1
|
Hasegawa H, Wang S, Kast E, Chou HT, Kaur M, Janlaor T, Mostafavi M, Wang YL, Li P. Understanding the biosynthesis of human IgM SAM-6 through a combinatorial expression of mutant subunits that affect product assembly and secretion. PLoS One 2024; 19:e0291568. [PMID: 38848420 PMCID: PMC11161108 DOI: 10.1371/journal.pone.0291568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between μHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Songyu Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Eddie Kast
- Molecular Analytics, Department of Biologic Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Hui-Ting Chou
- Structural Biology, Department of Small Molecule Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Mehma Kaur
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Tanakorn Janlaor
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Mina Mostafavi
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Yi-Ling Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Peng Li
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| |
Collapse
|
2
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
3
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Senga Y, Doi M, Onitsuka M, Honda S. Live-cell imaging to analyze intracellular aggregation of recombinant IgG in CHO cells. Cell Chem Biol 2021; 29:120-132.e4. [PMID: 34739851 DOI: 10.1016/j.chembiol.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Recombinant immunoglobulin G (IgG) aggregates are formed during their production. However, the process underlying intracellular/extracellular aggregation in cell culture conditions is not well understood, and no effective method exists to assess IgG aggregates. Here, we establish an approach to detect intracellular aggregates using AF.2A1, a small artificial protein that binds to non-native IgG conformers and aggregates. Fluorescent-labeled AF.2A1 is prepared via conjugation and transfected into antibody-producing Chinese hamster ovary (CHO) cells. Micrographic images show intracellular IgG aggregates in CHO cells. The relative amount of intracellular aggregates (versus total intracellular IgG) differed depending on the type of additives used during cell culture. Interestingly, the relative amount of intracellular aggregates moderately correlates with that of in vitro extracellular IgG aggregates, suggesting they are secreted. This method will allow the investigation of antibody aggregation in cells, and may guide the production of therapeutic antibodies with high yield/quality.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8513, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
5
|
Hasegawa H, Wei KY, Thomas M, Li P, Kinderman F, Franey H, Liu L, Jacobsen F. Light chain subunit of a poorly soluble human IgG2λ crystallizes in physiological pH environment both in cellulo and in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119078. [PMID: 34118277 DOI: 10.1016/j.bbamcr.2021.119078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Prominent inclusion bodies can develop in the endoplasmic reticulum (ER) when overexpressed antibodies possess intrinsically high condensation propensities. These observations suggest that antibodies deemed to show notable solubility problems may reveal such characteristics preemptively in the form of ER-associated inclusion bodies during antibody overexpression. To define the relationships between solubility problems and inclusion body phenotypes, we investigated the biosynthesis of a model human IgG2λ that shows severe opalescence in an acidic formulation buffer yet retains high solubility at physiological pH. Consistent with the pH-dependent solubility characteristics, the model antibody did not induce notable inclusion body in the physiological pH environment of the ER lumen. However, when individual subunit chains of the antibody were expressed separately, the light chain (LC) spontaneously induced notable crystal-like inclusion bodies in the ER. The LC crystallization event was readily reproducible in vitro by simply concentrating the purified LC protein at physiological pH. Two independent structural determinants for the LC crystallization were identified through rational mutagenesis approach by monitoring the effect of amino acid substitutions on intracellular LC crystallogenesis. The effect of mutations on crystallization was also recapitulated in vitro using purified LC proteins. Importantly, when introduced directly into the model antibody, a mutation that prevents the LC crystallization remediated the antibody's solubility problem without compromising the secretory output or antigen binding. These results illustrate that the ER can serve as a "physiological test tube" that not only reports secretory cargo's high condensation propensity at physiological pH, but also provides an orthogonal method that guides antibody engineering strategy.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA.
| | - Kathy Y Wei
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Melissa Thomas
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Peng Li
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Francis Kinderman
- Department of Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Heather Franey
- Department of Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Ling Liu
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Frederick Jacobsen
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| |
Collapse
|
6
|
Mathias S, Wippermann A, Raab N, Zeh N, Handrick R, Gorr I, Schulz P, Fischer S, Gamer M, Otte K. Unraveling what makes a monoclonal antibody difficult‐to‐express: From intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnol Bioeng 2019; 117:5-16. [DOI: 10.1002/bit.27196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Sven Mathias
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Anna Wippermann
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Nadja Raab
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Nikolas Zeh
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - René Handrick
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Ingo Gorr
- Early Stage Bioprocess Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Simon Fischer
- Cell Line Development CMB, Bioprocess & Analytical DevelopmentBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Martin Gamer
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Kerstin Otte
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| |
Collapse
|
7
|
Simultaneous induction of distinct protein phase separation events in multiple subcellular compartments of a single cell. Exp Cell Res 2019; 379:92-109. [DOI: 10.1016/j.yexcr.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 01/31/2023]
|
8
|
Kaneyoshi K, Kuroda K, Uchiyama K, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Secretion analysis of intracellular "difficult-to-express" immunoglobulin G (IgG) in Chinese hamster ovary (CHO) cells. Cytotechnology 2019; 71:305-316. [PMID: 30637508 DOI: 10.1007/s10616-018-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouki Kuroda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima, 7708513, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan. .,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
9
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|
10
|
Onitsuka M, Kadoya Y, Omasa T. Secretory leakage of IgG1 aggregates from recombinant Chinese hamster ovary cells. J Biosci Bioeng 2018; 127:752-757. [PMID: 30580968 DOI: 10.1016/j.jbiosc.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Aggregation of therapeutic antibodies is one of the most important issues to be resolved in manufacturing processes because of reduced efficacy and immunogenicity. Despite aggregation studies in vitro, little is known about the aggregation mechanism in cell culture processes. In this study, we investigated the process of aggregate formation of IgG1 antibodies during the culture of Chinese hamster ovary (CHO) cells to determine how aggregation occurs. A recombinant CHO cell line was cultivated in a bioreactor, and purified IgG1 from daily culture supernatants was analyzed by size exclusion chromatography. We found a linear correlation between the peak plots of IgG1 by-products, dimeric and aggregated IgG1, and integrated viable cell density, indicating that these by-products were secreted from CHO cells at a constant secretion rate. In addition, aggregate formation was not reproduced in pseudo-culture experiments, and the solution structures of intracellular and extracellular IgG1 aggregates were similar. These results support the concept of secretory leakage of IgG1 by-products. Secreted aggregates appeared to be in an alternatively folded state, which can pass through the protein quality control system in mammalian cells.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Yukinori Kadoya
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E-801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hasegawa H, Geng M, Ketchem RR, Liu L, Graham K, Jacobsen F. Intermolecular interactions involving an acidic patch on immunoglobulin variable domain and the γ2 constant region mediate crystalline inclusion body formation in the endoplasmic reticulum. CELLULAR LOGISTICS 2017; 7:e1361499. [PMID: 28944095 DOI: 10.1080/21592799.2017.1361499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Full-length immunoglobulins (Igs) are widely considered difficult to crystallize because of their large size, N-linked glycosylation, and flexible hinge region. However, numerous cases of intracellular Ig crystallization are reported in plasma cell dyscrasias. What makes some Ig clones more prone to crystallize during biosynthesis as well as the biochemical and cell biological requirements for this cryptic event are poorly understood. To investigate the underlying process of intracellular Ig crystallization we searched for model IgGs that can induce crystalline inclusions during recombinant overexpression. By testing various subunit combinations through mixing and matching of individual subunit chains derived from a panel of human IgG clones, we identified one secretion competent IgG2λ that induced needle-like crystalline inclusions in transfected HEK293 cells. Ig crystallization rarely occurred at steady-state cell growth conditions but was easily induced when ER-to-Golgi transport was pharmacologically blocked. Homology modeling revealed the presence of a prominent negatively-charged patch on the variable domain surface. The patch was composed of eight aspartic acids, of which five were in the heavy chain variable region and three were in the light chain. Crystallization occurred only when the two subunits were co-transfected and the intracellular crystals co-localized with ER resident proteins. Furthermore, subtype switching from IgG2 to IgG1 and stepwise neutralization of the acidic patch independently abrogated Ig crystallization events. The evidence supported that the formation of needle-like crystalline inclusions in the ER was underscored by multivalent intermolecular interactions between the acidic patch and undefined determinants present on the γ2 subunit constant region.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA, USA
| | - Mei Geng
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA, USA
| | - Randal R Ketchem
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA, USA
| | - Ling Liu
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, USA
| | - Kevin Graham
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, USA
| | | |
Collapse
|
13
|
Hasegawa H, Hsu A, Tinberg CE, Siegler KE, Nazarian AA, Tsai MM. Single amino acid substitution in LC-CDR1 induces Russell body phenotype that attenuates cellular protein synthesis through eIF2α phosphorylation and thereby downregulates IgG secretion despite operational secretory pathway traffic. MAbs 2017; 9:854-873. [PMID: 28379093 DOI: 10.1080/19420862.2017.1314875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amino acid sequence differences in the variable region of immunoglobulin (Ig) cause wide variations in secretion outputs. To address how a primary sequence difference comes to modulate Ig secretion, we investigated the biosynthetic process of 2 human IgG2κ monoclonal antibodies (mAbs) that differ only by one amino acid in the light chain complementarity-determining region 1 while showing ∼20-fold variance in secretion titer. Although poorly secreted, the lower-secreting mAb of the 2 was by no means defective in terms of its folding stability, antigen binding, and in vitro biologic activity. However, upon overexpression in HEK293 cells, the low-secreting mAb revealed a high propensity to aggregate into enlarged globular structures called Russell bodies (RBs) in the endoplasmic reticulum. While Golgi morphology was affected by the formation of RBs, secretory pathway membrane traffic remained operational in those cells. Importantly, cellular protein synthesis was severely suppressed in RB-positive cells through the phosphorylation of eIF2α. PERK-dependent signaling was implicated in this event, given the upregulation and nuclear accumulation of downstream effectors such as ATF4 and CHOP. These findings illustrated that the underlining process of poor Ig secretion in RB-positive cells was due to downregulation of Ig synthesis instead of a disruption or blockade of secretory pathway trafficking. Therefore, RB formation signifies an end of active Ig production at the protein translation level. Consequently, depending on how soon and how severely an antibody-expressing cell develops the RB phenotype, the productive window of Ig secretion can vary widely among the cells expressing different mAbs.
Collapse
Affiliation(s)
- Haruki Hasegawa
- a Department of Therapeutic Discovery , Amgen Inc. , South San Francisco , CA , USA
| | - Ann Hsu
- b Department of Therapeutic Discovery , Amgen Inc. , Thousand Oaks , CA , USA
| | - Christine E Tinberg
- a Department of Therapeutic Discovery , Amgen Inc. , South San Francisco , CA , USA
| | - Karen E Siegler
- c Department of Cardiometabolic Disorders , Amgen Inc. , South San Francisco , CA , USA
| | - Aaron A Nazarian
- b Department of Therapeutic Discovery , Amgen Inc. , Thousand Oaks , CA , USA
| | - Mei-Mei Tsai
- b Department of Therapeutic Discovery , Amgen Inc. , Thousand Oaks , CA , USA
| |
Collapse
|
14
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
15
|
Geoghegan JC, Fleming R, Damschroder M, Bishop SM, Sathish HA, Esfandiary R. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering. MAbs 2016; 8:941-50. [PMID: 27050875 DOI: 10.1080/19420862.2016.1171444] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies.
Collapse
Affiliation(s)
- James C Geoghegan
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Melissa Damschroder
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Steven M Bishop
- b Department of Formulation Sciences , MedImmune , Gaithersburg , MD , USA
| | - Hasige A Sathish
- b Department of Formulation Sciences , MedImmune , Gaithersburg , MD , USA
| | - Reza Esfandiary
- b Department of Formulation Sciences , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
16
|
Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 2016; 100:3451-61. [PMID: 26936774 PMCID: PMC4803805 DOI: 10.1007/s00253-016-7388-9] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.
Collapse
Affiliation(s)
- Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - David Reinhart
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
17
|
Hasegawa H, Patel N, Lim AC. Overexpression of cryoglobulin-like single-chain antibody induces morular cell phenotype via liquid-liquid phase separation in the secretory pathway organelles. FEBS J 2015; 282:2777-95. [DOI: 10.1111/febs.13332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Haruki Hasegawa
- Department of Therapeutic Discovery; Amgen Inc.; South San Francisco CA USA
| | - Neha Patel
- Department of Therapeutic Discovery; Amgen Inc.; South San Francisco CA USA
| | - Ai Ching Lim
- Department of Therapeutic Discovery; Amgen Inc.; South San Francisco CA USA
| |
Collapse
|