1
|
Mitchell SE, Togo J, Green CL, Derous D, Hambly C, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XX. Impact of Long-Term Graded Calorie Restriction on Survival and Body Mass Dynamics in Male C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2023; 78:1953-1963. [PMID: 37354128 PMCID: PMC10613020 DOI: 10.1093/gerona/glad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 06/26/2023] Open
Abstract
Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.
Collapse
Affiliation(s)
| | - Jacques Togo
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara L Green
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
- China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
2
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
3
|
Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
|
4
|
Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H, Zhang H, Shi Y, He X. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Rev Rep 2022; 18:2315-2327. [PMID: 35460064 PMCID: PMC9033418 DOI: 10.1007/s12015-022-10370-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence is an irreversible cell arrest process, which is determined by a variety of complicated mechanisms, including telomere attrition, mitochondrial dysfunction, metabolic disorders, loss of protein homeostasis, epigenetic changes, etc. Cellular senescence is causally related to the occurrence and development of age-related disease. The elderly is liable to suffer from disorders such as neurodegenerative diseases, cancer, and diabetes. Therefore, it is increasingly imperative to explore specific countermeasures for the treatment of age-related diseases. Numerous studies on humans and mice emphasize the significance of metabolic imbalance caused by short telomeres and mitochondrial damages in the onset of age-related diseases. Although the experimental data are relatively independent, more and more evidences have shown that there is mutual crosstalk between telomeres and mitochondrial metabolism in the process of cellular senescence. This review systematically discusses the relationship between telomere length, mitochondrial metabolic disorder, as well as their underlying mechanisms for cellular senescence and age-related diseases. Future studies on telomere and mitochondrial metabolism may shed light on potential therapeutic strategies for age-related diseases. Graphical Abstract The characteristics of cellular senescence mainly include mitochondrial dysfunction and telomere attrition. Mitochondrial dysfunction will cause mitochondrial metabolic disorders, including decreased ATP production, increased ROS production, as well as enhanced cellular apoptosis. While oxidative stress reaction to produce ROS, leads to DNA damage, and eventually influences telomere length. Under the stimulation of oxidative stress, telomerase catalytic subunit TERT mainly plays an inhibitory role on oxidative stress, reduces the production of ROS and protects telomere function. Concurrently, mitochondrial dysfunction and telomere attrition eventually induce a range of age-related diseases, such as T2DM, osteoporosis, AD, etc. :increase; :reduce;⟝:inhibition.
Collapse
Affiliation(s)
- Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yiming Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
De Souza AMA, Linares A, Speth RC, Campos GV, Ji H, Chianca D, Sandberg K, De Menezes RCA. Severe food restriction activates the central renin angiotensin system. Physiol Rep 2020; 8:e14338. [PMID: 31925945 PMCID: PMC6954120 DOI: 10.14814/phy2.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously showed that 2 weeks of a severe food restricted (sFR) diet (40% of the caloric intake of the control (CT) diet) up‐regulated the circulating renin angiotensin (Ang) system (RAS) in female Fischer rats, most likely as a result of the fall in plasma volume. In this study, we investigated the role of the central RAS in the mean arterial pressure (MAP) and heart rate (HR) dysregulation associated with sFR. Although sFR reduced basal mean MAP and HR, the magnitude of the pressor response to intracerebroventricular (icv) microinjection of Ang‐[1‐8] was not affected; however, HR was 57 ± 13 bpm lower 26 min after Ang‐[1‐8] microinjection in the sFR rats and a similar response was observed after losartan was microinjected. The major catabolic pathway of Ang‐[1‐8] in the hypothalamus was via Ang‐[1‐7]; however, no differences were detected in the rate of Ang‐[1‐8] synthesis or degradation between CT and sFR animals. While sFR had no effect on the AT1R binding in the subfornical organ (SFO), the organum vasculosum laminae terminalis (OVLT) and median preoptic nucleus (MnPO) of the paraventricular anteroventral third ventricle, ligand binding increased 1.4‐fold in the paraventricular nucleus (PVN) of the hypothalamus. These findings suggest that sFR stimulates the central RAS by increasing AT1R expression in the PVN as a compensatory response to the reduction in basal MAP and HR. These findings have implications for people experiencing a period of sFR since an activated central RAS could increase their risk of disorders involving over activation of the RAS including renal and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Andrea Linares
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C Speth
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Glenda V Campos
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Hong Ji
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Deoclécio Chianca
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade, Federal de Ouro Preto, Ouro Preto, Brazil
| | - Kathryn Sandberg
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Rodrigo C A De Menezes
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade, Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
6
|
Zheng Q, Huang J, Wang G. Mitochondria, Telomeres and Telomerase Subunits. Front Cell Dev Biol 2019; 7:274. [PMID: 31781563 PMCID: PMC6851022 DOI: 10.3389/fcell.2019.00274] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial functions and telomere functions have mostly been studied independently. In recent years, it, however, has become clear that there are intimate links between mitochondria, telomeres, and telomerase subunits. Mitochondrial dysfunctions cause telomere attrition, while telomere damage leads to reprogramming of mitochondrial biosynthesis and mitochondrial dysfunctions, which has important implications in aging and diseases. In addition, evidence has accumulated that telomere-independent functions of telomerase also exist and that the protein component of telomerase TERT shuttles between the nucleus and mitochondria under oxidative stress. Our previously published data show that the RNA component of telomerase TERC is also imported into mitochondria, processed, and exported back to the cytosol. These data show a complex regulation network where telomeres, nuclear genome, and mitochondria are co-regulated by multi-localization and multi-function proteins and RNAs. This review summarizes the connections between mitochondria and telomeres, the mitochondrion-related functions of telomerase subunits, and how they play a role in crosstalk between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Qian Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Mugabo M, Gilljam D, Petteway L, Yuan C, Fowler MS, Sait SM. Environmental degradation amplifies species' responses to temperature variation in a trophic interaction. J Anim Ecol 2019; 88:1657-1669. [PMID: 31330040 PMCID: PMC6899768 DOI: 10.1111/1365-2656.13069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/24/2022]
Abstract
Land‐use and climate change are two of the primary drivers of the current biodiversity crisis. However, we lack understanding of how single‐species and multispecies associations are affected by interactions between multiple environmental stressors. We address this gap by examining how environmental degradation interacts with daily stochastic temperature variation to affect individual life history and population dynamics in a host–parasitoid trophic interaction, using the Indian meal moth, Plodia interpunctella, and its parasitoid wasp Venturia canescens. We carried out a single‐generation individual life‐history experiment and a multigeneration microcosm experiment during which individuals and microcosms were maintained at a mean temperature of 26°C that was either kept constant or varied stochastically, at four levels of host resource degradation, in the presence or absence of parasitoids. At the individual level, resource degradation increased juvenile development time and decreased adult body size in both species. Parasitoids were more sensitive to temperature variation than their hosts, with a shorter juvenile stage duration than in constant temperatures and a longer adult life span in moderately degraded environments. Resource degradation also altered the host's response to temperature variation, leading to a longer juvenile development time at high resource degradation. At the population level, moderate resource degradation amplified the effects of temperature variation on host and parasitoid populations compared with no or high resource degradation and parasitoid overall abundance was lower in fluctuating temperatures. Top‐down regulation by the parasitoid and bottom‐up regulation driven by resource degradation contributed to more than 50% of host and parasitoid population responses to temperature variation. Our results demonstrate that environmental degradation can strongly affect how species in a trophic interaction respond to short‐term temperature fluctuations through direct and indirect trait‐mediated effects. These effects are driven by species differences in sensitivity to environmental conditions and modulate top‐down (parasitism) and bottom‐up (resource) regulation. This study highlights the need to account for differences in the sensitivity of species’ traits to environmental stressors to understand how interacting species will respond to simultaneous anthropogenic changes.
Collapse
Affiliation(s)
- Marianne Mugabo
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David Gilljam
- Dynamic Ecology Group, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Laura Petteway
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chenggui Yuan
- Maths Department, College of Science, Swansea University, Swansea, UK
| | - Mike S Fowler
- Dynamic Ecology Group, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
9
|
Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Commun Biol 2018; 1:187. [PMID: 30417124 PMCID: PMC6218562 DOI: 10.1038/s42003-018-0187-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Ribosomal DNA (rDNA) repeat instability and protein aggregation are thought to be two major and independent drivers of cellular aging. Pbp1, the yeast ortholog of human ATXN2, maintains rDNA repeat stability and lifespan via suppression of RNA-DNA hybrids. ATXN2 polyglutamine expansion drives neurodegeneration causing spinocerebellar ataxia type 2 and promoting amyotrophic lateral sclerosis. Here, molecular characterization of Pbp1 revealed that its knockout or subjection to disease-modeling polyQ expansion represses Ty1 (Transposons of Yeast) retrotransposons by respectively promoting Trf4-depedendent RNA turnover and Ty1 Gag protein aggregation. This aggregation, but not its impact on retrotransposition, compromises rDNA repeat stability and shortens lifespan by hyper-activating Trf4-dependent turnover of intergenic ncRNA within the repeats. We uncover a function for the conserved Pbp1/ATXN2 proteins in the promotion of retrotransposition, create and describe powerful yeast genetic models of ATXN2-linked neurodegenerative diseases, and connect the major aging mechanisms of rDNA instability and protein aggregation.
Collapse
|
10
|
López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM, Navas P. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology 2018; 19:461-480. [PMID: 30143941 DOI: 10.1007/s10522-018-9768-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
Mitochondria are key in the metabolism of aerobic organisms and in ageing progression and age-related diseases. Mitochondria are essential for obtaining ATP from glucose and fatty acids but also in many other essential functions in cells including aminoacids metabolism, pyridine synthesis, phospholipid modifications and calcium regulation. On the other hand, the activity of mitochondria is also the principal source of reactive oxygen species in cells. Ageing and chronic age-related diseases are associated with the deregulation of cell metabolism and dysfunction of mitochondria. Cell metabolism is controlled by three major nutritional sensors: mTOR, AMPK and Sirtuins. These factors control mitochondrial biogenesis and dynamics by regulating fusion, fission and turnover through mito- and autophagy. A complex interaction between the activity of these nutritional sensors, mitochondrial biogenesis rate and dynamics exists and affect ageing, age-related diseases including metabolic disease. Further, mitochondria maintain a constant communication with nucleus modulating gene expression and modifying epigenetics. In this review we highlight the importance of mitochondria in ageing and the repercussion in the progression of age-related diseases and metabolic disease.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain.
| | - Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| |
Collapse
|
11
|
Ng SH, Simpson SJ, Simmons LW. Macronutrients and micronutrients drive trade‐offs between male pre‐ and postmating sexual traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soon Hwee Ng
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia Crawley Western Australia Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental SciencesThe University of Sydney Sydney New South Wales Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia Crawley Western Australia Australia
| |
Collapse
|
12
|
The mTOR-S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol 2018; 20:320-331. [PMID: 29403037 PMCID: PMC5826806 DOI: 10.1038/s41556-017-0033-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (LKB1; also known as STK11) hyperactivates mTOR complex 1 (mTORC1)-S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1-S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Collapse
|
13
|
Abraham KJ, Ostrowski LA, Mekhail K. Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. J Mol Biol 2017; 429:3196-3214. [DOI: 10.1016/j.jmb.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/05/2023]
|
14
|
Abraham KJ, Chan JNY, Salvi JS, Ho B, Hall A, Vidya E, Guo R, Killackey SA, Liu N, Lee JE, Brown GW, Mekhail K. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res 2016; 44:8870-8884. [PMID: 27574117 PMCID: PMC5063000 DOI: 10.1093/nar/gkw752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Dietary calorie restriction is a broadly acting intervention that extends the lifespan of various organisms from yeast to mammals. On another front, magnesium (Mg2+) is an essential biological metal critical to fundamental cellular processes and is commonly used as both a dietary supplement and treatment for some clinical conditions. If connections exist between calorie restriction and Mg2+ is unknown. Here, we show that Mg2+, acting alone or in response to dietary calorie restriction, allows eukaryotic cells to combat genome-destabilizing and lifespan-shortening accumulations of RNA–DNA hybrids, or R-loops. In an R-loop accumulation model of Pbp1-deficient Saccharomyces cerevisiae, magnesium ions guided by cell membrane Mg2+ transporters Alr1/2 act via Mg2+-sensitive R-loop suppressors Rnh1/201 and Pif1 to restore R-loop suppression, ribosomal DNA stability and cellular lifespan. Similarly, human cells deficient in ATXN2, the human ortholog of Pbp1, exhibit nuclear R-loop accumulations repressible by Mg2+ in a process that is dependent on the TRPM7 Mg2+ transporter and the RNaseH1 R-loop suppressor. Thus, we identify Mg2+ as a biochemical signal of beneficial calorie restriction, reveal an R-loop suppressing function for human ATXN2 and propose that practical magnesium supplementation regimens can be used to combat R-loop accumulation linked to the dysfunction of disease-linked human genes.
Collapse
Affiliation(s)
- Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jayesh S Salvi
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Amanda Hall
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Elva Vidya
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ru Guo
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Nancy Liu
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada Canada Research Chairs Program, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada Canada Research Chairs Program, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Lushchak VI. Time-course and intensity-based classifications of oxidative stresses and their potential application in biomedical, comparative and environmental research. Redox Rep 2016; 21:262-70. [PMID: 26828292 DOI: 10.1080/13510002.2015.1126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE We propose some clues for classification of oxidative stresses based on their intensity and time-course. BACKGROUND Oxidative stress is studied for more than three decades and it is clear that it may differ on the parameters of interest. But up to now there is no any system for formal discrimination between different types of the stress. Such approach can provide important benefits at description of experimental data. METHOD We briefly review information on oxidative stresses and show that the theoretical concept is actually poorly developed since introduction of the first definition in 1985 by H. Sies. We argue that the stresses can differ on their intensities and time-curses, but there was no theoretical basis for discrimination between them. RESULTS On the basis of these analyses, we propose two systems of classifications of oxidative stresses enabling their description taking into account their intensity and time-course. We analyze essential biomarkers of oxidative stress to be used for classification such as levels of modified by reactive oxygen species proteins, lipids, nucleic acids, and low molecular mass compounds. Finally, we describe potential applications of the proposed classifications to biomedical, comparative and environmental research. CONCLUSION The proposed classifications of oxidative stress may facilitate description of experimental data and their comparison between different organisms and methods of induction of oxidative stresses. Additionally this work may provide some clues to develop quantitative approaches for formal categorization of oxidative stresses. APPLICATION Most applications of the classifications proposed are theoretical and applied studies where oxidative stress takes place.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- a Department of Biochemistry and Biotechnology , Vasyl Stefanyk Precarpathian National University , 57 Shevchenko Str., Ivano-Frankivsk 76018 , Ukraine
| |
Collapse
|
16
|
Yip EC, Lubin Y. Effects of diet restriction on life history in a sexually cannibalistic spider. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eric C. Yip
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Yael Lubin
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| |
Collapse
|
17
|
Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a Potential Target for Sarcopenia. J Cell Physiol 2015; 231:1450-9. [DOI: 10.1002/jcp.25260] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Jingjing Fan
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Xianjuan Kou
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Shaohui Jia
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Xiaoqi Yang
- Graduate School; Wuhan Sports University; Wuhan China
| | - Yi Yang
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Ning Chen
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| |
Collapse
|
18
|
Caloric restriction and exercise "mimetics'': Ready for prime time? Pharmacol Res 2015; 103:158-66. [PMID: 26658171 DOI: 10.1016/j.phrs.2015.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Exercise and diet are powerful interventions to prevent and ameliorate various pathologies. The development of pharmacological agents that confer exercise- or caloric restriction-like phenotypic effects is thus an appealing therapeutic strategy in diseases or even when used as life-style and longevity drugs. Such so-called exercise or caloric restriction "mimetics" have so far mostly been described in pre-clinical, experimental settings with limited translation into humans. Interestingly, many of these compounds activate related signaling pathways, most often postulated to act on the common downstream effector peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle. In this review, resveratrol and other exercise- and caloric restriction "mimetics" are discussed with a special focus on feasibility, chances and limitations of using such compounds in patients as well as in healthy individuals.
Collapse
|
19
|
Abstract
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
20
|
Liochev SI. Reflections on the Theories of Aging, of Oxidative Stress, and of Science in General. Is It Time to Abandon the Free Radical (Oxidative Stress) Theory of Aging? Antioxid Redox Signal 2015; 23:187-207. [PMID: 24949668 DOI: 10.1089/ars.2014.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Aging and oxidative stress are complex phenomena, and their understanding is of enormous theoretical and practical significance. RECENT ADVANCES Numerous hypotheses and theories that attempt to explain these phenomena have been developed. These hypotheses and theories compete with each other, with each claiming to be the correct one, while significantly contradicting each other. CRITICAL ISSUES It is important to develop a maximally correct theory that may then trigger significant practical breakthroughs. FUTURE DIRECTIONS None of these theories is entirely correct or close enough to the truth. However, most of them contain many correct elements (CE). Finding these CE is possible by analysis of these theories. Once the CE are found, they can be merged by synthesis in a better new theory. An analysis of some of the theories of aging followed by synthesis is attempted.
Collapse
|
21
|
Xu C, Cai Y, Fan P, Bai B, Chen J, Deng HB, Che CM, Xu A, Vanhoutte PM, Wang Y. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues. Diabetes 2015; 64:1576-90. [PMID: 25475438 DOI: 10.2337/db14-1180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022]
Abstract
Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Cai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Fan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Han-Bing Deng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and Chemical Biology Center, Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 2015; 6:87. [PMID: 25806046 PMCID: PMC4353379 DOI: 10.3389/fgene.2015.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 12/03/2022] Open
Abstract
Declining brain and neurobiological function is arguably one of the most common features of human aging. The study of conserved aging processes as well as the characterization of various neurodegenerative diseases using different genetic models such as yeast, fly, mouse, and human systems is uncovering links to non-coding RNAs. These links implicate a variety of RNA-regulatory processes, including microRNA function, paraspeckle formation, RNA–DNA hybrid regulation, nucleolar RNAs and toxic RNA clearance, amongst others. Here we highlight these connections and reveal over-arching themes or questions related to recently appreciated roles of non-coding RNA in neural function and dysfunction across lifespan.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada ; Canada Research Chairs Program, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
23
|
Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids. Dev Cell 2014; 30:177-91. [PMID: 25073155 DOI: 10.1016/j.devcel.2014.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
Intergenic transcription within repetitive loci such as the ribosomal DNA (rDNA) repeats of yeast commonly triggers aberrant recombination. Major mechanisms suppressing aberrant rDNA recombination rely on chromatin silencing or RNAPII repression at intergenic spacers within the repeats. We find ancient processes operating at rDNA intergenic spacers and other loci to maintain genome stability via repression of RNA-DNA hybrids. The yeast Ataxin-2 protein Pbp1 binds noncoding RNA, suppresses RNA-DNA hybrids, and prevents aberrant rDNA recombination. Repression of RNA-DNA hybrids in Pbp1-deficient cells through RNaseH overexpression, deletion of the G4DNA-stabilizing Stm1, or caloric restriction operating via RNaseH/Pif1 restores rDNA stability. Pbp1 also limits hybrids at non-rDNA G4DNA loci including telomeres. Moreover, cells lacking Pbp1 have a short replicative lifespan that is extended upon hybrid suppression. Thus, we find roles for Pbp1 in genome maintenance and reveal that caloric restriction counteracts Pbp1 deficiencies by engaging RNaseH and Pif1.
Collapse
|