and Fcγ receptors with similar characteristics as the parental CD19-DE antibody. Both antibodies were similarly efficient in mediating ADCC and ADCP but only the dual optimized antibody was able to trigger complement deposition on target cells and effective CDC. Our data provide evidence that from a technical perspective selected Fc-enhancing mutations can be combined (S239D/I332E and E345K) allowing the enhancement of ADCC, ADCP and CDC with isolated effector populations. Interestingly, under more physiological conditions when the complement system and FcR-positive effector cells are available as effector source, strong complement deposition negatively impacts FcR engagement. Both effector functions were simultaneously active only at selected antibody concentrations. Dual Fc-optimized antibodies may represent a strategy to further improve CD19-directed cancer immunotherapy. In general, our results can help in guiding optimal antibody engineering strategies to optimize antibodies’ effector functions.
Collapse
Affiliation(s)
- Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pegah Rahmati
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Winterberg
- Department of Pediatrics I, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Theocharis
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Elisa Cappuzzello
- Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Denis Martin Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, Ludwig-Maximilians-University (LMU) University Hospital Munich, Munich, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- *Correspondence: Matthias Peipp,
| |
Collapse
|
16
|
Venetoclax enhances the efficacy of therapeutic antibodies in B-cell malignancies by augmenting tumor cell phagocytosis. Blood Adv 2022; 6:4847-4858. [PMID: 35820018 PMCID: PMC9631674 DOI: 10.1182/bloodadvances.2022007364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.
Collapse
|
17
|
Hollmén M, Maksimow M, Rannikko JH, Karvonen MK, Vainio M, Jalkanen S, Jalkanen M, Mandelin J. Nonclinical Characterization of Bexmarilimab, a Clever-1-Targeting Antibody for Supporting Immune Defense Against Cancers. Mol Cancer Ther 2022; 21:1207-1218. [PMID: 35500016 PMCID: PMC9377746 DOI: 10.1158/1535-7163.mct-21-0840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Common lymphatic endothelial and vascular endothelial receptor-1 (Clever-1) is a multifunctional type-1 transmembrane protein that plays an important role in immunosuppression against tumors. Clever-1 is highly expressed in a subset of human tumor-associated macrophages and associated with poor survival. In mice, Clever-1 supports tumor growth and metastasis formation, and its deficiency or blockage induces T-cell-dependent killing of cancer cells. Therefore, targeting Clever-1 could lead to T-cell activation and restoration of immune response also in patients with cancer. This is studied in an on-going clinical trial [Macrophage Antibody To INhibit immune Suppression (MATINS); NCT03733990] in patients with advanced solid tumors where bexmarilimab, a humanized IgG4 antibody against human Clever-1, shows promising safety and efficacy. Here, we report the humanization and nonclinical characterization of physicochemical properties, biological potency, and safety profile of bexmarilimab. Bexmarilimab showed high affinity to Clever-1 on KG-1 cells and bound to Clever-1 on the surface of classical and intermediate monocytes derived from healthy human blood. Bexmarilimab inhibited the internalization of its natural ligand acetylated low-density lipoprotein into KG-1 cells and increased TNFα secretion from macrophages but did not impair phagocytic clearance. Bexmarilimab did not induce significant cytokine release in human whole-blood cultures, did not contain nonsafe immunogenic glycans, or show any significant binding to human Fcγ receptors or complement pathway component C1q. In vivo, bexmarilimab showed dose-dependent duration of monocyte Clever-1 receptor occupancy in cynomolgus monkeys but did not induce a cytokine storm up to a dose of 100 mg/kg. In conclusion, these data support the clinical development of bexmarilimab for the restoration of immune response in cancers.
Collapse
Affiliation(s)
- Maija Hollmén
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland.,Corresponding Author: Maija Hollmén, MediCity Research Laboratory, Faculty of Medicine, University of Turku, FI-20014, Turku, Finland. Phone: 3585-0514-2893; E-mail:
| | - Mikael Maksimow
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,Faron Pharmaceuticals, Turku, Finland
| | - Jenna H. Rannikko
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| | | | | | - Sirpa Jalkanen
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| | | | | |
Collapse
|
18
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
19
|
Wu HH, Crames M, Wei Y, Liu D, Gueneva-Boucheva K, Son I, Frego L, Han F, Kroe-Barrett R, Nixon A, Michael M. Effect of the ADCC-modulating mutations and the selection of human IgG isotypes on physicochemical properties of Fc. J Pharm Sci 2022; 111:2411-2421. [PMID: 35760121 DOI: 10.1016/j.xphs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Monoclonal antibodies, particularly IgGs and Ig-based molecules, are a well-established and growing class of biotherapeutic drugs. In order to improve efficacy, potency and pharmacokinetics of these therapeutic drugs, pharmaceutical industries have investigated significantly in engineering fragment crystallizable (Fc) domain of these drugs to optimize the interactions of these drugs and Fc gamma receptors (FcγRs) in recent ten years. The biological function of the therapeutics with the antibody-dependent cellular cytotoxicity (ADCC) enhanced double mutation (S239D/I332E) of isotype IgG1, the ADCC reduced double mutation (L234A/L235A) of isotype IgG1, and ADCC reduced isotype IgG4 has been well understood. However, limited information regarding the effect of these mutations or isotype difference on physicochemical properties (PCP), developability, and manufacturability of therapeutics bearing these different Fc regions is available. In this report, we systematically characterize the effects of the mutations and IgG4 isotype on conformation stability, colloidal stability, solubility, and storage stability at accelerated conditions in two buffer systems using six Fc variants. Our results provide a basis for selecting appropriate Fc region during development of IgG or Ig-based therapeutics and predicting effect of the mutations on CMC development process.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA.
| | - Maureen Crames
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Yangjie Wei
- Amgen Inc., Drug Product Technologies, Thousand Oaks, California, USA
| | - Dongmei Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Kristina Gueneva-Boucheva
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Ikbae Son
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Fei Han
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Andrew Nixon
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Marlow Michael
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| |
Collapse
|
20
|
Tsang KY, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers (Basel) 2022; 14:cancers14133037. [PMID: 35804808 PMCID: PMC9264992 DOI: 10.3390/cancers14133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target. We explored indirect mechanisms of its action that may enhance immune tumor killing. NEO-201 can block the interaction between CEACAM-5 expressed on tumor cells and CEACAM-1 expressed on natural killer (NK) cells to reverse CEACAM-1-dependent inhibition of NK cytotoxicity. Previous studies have demonstrated safety/tolerability in non-human primates, and in a first in human phase 1 clinical trial at the National Cancer Institute (NCI). In addition, preclinical studies have demonstrated that NEO-201 can bind to human regulatory T (Treg) cells. The specificity of NEO-201 in recognizing suppressive Treg cells provides the basis for combination cancer immunotherapy with checkpoint inhibitors targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Kwong yok Tsang
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
- Correspondence: ; Tel.: +1-301-500-8646
| | - Massimo Fantini
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Sharon A. Mavroukakis
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Anjum Zaki
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Christina M. Annunziata
- Women’s Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Philip M. Arlen
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| |
Collapse
|
21
|
Optimized Methods for Analytical and Functional Comparison of Biosimilar mAb Drugs: A Case Study for Avastin, Mvasi, and Zirabev. Sci Pharm 2022. [DOI: 10.3390/scipharm90020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bevacizumab is a humanized therapeutic monoclonal antibody used to reduce angiogenesis, a hallmark of cancer, by binding to VEGF-A. Many pharmaceutical companies have developed biosimilars of Bevacizumab in the last decade. The official reports provided by the FDA and EMA summarize the analytical performance of biosimilars as compared to the originators without giving detailed analytical procedures. In the current study, several key methods were optimized and reported for analytical and functional comparison of bevacizumab originators (Avastin, Altuzan) and approved commercial biosimilars (Zirabev and Mvasi). This case study presents a comparative analysis of a set of biosimilars under optimized analytical conditions for the first time in the literature. The chemical structure of all products was analyzed at intact protein and peptide levels by high-resolution mass spectrometry; the major glycoforms and posttranslational modifications, including oxidation, deamidation, N-terminal PyroGlu addition, and C-terminal Lys clipping, were compared. The SPR technique was used to reveal antigen and some receptor binding kinetics of all products, and the ELISA technique was used for C1q binding affinity analysis. Finally, the inhibition performance of the samples was evaluated by an MTS-based proliferation assay in vitro. Major glycoforms were similar, with minor differences among the samples. Posttranslational modifications, except C-terminal Lys, were determined similarly, while unclipped Lys percentage was higher in Zirabev. The binding kinetics for VEGF, FcRn, FcγRIa, and C1q were similar or in the value range of originators. The anti-proliferative effect of Zirabev was slightly higher than the originators and Mvasi. The analysis of biosimilars under the same conditions could provide a new aspect to the literature in terms of the applied analytical techniques. Further studies in this field would be helpful to better understand the inter-comparability of the biosimilars.
Collapse
|
22
|
Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022; 13:856961. [PMID: 35281913 PMCID: PMC8912916 DOI: 10.3389/fphar.2022.856961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The number of therapeutic antibodies in development pipelines is increasing rapidly. Despite superior success rates relative to small molecules, therapeutic antibodies still face many unique development challenges. There is often a translational gap from their high target affinity and specificity to the therapeutic effects. Tissue microenvironment and physiology critically influence antibody-target interactions contributing to apparent affinity alterations and dynamic target engagement. The full potential of therapeutic antibodies will be further realized by contextualizing antibody-target interactions under physiological conditions. Here we review how local physiology such as physical stress, biological fluid, and membrane characteristics could influence antibody-target association, dissociation, and apparent affinity. These physiological factors in the early development of therapeutic antibodies are valuable toward rational antibody engineering, preclinical candidate selection, and lead optimization.
Collapse
Affiliation(s)
- Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Tsao LC, Crosby EJ, Trotter TN, Wei J, Wang T, Yang X, Summers AN, Lei G, Rabiola CA, Chodosh LA, Muller WJ, Lyerly HK, Hartman ZC. Trastuzumab/Pertuzumab combination therapy stimulates anti-tumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight 2022; 7:155636. [PMID: 35167491 PMCID: PMC8986081 DOI: 10.1172/jci.insight.155636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care treatment for advanced HER2+ breast cancers (BC) is comprised of two HER2-specific monoclonal antibodies (mAb), Trastuzumab (T) and Pertuzumab (P) with chemotherapy. While this combination (T+P) is highly effective, its synergistic mechanism of action (MOA) is not completely known. Initial studies had demonstrated that Pertuzumab suppressed HER2 hetero-dimerization as the potential therapeutic MOA, thus the improved outcome associated with the T+P combination MOA compared to Trastuzumab alone has been widely reported as being due to Pertuzumab-mediated suppression of HER2 signaling in combination with Trastuzumab-mediated induction of anti-tumor immunity. Unraveling this MOA may be critical to extend this combination strategy to other antigens or other cancers, as well as improving this current treatment modality. Using novel murine and human versions of Pertuzumab, we found it induced both Antibody-Dependent-Cellular-Phagocytosis (ADCP) by tumor-associated macrophages and suppression of HER2 oncogenic signaling. Most significantly, we identified that only T+P combination therapy, but not when either antibody used in isolation, allows for the activation of the classical complement pathway, resulting in both direct complement-dependent cytotoxicity (CDC) as well as complement-dependent cellular phagocytosis (CDCP) of HER2+ BC cells. Notably, we show that tumor expression of C1q was positively associated with survival outcome in HER2+ BC patients, whereas expression of complement regulators CD55 and CD59 were inversely correlated, suggesting the importance of complement activity in clinical outcomes. Accordingly, inhibition of C1 activity in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant anti-tumor MOA for T+P therapy that may be functionally enhanced to augment therapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, United States of America
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, United States of America
| | - Timothy N Trotter
- Department of Surgery, Duke University, Durham, United States of America
| | - Junping Wei
- Department of Surgery, Duke University, Durham, United States of America
| | - Tao Wang
- Department of Surgery, Duke University, Durham, United States of America
| | - Xiao Yang
- Department of Surgery, Duke University, Durham, United States of America
| | - Amanda N Summers
- Department of Surgery, Duke University, Durham, United States of America
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, United States of America
| | | | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States of America
| | | | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, United States of America
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, United States of America
| |
Collapse
|
24
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
25
|
Saporiti S, Parravicini C, Pergola C, Guerrini U, Rossi M, Centola F, Eberini I. IgG1 conformational behavior: elucidation of the N-glycosylation role via molecular dynamics. Biophys J 2021; 120:5355-5370. [PMID: 34710380 DOI: 10.1016/j.bpj.2021.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/05/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Currently, monoclonal antibodies (mAbs) are the most used biopharmaceuticals for human therapy. One of the key aspects in their development is the control of effector functions mediated by the interaction between fragment crystallizable (Fc) and Fcγ receptors, which is a secondary mechanism of the action of biotherapeutics. N-glycosylation at the Fc portion can regulate these mechanisms, and much experimental evidence suggests that modifications of glycosidic chains can affect antibody binding to FcγRIIIa, consequently impacting the immune response. In this work, we try to elucidate via in silico procedures the structural role exhibited by glycans, particularly fucose, in mAb conformational freedom that can potentially affect the receptor recognition. By using adalimumab, a marketed IgG1, as a general template, after rebuilding its three-dimensional (3D) structure through homology modeling approaches, we carried out molecular dynamics simulations of three differently glycosylated species: aglycosylated, afucosylated, and fucosylated antibody. Trajectory analysis showed different dynamical behaviors and pointed out that sugars can influence the overall 3D structure of the antibody. As a result, we propose a putative structural mechanism by which the presence of fucose introduces conformational constraints in the whole antibody and not only in the Fc domain, preventing a conformation suitable for the interaction with the receptor. As secondary evidence, we observed a high flexibility of the antibodies that is translated into an asymmetric behavior of Fab portions shown by all the simulated biopolymers, making the dynamical asymmetry a new, to our knowledge, molecular aspect that may be further investigated. In conclusion, these findings can help understand the contribution of sugars on the structural architecture of mAbs, paving the way to novel strategies of pharmaceutical development.
Collapse
Affiliation(s)
- Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Carlo Pergola
- Analytical Development Biotech, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Mara Rossi
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy
| | - Fabio Centola
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
26
|
Liu X, He Z, Qu Y, Meng Q, Qin L, Hu Y. Circulating Natural Autoantibodies to HER2-Derived Peptides Performed Antitumor Effects on Oral Squamous Cell Carcinoma. Front Pharmacol 2021; 12:693989. [PMID: 34803666 PMCID: PMC8602057 DOI: 10.3389/fphar.2021.693989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Natural autoantibodies play a crucial role in destruction of malignant tumors due to immune surveillance function. Epidermal growth factor receptor 2 (HER2) has been found to be highly expressed in a variety of epithelial tumors including oral squamous cell carcinoma (OSCC). The present study was thus undertaken to investigate the effect of anti-HER2 natural autoantibodies on OSCC. Compared with cancer-adjacent tissues, cancer tissues from OSCC patients exhibited higher HER2 expression especially in those with middle & advanced stage OSCC. Plasma anti-HER2 IgG levels examined with an enzyme-linked immunosorbent assay (ELISA) developed in-house showed differences between control subjects, individuals with oral benign tumor and patients with OSCC. In addition, anti-HER2 IgG-abundant plasma was screened from healthy donors to treat OSCC cells and to prepare for anti-HER2 intravenous immunoglobulin (IVIg). Both anti-HER2 IgG-abundant plasma and anti-HER2 IVIg could significantly inhibit proliferation and invasion of OSCC cells by inducing the apoptosis, and also regulate apoptosis-associated factors and epithelial-mesenchymal transition (EMT), respectively. Besides, the complement-dependent cytotoxicity (CDC) pathway was likely to contribute to the anti-HER2 IgG mediated inhibition of OSCC cells. After the HER2 gene was knocked down with HER2-specific siRNAs, the inhibitory effects on OSCC cell proliferation and apoptotic induction faded away. In conclusion, human plasma IgG, or IVIg against HER2 may be a promising agent for anti-OSCC therapy.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ziyi He
- Department of Transfusion Research, Dongguan Blood Center, Dongguan, China
| | - Yi Qu
- Department of Oral and Maxillofacial and Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qingyong Meng
- Laboratory for Nursing Science and Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial and Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Szöőr Á, Szöllősi J, Vereb G. From antibodies to living drugs: Quo vadis cancer immunotherapy? Biol Futur 2021; 72:85-99. [PMID: 34554498 DOI: 10.1007/s42977-021-00072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 01/16/2023]
Abstract
In the last few decades, monoclonal antibodies targeting various receptors and ligands have shown significant advance in cancer therapy. However, still a great percentage of patients experiences tumor relapse despite persistent antigen expression. Immune cell therapy with adoptively transferred modified T cells that express chimeric antigen receptors (CAR) is an engaging option to improve disease outcome. Designer T cells have been applied with remarkable success in the treatment for acute B cell leukemias, yielding unprecedented antitumor activity and significantly improved overall survival. Relying on the success of CAR T cells in leukemias, solid tumors are now emerging potential targets; however, their complexity represents a significant challenge. In preclinical models, CAR T cells recognized and efficiently killed the wide spectrum of tumor xenografts; however, in human clinical trials, limited antitumor efficacy and serious side effects, including cytokine release syndrome, have emerged as potential limitations. The next decade will be an exciting time to further optimize this novel cellular therapeutics to improve effector functions and, at the same time, keep adverse events in check. Moreover, we need to establish whether gene-modified T cells which are yet exclusively used for cancer patients could also be successful in the treatment for other diseases. Here, we provide a concise overview about the transition from monoclonal antibodies to the generation of chimeric antigen receptor T cells. We summarize lessons learned from preclinical models, including our own HER2-positive tumor models, as well as from clinical trials worldwide. We also discuss the challenges we are facing today and outline future prospects.
Collapse
Affiliation(s)
- Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
28
|
Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021; 22:166-179. [PMID: 34514097 PMCID: PMC8416972 DOI: 10.1016/j.omto.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy has been well regarded as one of the safer and antigen-specific anti-cancer treatments compared to first-generation chemotherapy. Since Coley's discovery, researchers focused on engineering novel antibody-based therapies. Including artificial and modified antibodies, such as antibody fragments, antibody-drug conjugates, and synthetic mimetics, the variety of immunotherapy has been rapidly expanding in the last few decades. Genetic and chemical modifications to monoclonal antibody have been brought into academia, in vivo trials, and clinical applications. Here, we have looked around antibodies overall. First, we elucidate the antibody structure and its cytotoxicity mechanisms. Second, types of therapeutic antibodies are presented. Additionally, there is a summarized list of US Food and Drug Administration (FDA)-approved therapeutic antibodies and recent clinical trials. This review provides a comprehensive overview of both the general function of therapeutic antibodies and a few main variations in development, including recent advent with the proposed mechanism of actions, and we introduce types of therapeutic antibodies, clinical trials, and approved commercial immunotherapeutic drugs.
Collapse
Affiliation(s)
- Charles Shin
- Chadwick International, Incheon 22002, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
29
|
Bondza S, Ten Broeke T, Nestor M, Leusen JHW, Buijs J. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs 2021; 12:1792673. [PMID: 32744151 PMCID: PMC7531561 DOI: 10.1080/19420862.2020.1792673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Based on their mechanism of action, two types of anti-CD20 antibodies are distinguished: Type I, which efficiently mediate complement-dependent cytotoxicity, and Type II, which instead are more efficient in inducing direct cell death. Several molecular characteristics of these antibodies have been suggested to underlie these different biological functions, one of these being the manner of binding to CD20 expressed on malignant B cells. However, the exact binding model on cells is unclear. In this study, the binding mechanism of the Type I therapeutic antibodies rituximab (RTX) and ofatumumab (OFA) and the Type II antibody obinutuzumab (OBI) were established by real-time interaction analysis on live cells. It was found that the degree of bivalent stabilization differed for the antibodies: OFA was stabilized the most, followed by RTX and then OBI, which had the least amount of bivalent stabilization. Bivalency inversely correlated with binding dynamics for the antibodies, with OBI displaying the most dynamic binding pattern, followed by RTX and OFA. For RTX and OBI, bivalency and binding dynamics were concentration dependent; at higher concentrations the interactions were more dynamic, whereas the percentage of antibodies that bound bivalent was less, resulting in concentration-dependent apparent affinities. This was barely noticeable for OFA, as almost all molecules bound bivalently at the tested concentrations. We conclude that the degree of bivalent binding positively correlates with the complement recruiting capacity of the investigated CD20 antibodies.
Collapse
Affiliation(s)
- Sina Bondza
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala, Sweden.,Ridgeview Instruments AB , Uppsala, Sweden
| | - Toine Ten Broeke
- Center for Translational Immunology, University Medical Center Utrecht , Utrecht, The Netherlands.,Current: Department of Pathology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala, Sweden
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala, Sweden.,Ridgeview Instruments AB , Uppsala, Sweden
| |
Collapse
|
30
|
Mustafa N, Nee AHF, Chooi JY, Toh SHM, Chung TH, Selvarajan V, Fan S, Ng SB, Poon M, Chan E, Lee J, Chee YL, Jeyasekharan AD, Zhou L, Yang J, Chng WJ. Determinants of response to daratumumab in Epstein-Barr virus-positive natural killer and T-cell lymphoma. J Immunother Cancer 2021; 9:jitc-2020-002123. [PMID: 34215687 PMCID: PMC8256838 DOI: 10.1136/jitc-2020-002123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background The potential therapeutic efficacy of daratumumab in natural killer T-cell lymphoma (NKTL) was highlighted when its off-label usage produced sustained remission in a patient with highly refractory disease. This is corroborated recently by a phase II clinical trial which established that daratumumab monotherapy is well tolerated and displayed encouraging response in relapsed/refractory NKTL patients. However, little is known regarding the molecular factors central to the induction and regulation of the daratumumab-mediated antitumor response in NKTL. Methods CD38 expression was studied via immunohistochemistry, multiplex immunofluorescence and correlated with clinical characteristics of the patient. The therapeutic efficacy of daratumumab was studied in vitro via CellTiter-Glo (CTG) assay, complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), and in vivo, via a patient-derived xenograft mouse model of NKTL, both as a single agent and in combination with L-asparaginase. Signaling mechanisms were characterized via pharmacologic treatment, RNA silencing, flow cytometry and corroborated with public transcriptomic data of NKTL. Results Epstein-Barr virus-positive NKTL patients significantly express CD38 with half exhibiting high expression. Daratumumab effectively triggers Fc-mediated ADCC and CDC in a CD38-dependent manner. Importantly, daratumumab monotherapy and combination therapy with L-asparaginase significantly suppresses tumor progression in vivo. Ablation of complement inhibitory proteins (CIP) demonstrate that CD55 and CD59, not CD46, are critical for the induction of CDC. Notably, CD55 and CD59 expression were significantly elevated in the late stages of NKTL. Increasing the CD38:CIP ratio through sequential CIP knockdown, followed by CD38 upregulation via All-Trans Retinoic Acid treatment, potently augments complement-mediated lysis in cells previously resistant to daratumumab. The CD38:CIP ratio consistently demonstrates a statistically superior correlation to antitumor efficacy of daratumumab than CD38 or CIP expression alone. Conclusion This study characterizes CD38 as an effective target for a subset of NKTL patients and the utilization of the CD38:CIP ratio as a more robust identifier for patient stratification and personalisation of treatment. Furthermore, elucidation of factors which sensitize the complement-mediated response provides an alternative approach toward optimizing therapeutic efficacy of daratumumab where CDC remains a known limiting factor. Altogether, these results propose a strategic rationale for further evaluation of single or combined daratumumab treatment in the clinic for NKTL.
Collapse
Affiliation(s)
- Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Adina Huey Fang Nee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Viknesvaran Selvarajan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Siok Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Michelle Poon
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Longen Zhou
- Discovery Center, Janssen China R&D, Shanghai, China
| | - Jennifer Yang
- Discovery Center, Janssen China R&D, Shanghai, China
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
31
|
CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2021; 136:2416-2427. [PMID: 32603414 DOI: 10.1182/blood.2020006200] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that commonly expresses CD38. Daratumumab (DARA), a human monoclonal antibody targeting CD38, has significantly improved the outcome of patients with relapsed or refractory MM, but the response is transient in most cases. Putative mechanisms of suboptimal efficacy of DARA include downregulation of CD38 expression and overexpression of complement inhibitory proteins on MM target cells as well as DARA-induced depletion of CD38high natural killer (NK) cells resulting in crippled antibody-dependent cellular cytotoxicity (ADCC). Here, we tested whether maintaining NK cell function during DARA therapy could maximize DARA-mediated ADCC against MM cells and deepen the response. We used the CRISPR/Cas9 system to delete CD38 (CD38KO) in ex vivo expanded peripheral blood NK cells. These CD38KO NK cells were completely resistant to DARA-induced fratricide, showed superior persistence in immune-deficient mice pretreated with DARA, and enhanced ADCC activity against CD38-expressing MM cell lines and primary MM cells. In addition, transcriptomic and cellular metabolic analysis demonstrated that CD38KO NK cells have unique metabolic reprogramming with higher mitochondrial respiratory capacity. Finally, we evaluated the impact of exposure to all-trans retinoic acid (ATRA) on wild-type NK and CD38KO NK cell function and highlighted potential benefits and drawbacks of combining ATRA with DARA in patients with MM. Taken together, these findings provide proof of concept that adoptive immunotherapy using ex vivo expanded CD38KO NK cells has the potential to boost DARA activity in MM.
Collapse
|
32
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
33
|
Wei B, Gao X, Cadang L, Izadi S, Liu P, Zhang HM, Hecht E, Shim J, Magill G, Pabon JR, Dai L, Phung W, Lin E, Wang C, Whang K, Sanchez S, Oropeza J, Camperi J, Zhang J, Sandoval W, Zhang YT, Jiang G. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs 2021; 13:1893427. [PMID: 33682619 PMCID: PMC7946005 DOI: 10.1080/19420862.2021.1893427] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fc galactosylation is a critical quality attribute for anti-tumor recombinant immunoglobulin G (IgG)-based monoclonal antibody (mAb) therapeutics with complement-dependent cytotoxicity (CDC) as the mechanism of action. Although the correlation between galactosylation and CDC has been known, the underlying structure–function relationship is unclear. Heterogeneity of the Fc N-glycosylation produced by Chinese hamster ovary (CHO) cell culture biomanufacturing process leads to variable CDC potency. Here, we derived a kinetic model of galactose transfer reaction in the Golgi apparatus and used this model to determine the correlation between differently galactosylated species from CHO cell culture process. The model was validated by a retrospective data analysis of more than 800 historical samples from small-scale and large-scale CHO cell cultures. Furthermore, using various analytical technologies, we discovered the molecular basis for Fc glycan terminal galactosylation changing the three-dimensional conformation of the Fc, which facilitates the IgG1 hexamerization, thus enhancing C1q avidity and subsequent complement activation. Our study offers insight into the formation of galactosylated species, as well as a novel three-dimensional understanding of the structure–function relationship of terminal galactose to complement activation in mAb therapeutics.
Collapse
Affiliation(s)
- Bingchuan Wei
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Small Molecule Analytical Chemistry, Genentech Inc, South San Francisco, United States
| | - Xuan Gao
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Saeed Izadi
- Pharmaceutical Development, Genentech Inc., South San Francisco, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Department of Chemistry and Biochemistry, Florida State University,Florida, United States
| | - Hui-Min Zhang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Elizabeth Hecht
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | - Jeongsup Shim
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Gordon Magill
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., South San Francisco, United States
| | - Juan Rincon Pabon
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Department of Chemistry, University of Kansas, Lawrence United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Wilson Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | - Elaine Lin
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Christopher Wang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Kevin Whang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Sean Sanchez
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Jose Oropeza
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Julien Camperi
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Jennifer Zhang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | | | - Guoying Jiang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| |
Collapse
|
34
|
Bondza S, Marosan A, Kara S, Lösing J, Peipp M, Nimmerjahn F, Buijs J, Lux A. Complement-Dependent Activity of CD20-Specific IgG Correlates With Bivalent Antigen Binding and C1q Binding Strength. Front Immunol 2021; 11:609941. [PMID: 33505398 PMCID: PMC7829346 DOI: 10.3389/fimmu.2020.609941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies directed against the CD20 surface antigen on B cells are widely used in the therapy of B cell malignancies. Upon administration, the antibodies bind to CD20 expressing B cells and induce their depletion via cell- and complement-dependent cytotoxicity or by induction of direct cell killing. The three antibodies currently most often used in the clinic are Rituximab (RTX), Ofatumumab (OFA) and Obinutuzumab (OBI). Even though these antibodies are all of the human IgG1 subclass, they have previously been described to vary considerably in the effector functions involved in therapeutic B cell depletion, especially in regards to complement activation. Whereas OFA is known to strongly induce complement-dependent cytotoxicity, OBI is described to be far less efficient. In contrast, the role of complement in RTX-induced B cell depletion is still under debate. Some of this dissent might come from the use of different in vitro systems for characterization of antibody effector functions. We therefore set out to systematically compare antibody as well as C1q binding and complement-activation by RTX, OFA and OBI on human B cell lines that differ in expression levels of CD20 and complement-regulatory proteins as well as human primary B cells. Applying real-time interaction analysis, we show that the overall strength of C1q binding to live target cells coated with antibodies positively correlated with the degree of bivalent binding for the antibodies to CD20. Kinetic analysis revealed that C1q exhibits two binding modes with distinct affinities and binding stabilities, with exact numbers varying both between antibodies and cell lines. Furthermore, complement-dependent cell killing by RTX and OBI was highly cell-line dependent, whereas the superior complement-dependent cytotoxicity by OFA was independent of the target B cells. All three antibodies were able to initiate deposition of C3b on the B cell surface, although to varying extent. This suggests that complement activation occurs but might not necessarily lead to induction of complement-dependent cytotoxicity. This activation could, however, initiate complement-dependent phagocytosis as an alternative mechanism of therapeutic B cell depletion.
Collapse
Affiliation(s)
- Sina Bondza
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Ridgeview Instruments AB, Uppsala, Sweden
| | - Anita Marosan
- Department of Genetics, Friedrich-Alexander University, Erlangen, Germany
| | - Sibel Kara
- Department of Genetics, Friedrich-Alexander University, Erlangen, Germany
| | - Josephine Lösing
- Department of Genetics, Friedrich-Alexander University, Erlangen, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Falk Nimmerjahn
- Department of Genetics, Friedrich-Alexander University, Erlangen, Germany
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Ridgeview Instruments AB, Uppsala, Sweden
| | - Anja Lux
- Department of Genetics, Friedrich-Alexander University, Erlangen, Germany
| |
Collapse
|
35
|
Fc Engineering Strategies to Advance IgA Antibodies as Therapeutic Agents. Antibodies (Basel) 2020; 9:antib9040070. [PMID: 33333967 PMCID: PMC7768499 DOI: 10.3390/antib9040070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
In the past three decades, a great interest has arisen in the use of immunoglobulins as therapeutic agents. In particular, since the approval of the first monoclonal antibody Rituximab for B cell malignancies, the progress in the antibody-related therapeutic agents has been incremental. Therapeutic antibodies can be applied in a variety of diseases, ranging from cancer to autoimmunity and allergy. All current therapeutic monoclonal antibodies used in the clinic are of the IgG isotype. IgG antibodies can induce the killing of cancer cells by growth inhibition, apoptosis induction, complement activation (CDC) or antibody-dependent cellular cytotoxicity (ADCC) by NK cells, antibody-dependent cellular phagocytosis (ADCP) by monocytes/macrophages, or trogoptosis by granulocytes. To enhance these effector mechanisms of IgG, protein and glyco-engineering has been successfully applied. As an alternative to IgG, antibodies of the IgA isotype have been shown to be very effective in tumor eradication. Using the IgA-specific receptor FcαRI expressed on myeloid cells, IgA antibodies show superior tumor-killing compared to IgG when granulocytes are employed. However, reasons why IgA has not been introduced in the clinic yet can be found in the intrinsic properties of IgA posing several technical limitations: (1) IgA is challenging to produce and purify, (2) IgA shows a very heterogeneous glycosylation profile, and (3) IgA has a relatively short serum half-life. Next to the technical challenges, pre-clinical evaluation of IgA efficacy in vivo is not straightforward as mice do not naturally express the FcαR. Here, we provide a concise overview of the latest insights in these engineering strategies overcoming technical limitations of IgA as a therapeutic antibody: developability, heterogeneity, and short half-life. In addition, alternative approaches using IgA/IgG hybrid and FcαR-engagers and the impact of engineering on the clinical application of IgA will be discussed.
Collapse
|
36
|
Roßkopf S, Eichholz KM, Winterberg D, Diemer KJ, Lutz S, Münnich IA, Klausz K, Rösner T, Valerius T, Schewe DM, Humpe A, Gramatzki M, Peipp M, Kellner C. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering. Antibodies (Basel) 2020; 9:antib9040063. [PMID: 33212776 PMCID: PMC7709100 DOI: 10.3390/antib9040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody’s Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. Results: Four versions of a CD19 antibody based on tafasitamab’s V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. Conclusions: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.
Collapse
Affiliation(s)
- Sophia Roßkopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Dorothee Winterberg
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Katarina Julia Diemer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Ira Alexandra Münnich
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Denis Martin Schewe
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
- Correspondence: ; Tel.: +49-431-500-22701
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| |
Collapse
|
37
|
Brinkhaus M, Douwes RGJ, Bentlage AEH, Temming AR, de Taeye SW, Tammes Buirs M, Gerritsen J, Mok JY, Brasser G, Ligthart PC, van Esch WJE, Verheesen P, de Haard H, Rispens T, Vidarsson G. Glycine 236 in the Lower Hinge Region of Human IgG1 Differentiates FcγR from Complement Effector Function. THE JOURNAL OF IMMUNOLOGY 2020; 205:3456-3467. [PMID: 33188070 DOI: 10.4049/jimmunol.2000961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.
Collapse
Affiliation(s)
- Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Ruben G J Douwes
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Matthias Tammes Buirs
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Jacoline Gerritsen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Giso Brasser
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Peter C Ligthart
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, 1066 CX Amsterdam, the Netherlands; and
| | | | | | | | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands;
| |
Collapse
|
38
|
D’Agostino M, Innorcia S, Boccadoro M, Bringhen S. Monoclonal Antibodies to Treat Multiple Myeloma: A Dream Come True. Int J Mol Sci 2020; 21:E8192. [PMID: 33139668 PMCID: PMC7662679 DOI: 10.3390/ijms21218192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy is increasingly used in the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) are safe and effective ways to elicit immunotherapeutic responses. In 2015, daratumumab has become the first mAb approved by the Food and Drug Administration for clinical use in MM and, in the last 5 years, a lot of clinical and preclinical research has been done to optimize the use of this drug class. Currently, mAbs have already become part of standard-of-care combinations for the treatment of relapsed/refractory MM and very soon they will also be used in the frontline setting. The success of simple mAbs ('naked mAbs') prompted the development of new types of molecules. Antibody-drug conjugates (ADCs) are tumor-targeting mAbs that release a cytotoxic payload into the tumor cells upon antigen binding in order to destroy them. Bispecific antibodies (BiAbs) are mAbs simultaneously targeting a tumor-associated antigen and an immune cell-associated antigen in order to redirect the immune cell cytotoxicity against the tumor cell. These different constructs produced solid preclinical data and promising clinical data in phase I/II trials. The aim of this review article is to summarize all the recent developments in the field, including data on naked mAbs, ADCs and BiAbs.
Collapse
Affiliation(s)
| | | | | | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (M.D.); (S.I.); (M.B.)
| |
Collapse
|
39
|
Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application. Front Immunol 2020; 11:593610. [PMID: 33193442 PMCID: PMC7658260 DOI: 10.3389/fimmu.2020.593610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Complement, as a central immune surveillance system, can be activated within seconds upon stimulation, thereby displaying multiple immune effector functions. However, in pathologic scenarios (like in tumor progression), activated complement can both display protective effects to control tumor development and passively promotes the tumor growth. Clinical investigations show that patients with several hematological malignancies often display abnormal level of specific complement components, which in turn modulates complement activation or deregulated cascade. In the past decades, complement-dependent cytotoxicity and complement-dependent cell-mediated phagocytosis were fully approved to display vital roles in monoclonal antibody-based immunotherapies, especially in therapies against hematological malignancies. However, tumor-mediated complement evasion presents a big challenge for such a therapy. This review aims to provide an integrative overview on the roles of the complement in tumor promotion, highlights complement mediated effects on antibody-based immunotherapy against distinct hematological tumors, hopefully provides a theoretical basis for the development of complement-based cancer targeted therapies.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Pedersen DV, Rösner T, Hansen AG, Andersen KR, Thiel S, Andersen GR, Valerius T, Laursen NS. Recruitment of properdin by bi-specific nanobodies activates the alternative pathway of complement. Mol Immunol 2020; 124:200-210. [PMID: 32599335 DOI: 10.1016/j.molimm.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
The complement system represents a powerful part of the innate immune system capable of removing pathogens and damaged host cells. Nevertheless, only a subset of therapeutic antibodies are capable of inducing complement dependent cytotoxicity, which has fuelled the search for new strategies to potentiate complement activation. Properdin (FP) functions as a positive complement regulator by stabilizing the alternative pathway C3 convertase. Here, we explore a novel strategy for direct activation of the alternative pathway of complement using bi-specific single domain antibodies (nanobodies) that recruit endogenous FP to a cell surface. As a proof-of-principle, we generated bi-specific nanobodies with specificity toward FP and the validated cancer antigen epidermal growth factor receptor (EGFR) and tested their ability to activate complement onto cancer cell lines expressing EGFR. Treatment led to recruitment of FP, complement activation and significant deposition of C3 fragments on the cells in a manner sensitive to the geometry of FP recruitment. The bi-specific nanobodies induced complement dependent lysis of baby hamster kidney cells expressing human EGFR but were unable to lyse human tumour cells due to the presence of complement regulators. Our results confirm that FP can function as a surface bound focal point for initiation of complement activation independent of prior C3b deposition. However, recruitment of FP by bi-specific nanobodies appears insufficient for overcoming the inhibitory action of the negative complement regulators overexpressed by many human tumour cell lines. Our data provide general information on the efficacy of properdin as an initiator of complement but suggest that properdin recruitment on its own may have limited utility as a platform for potent complement activation on regulated cell surfaces.
Collapse
Affiliation(s)
- Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Annette G Hansen
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark.
| |
Collapse
|
41
|
Franssen LE, Stege CAM, Zweegman S, van de Donk NWCJ, Nijhof IS. Resistance Mechanisms Towards CD38-Directed Antibody Therapy in Multiple Myeloma. J Clin Med 2020; 9:E1195. [PMID: 32331242 PMCID: PMC7230744 DOI: 10.3390/jcm9041195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Antibodies targeting CD38 are rapidly changing the treatment landscape of multiple myeloma (MM). CD38-directed antibodies have several mechanisms of action. Fc-dependent immune effector mechanisms include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis. In addition, direct effects and immunomodulatory effects contribute to the efficacy of CD38-directed antibodies. Daratumumab, the first-in-class anti-CD38 monoclonal antibody, is now part of standard treatment regimens of both newly diagnosed as well as relapsed/refractory MM patients. The FDA has recently approved isatuximab in combination with pomalidomide and dexamethasone for relapsed/refractory MM patients after at least two prior therapies. Further, the other CD38-targeting antibodies (i.e., MOR202 and TAK-079) are increasingly used in clinical trials. The shift to front-line treatment of daratumumab will lead to an increase in patients refractory to CD38 antibody therapy already after first-line treatment. Therefore, it is important to gain insight into the mechanisms of resistance to CD38-targeting antibodies in MM, and to develop strategies to overcome this resistance. In the current review, we will briefly describe the most important clinical data and mechanisms of action and will focus in depth on the current knowledge on mechanisms of resistance to CD38-targeting antibodies and potential strategies to overcome this.
Collapse
Affiliation(s)
- Laurens E. Franssen
- Department of Hematology, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (C.A.M.S.); (S.Z.); (N.W.C.J.v.d.D.); (I.S.N.)
| | | | | | | | | |
Collapse
|
42
|
Ornell KJ, Taylor JS, Zeki J, Ikegaki N, Shimada H, Coburn JM, Chiu B. Local delivery of dinutuximab from lyophilized silk fibroin foams for treatment of an orthotopic neuroblastoma model. Cancer Med 2020; 9:2891-2903. [PMID: 32096344 PMCID: PMC7163090 DOI: 10.1002/cam4.2936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/18/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy targeting GD2 is a primary treatment for patients with high-risk neuroblastoma. Dinutuximab is a monoclonal antibody with great clinical promise but is limited by side effects such as severe pain. Local delivery has emerged as a potential mechanism to deliver higher doses of therapeutics into the tumor bed, while limiting systemic toxicity. We aim to deliver dinutuximab locally in a lyophilized silk fibroin foam for the treatment of an orthotopic neuroblastoma mouse model. Dinutuximab-loaded silk fibroin foams were fabricated through lyophilization. In vitro release profile and bioactivity of the release through complement-dependent cytotoxicity were characterized. MYCN-amplified neuroblastoma cells (KELLY) were injected into the left gland of mice to generate an orthotopic neuroblastoma model. Once the tumor volume reached 100 mm3 , dinutuximab-, human IgG-, or buffer-loaded foams were implanted into the tumor and growth was monitored using high-resolution ultrasound. Post-resection histology was performed on tumors. Dinutuximab-loaded silk fibroin foams exhibited a burst release, with slow release thereafter in vitro with maintenance of bioactivity. The dinutuximab-loaded foam significantly inhibited xenograft tumor growth compared to IgG- and buffer-loaded foams. Histological analysis revealed the presence of dinutuximab within the tumor and neutrophils and macrophages infiltrating into dinutuximab-loaded silk foam. Tumors treated with local dinutuximab had decreased MYCN expression on histology compared to control or IgG-treated tumors. Silk fibroin foams offer a mechanism for local release of dinutuximab within the neuroblastoma tumor. This local delivery achieved a significant decrease in tumor growth rate in a mouse orthotopic tumor model.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jordan S Taylor
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Jasmine Zeki
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA.,Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hiroyuki Shimada
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Bill Chiu
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA.,Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Abu-Humaidan AHA, Ekblad L, Wennerberg J, Sørensen OE. EGFR modulates complement activation in head and neck squamous cell carcinoma. BMC Cancer 2020; 20:121. [PMID: 32054454 PMCID: PMC7020369 DOI: 10.1186/s12885-020-6615-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is pivotal for growth of epithelial cells and is overexpressed in several epithelial cancers like head and neck squamous cell carcinoma (HNSCC). EGFR signalling is also involved in diverse innate immune functions in epithelia. We previously found a role for EGFR in modulating the complement system in skin, this prompted an investigation into EGFR role in complement modulation in HNSCC. Methods We used patient derived HNSCC cell lines with varying sensitivities to EGFR inhibitors, and generated EGFR inhibition resistant cell lines to study the role of EGFR in modulating complement in HNSCC. Results We found that HNSCC cell lines activate the complement system when incubated with human serum. This complement activation was increased in cell lines sensitive to EGFR inhibition following the use of the tyrosine kinase inhibitor Iressa. Sensitive cell line made resistant to EGFR-inhibitors displayed complement activation and a decrease in complement regulatory proteins even in the absence of EGFR-inhibitors. Complement activation did not cause lysis of HNSCC cells, and rather led to increased extracellular signal-regulated kinase (ERK) phosphorylation in one cell line. Conclusion These data indicate that EGFR has a complement modulatory role in HNSCC, and that a prolonged EGFR-inhibition treatment in sensitive cancer cells increases complement activation. This has implications in understanding the response to EGFR inhibitors, in which resistance and inflammatory skin lesions are two major causes for treatment cessation.
Collapse
Affiliation(s)
- Anas H A Abu-Humaidan
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Division of Microbiology, Faculty of Medicine, The University of Jordan, Amman, Jordan.
| | - Lars Ekblad
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Wennerberg
- Division of Otorhinolaryngology/H&N Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ole E Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Thomas A, Hawthorne WJ, Burlak C. Xenotransplantation literature update, November/December 2019. Xenotransplantation 2020; 27:e12582. [PMID: 31984549 DOI: 10.1111/xen.12582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The ever-increasing disparity between the lack of organ donors and patients on the transplant waiting list is increasing worldwide. For the past several decades xenotransplantation has led the way to correct this deficit and remains clearly the only feasible option to provide a means to meet the demand for patients in need of an organ transplant. Xenotransplantation's ability to provide a specifically designed unlimited supply of organs, suited to treat the various needs for transplant organs and cells, has recently been championed by successful pre-clinical trials that have run long-term in non-human primate studies. In this review we show how these improvements have come about due to long-term dedicated research and recent advances in biomedical engineering technology, such as genome editing tools including zinc finger nucleases, TALEN, and CRISPER/Cas9 which have paved the way for significant breakthroughs in improving xenograft outcomes through genetic modifications to the donor source pig. Other novel approaches include the development of decellularized porcine tissue, such as corneas which can now be transplanted into patients with the minimal need for immunosuppression or other side effects. Further genetic variants of the porcine genome are also now being optimized to abrogate rejection. The emergence of new modalities such as; mesenchymal stem cells, donor thymic vascularization, in vivo bioreactors, chemokine and cytokine therapies have come to show improvements in xenograft outcomes. Furthermore, new studies confirm the safety status of using porcine xenografts, verifying that with current technologies and approaches, the issue of PERV transmission is a moot point. These breakthroughs and technological advancements push the reality of xenotransplantation one step closer to the clinic.
Collapse
Affiliation(s)
- Adwin Thomas
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Wayne J Hawthorne
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,The Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
45
|
Assessment of Structural and Functional Comparability of Biosimilar Products: Trastuzumab as a Case Study. BioDrugs 2020; 34:209-223. [DOI: 10.1007/s40259-020-00404-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020; 9:cells9010167. [PMID: 31936617 PMCID: PMC7017193 DOI: 10.3390/cells9010167] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.
Collapse
|
47
|
Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM, Dervillez X. FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol 2019; 13:2531-2553. [PMID: 31365168 PMCID: PMC6887587 DOI: 10.1002/1878-0261.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b‐binding protein C‐terminal‐α‐/β‐chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent‐positive regulator of the AP, the human factor H‐related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VHH targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab‐recognising epitopes [VHH(T) or VHH(P)], respectively, were used as HER2 anchoring moieties. Optimised high‐FHR4 valence heteromultimeric immunoconjugates [FHR4/VHH(T) or FHR4/VHH(P)] were selected by sequential cell cloning and a selective multistep His‐Trap purification. Optimised FHR4‐heteromultimeric immunoconjugates successfully overcame FH‐mediated complement inhibition threshold, causing increased C3b deposition on SK‐OV‐3, BT474 and SK‐BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement‐dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane‐anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement‐dependent cell‐mediated cytotoxicity. We showed that the degree of FHR4‐multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH‐mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady‐state towards activation on tumour cell surface.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Cécile Masquelier
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marie Fullana
- Société d'Accélération des Transferts de Technologies du Nord, Direction Territoriale Reims, Reims, France
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Life Sciences Research Unit (LSRU), Signal Transduction Laboratory, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
48
|
Avivar-Valderas A, Martín-Martín C, Ramírez C, Del Río B, Menta R, Mancheño-Corvo P, Ortiz-Virumbrales M, Herrero-Méndez Á, Panés J, García-Olmo D, Castañer JL, Palacios I, Lombardo E, Dalemans W, DelaRosa O. Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients. Front Immunol 2019; 10:1244. [PMID: 31258526 PMCID: PMC6587893 DOI: 10.3389/fimmu.2019.01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Adipose mesenchymal stem cells (ASC) are considered minimally immunogenic. This is due to the low expression of human leukocyte antigens I (HLA-I), lack of HLA-II expression and low expression of co-stimulatory molecules such as CD40 and CD80. The low rate of observed immunological rejection as well as the immunomodulatory qualities, position ASC as a promising cell-based therapy for the treatment of a variety of inflammatory indications. Yet, few studies have addressed relevant aspects of immunogenicity such as ASC donor-to-patient HLA histocompatibility or assessment of immune response triggered by ASC administration, particularly in the cases of presensitization. The present study aims to assess allo-immune responses in a cohort of Crohn's disease patients administered with allogeneic ASC (darvadstrocel formerly Cx601) for the treatment of complex perianal fistulas. We identified donor-specific antibodies (DSA) generation in a proportion of patients and observed that patients showing preexisting immunity were prone to generating DSA after allogeneic therapy. Noteworthy, naïve patients generating DSA at week 12 (W12) showed a significant reduction in DSA titer at week 52 (W52), whereas DSA titer was reduced in pre-sensitized patients only with no specificities against the donor administered. Remarkably, we did not observe any correlation of DSA generation with ASC therapeutic efficacy. In vitro complement-dependent cytotoxicity (CDC) studies have revealed limited cytotoxic levels based upon HLA-I expression and binding capacity even in pro-inflammatory conditions. We sought to identify CDC coping mechanisms contributing to the limited cytotoxic killing observed in ASC in vitro. We found that ASC express membrane-bound complement regulatory proteins (mCRPs) CD55, CD46, and CD59 at basal levels, with CD46 more actively expressed in pro-inflammatory conditions. We demonstrated that CD46 is a main driver of CDC signaling; its depletion significantly enhances sensitivity of ASC to CDC. In summary, despite relatively high clearance, DSA generation may represent a major challenge for allogeneic cell therapy management. Sensitization may be a significant concern when evaluating re-treatment or multi-donor trials. It is still unknown whether DSA generation could potentially be the consequence of donor-to-patient interaction and, therefore, subsequently link to efficacy or biological activity. Lastly, we propose that CDC modulators such as CD46 could be used to ultimately link CDC specificity with allogeneic cell therapy efficacy.
Collapse
Affiliation(s)
| | | | - Cristina Ramírez
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Borja Del Río
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Ramón Menta
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | | | | | - Julián Panés
- Department of Gastroenterology, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Damián García-Olmo
- Department of Surgery, Hospital U. Fundación Jiménez Díaz, Madrid, Spain
| | - José Luís Castañer
- Department of Immunology, University Hospital Ramon y Cajal, Madrid, Spain
| | - Itziar Palacios
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Eleuterio Lombardo
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | - Olga DelaRosa
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| |
Collapse
|
49
|
van de Donk NWCJ. Reprint of "Immunomodulatory effects of CD38-targeting antibodies". Immunol Lett 2019; 205:71-77. [PMID: 30826127 DOI: 10.1016/j.imlet.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/23/2018] [Indexed: 02/04/2023]
Abstract
The fist in class CD38-targeting antibody, daratumumab, is currently approved as single agent and in combination with standards of care for the treatment of relapsed and refractory multiple myeloma. Based on the high activity and favorable toxicity profile of daratumumab, other CD38 antibodies, such as isatuximab, MOR202, and TAK-079, are being evaluated in MM and other malignancies. The CD38-targeting antibodies have classic Fc-dependent immune effector mechanisms, including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). These mechanisms of action are dependent on CD38 expression on the tumor cells. There is increasing evidence that CD38 antibodies also improve host-anti-tumor immune response by eliminating CD38-positive immune suppressor cells, including regulatory T cells, regulatory B cells, and myeloid-derived suppressor cells. Indeed, daratumumab treatment results in a marked increase in T cell numbers and activity. CD38-targeting antibodies probably also reduce adenosine production in the bone marrow microenvironment, which may contribute to improved T cell activity. Preclinical and clinical studies have demonstrated that CD38-targeting antibodies have synergistic activity with several other anti-cancer drugs, including various agents with immune stimulating activity, such as lenalidomide and pomalidomide, as well as PD1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Drug resistance in multiple myeloma. Cancer Treat Rev 2018; 70:199-208. [DOI: 10.1016/j.ctrv.2018.09.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
|