1
|
Hiraga T. Immune microenvironment of cancer bone metastasis. Bone 2025; 191:117328. [PMID: 39549899 DOI: 10.1016/j.bone.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Bone is a common and frequent site of metastasis in cancer patients, leading to a significant reduction in quality of life and increased mortality. Bone marrow, the primary site of hematopoiesis, also serves as both a primary and secondary lymphoid organ. It harbors and supports a diverse array of immune cells, thereby creating a distinct immune microenvironment. These immune cells engage in a range of activities, including anti-tumor, pro-tumor, or a combination of both, which influence the development and progression of bone metastases. Rapid advances in cancer immunotherapy have underscored its potential to eradicate bone metastases. However, clinical outcomes have not yet met expectations. To improve the efficacy of immunotherapy, it is crucial to gain a comprehensive and in-depth understanding of the immune microenvironment within bone metastases. This review provides an overview of the current understanding of the role of different immune cells, their anti-tumor and pro-tumor activities, and their overall contribution to bone metastasis.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| |
Collapse
|
2
|
Kapoor S, Gupta M, Sapra L, Kaur T, Srivastava RK. Delineating the nexus between gut-intratumoral microbiome and osteo-immune system in bone metastases. Bone Rep 2024; 23:101809. [PMID: 39497943 PMCID: PMC11532283 DOI: 10.1016/j.bonr.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024] Open
Abstract
Emerging insights in osteoimmunology have enabled researchers to explore in depth the role of immune modulation in regulating bone health. Bone is one of the common sites of metastasis notably in case of breast cancer, prostate cancer and several other cancer types. High calcium ion concentration and presence of several factors within the mineralized bone matrix including TGF-β, BMP etc., aid in tumor growth and proliferation. Accumulating evidence has substantiated the role of the gut-microbiota (GM) in tumorigenesis, further providing a strong impetus for the growing "immune-cancer-gut microbiota" relationship. Recent advancements in research further highlight the importance of the intra-tumor microbiota in conjunction with GM in cancer metastasis. Intratumoral microbiota owing to their ability to cause genetic instability, mutations, and epigenetic modifications within the tumor microenvironment, has been recognized to affect cancer cell physiology. The host microbiota and immune system crosstalk shapes the innate and adaptive arms of the immune system, which is the key player in cancer progression. In this review, we aim to decipher the role of microorganisms mediating bone metastasis by shedding light on the immuno-onco-microbiome (IOM) axis. We discussed the feasible cancer therapeutic interventions based on the modulation of the microbiome-immune cell axis which includes prebiotics, probiotics, and postbiotics. Here, we leverage the conceptual framework based on the published articles on microbiota-based therapies to target bone metastases. Understanding this complicated nexus will provide insights into fundamental factors governing bone metastases which will subsequently help in managing this malignancy with better efficacy.
Collapse
Affiliation(s)
- Shreya Kapoor
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | | | - Taranjeet Kaur
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
3
|
Song C, Tong T, Dai B, Zhu Y, Chen E, Zhang M, Zhang W. Osteoimmunology in bone malignancies: a symphony with evil. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:354-368. [PMID: 39735445 PMCID: PMC11674455 DOI: 10.1016/j.jncc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024] Open
Abstract
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality. These tumors set off a series of interactions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, participants, and underlying molecules of these interactions are not fully understood. This review explores the crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions, thereby inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Churui Song
- Department of Breast Surgery and Oncology, Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tie Tong
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Biqi Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, USA
| | - Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Merimma Grasso
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
5
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
6
|
Bennett NE, Parker DV, Mangano RS, Baum JE, Northcutt LA, Miller JS, Beadle EP, Rhoades JA. Pharmacologic Hedgehog inhibition modulates the cytokine profile of osteolytic breast cancer cells. J Bone Oncol 2024; 47:100625. [PMID: 39183755 PMCID: PMC11342115 DOI: 10.1016/j.jbo.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The establishment and progression of bone metastatic breast cancer is supported by immunosuppressive myeloid populations that enable tumor growth by dampening the innate and adaptive immune response. Much work remains to understand how to target these tumor-myeloid interactions to improve treatment outcomes. Noncanonical Hedgehog signaling is an essential component of bone metastatic tumor progression, and prior literature suggests a potential role for Hedgehog signaling and its downstream effector Gli2 in modulating immune responses. In this work, we sought to identify if inhibition of noncanonical Hedgehog signaling alters the cytokine profile of osteolytic breast cancer cells and the subsequent communication between the tumor cells and myeloid cells. Examination of large patient databases revealed significant relationships between Gli2 expression and expression of markers of myeloid maturation and activation as well as cytokine expression. We found that treatment with HPI-1 reduced tumor cell expression of numerous cytokine genes, including CSF1, CSF2, and CSF3, as well as CCL2 and IL6. Secreted CSF-1 (M-CSF) was also reduced by treatment. Changes in tumor-secreted factors resulted in polarization of THP-1 monocytes toward a proinflammatory phenotype, characterized by increased CD14 and CD40 surface marker expression. We therefore propose M-CSF as a novel target of Hedgehog inhibition with potential future applications in altering the immune microenvironment in addition to its known roles in reducing tumor-induced bone disease.
Collapse
Affiliation(s)
- Natalie E. Bennett
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
| | - Dominique V. Parker
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Rachel S. Mangano
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Interdisciplinary Graduate Program in Biological and Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jennifer E. Baum
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Master’s Program in Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Logan A. Northcutt
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jade S. Miller
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Erik P. Beadle
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie A. Rhoades
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Li YL, Chen CH, Lai YS, Pan MR, Hung WC. Increased blood CSF3R + myeloid-derived suppressor cell is a predictor for breast cancer recurrence. Am J Cancer Res 2024; 14:3171-3185. [PMID: 39005677 PMCID: PMC11236774 DOI: 10.62347/mukd2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection of cancer recurrence using specific biomarkers remains a clinically unmet need, although methodologies for monitoring tumor markers, cell-free DNA, and circulating tumor cells have been established for decades. Tumor recurrence develops in metastatic or dormant cancer cells under continuous immune surveillance. Alterations in the population and function of immune cells may contribute to cancer recurrence. Here, we utilized an animal model to imitate breast tumor recurrence after surgical resection and investigated the abundance and gene expression profiles of immune cells using NanoString analysis. Bioinformatic analysis of a published single-cell RNA sequencing database of myeloid-derived suppressor cells (MDSCs) was performed to identify common targets between the two studies. Identified biomarkers were validated using human peripheral blood mononuclear cell (PBMC) datasets. The inhibitory effect of MDSCs on T-cell proliferation was assessed in vitro. Our data demonstrated that the number of MDSCs significantly increased during recurrence. Comparison of our NanoString data with a single-cell RNA sequencing dataset of MDSCs in another spontaneous breast cancer model identified colony-stimulating factor 3 receptor (Csf3r)-positive MDSCs as a potential marker for predicting tumor relapse. We validated our findings using two previously published PBMC databases of patients with breast cancer with or without recurrence and confirmed the elevated MDSC gene signature and CSF3R expression in patients with tumor recurrence. 35 patients with breast cancer were also included in our study, that patients with higher levels of CSF3R had worse survival. In vitro experiments demonstrated that Csf3r + MDSCs exhibited enhanced reactive oxygen species (ROS) levels and robust T-cell suppression ability. We conclude that an increase in CSF3R + MDSCs is a potential biomarker for early detection of tumor recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
8
|
Altriche N, Gallant S, Augustine TN, Xulu KR. Navigating the Intricacies of Tumor Heterogeneity: An Insight into Potential Prognostic Breast Cancer Biomarkers. Biomark Insights 2024; 19:11772719241256798. [PMID: 38895160 PMCID: PMC11185041 DOI: 10.1177/11772719241256798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a heterogeneous disease with diverse histological and molecular subtypes. Luminal breast tumors are the most diagnosed subtype. In luminal breast cancer, hormone receptors (including ER, PR, HER2) play a diagnostic and prognostic role. Despite the effectiveness of endocrine therapy in luminal breast tumors, tumor recurrence and resistance occur, and this may highlight evolutionary strategies for survival driven by stemness. In this review we thus consider the association between estrogen signaling and stemness in mediating tumor processes. Many studies report stemness as one of the factors promoting tumor progression. Its association with estrogen signaling warrants further investigation and provides an opportunity for the identification of novel biomarkers which may be used for diagnostic, prognostic, and therapeutic purposes. Breast cancer stem cells have been characterized (CD44+ CD24-) and their role in promoting treatment resistance and tumor recurrence widely studied; however, the complexity of tumor progression which also involve microenvironmental factors suggests the existence of more varied cell phenotypes which mediate stemness and its role in tumor progression.
Collapse
Affiliation(s)
- Nastassia Altriche
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Simone Gallant
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
9
|
Chen S, Lei J, Mou H, Zhang W, Jin L, Lu S, Yinwang E, Xue Y, Shao Z, Chen T, Wang F, Zhao S, Chai X, Wang Z, Zhang J, Zhang Z, Ye Z, Li B. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors. Front Immunol 2024; 15:1335366. [PMID: 38464516 PMCID: PMC10920345 DOI: 10.3389/fimmu.2024.1335366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Collapse
Affiliation(s)
- Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangchu Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senxu Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: Clinical challenges, toxicities, and mechanisms. J Bone Oncol 2023; 43:100505. [PMID: 37842554 PMCID: PMC10568292 DOI: 10.1016/j.jbo.2023.100505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the field of anti-cancer therapy over the last decade; they provide durable clinical responses against tumors by inhibiting immune checkpoint proteins that canonically regulate the T cell-mediated immune response. Despite their success in many primary tumors and soft tissue metastases, ICIs function poorly in patients with bone metastases, and these patients do not have the same survival benefit as patients with the same primary tumor type (e.g., non-small cell lung cancer [NSCLC], urothelial, renal cell carcinoma [RCC], etc.) that has not metastasized to the bone. Additionally, immune-related adverse events including rheumatologic and musculoskeletal toxicities, bone loss, and increased fracture risk develop after treatment with ICIs. There are few preclinical studies that investigate the interplay of the immune system in bone metastases; however, the current literature suggests a role for CD8+ T cells and myeloid cell subsets in bone homeostasis. As such, this review focuses on findings from the clinical and pre-clinical studies that have investigated immune checkpoint blockade in the bone metastatic setting and highlights the need for more comprehensive investigations into the relationship between immune cell subsets, ICIs, and the bone-tumor microenvironment.
Collapse
Affiliation(s)
- Gwenyth J. Joseph
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas B. Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5058. [PMID: 37894425 PMCID: PMC10605026 DOI: 10.3390/cancers15205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy;
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
| | - Gian Mario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
12
|
Kwack KH, Zhang L, Kirkwood KL. In vitro osteoclastogenesis assessment using murine myeloid-derived suppressor cells. Methods Cell Biol 2023; 184:133-147. [PMID: 38555153 PMCID: PMC11287231 DOI: 10.1016/bs.mcb.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The study of myeloid-derived suppressor cells (MDSCs) has been commonly reported in the context of cancer immunology. MDSCs play a key role in cancer growth and progression by inhibiting both innate and adaptive immunity. In addition to the immunosuppressive function of MDSCs in cancer, a novel function of MDSCs as osteoclast precursors has recently been attracting attention. Because monocytic-MDSCs (M-MDSCs) are derived from the same myeloid lineage as macrophages, which are osteoclast progenitors, M-MDSCs can undergo differentiation into osteoclasts, contributing to bone destruction not only in the cancer microenvironment but also in inflammatory conditions including obesity and osteoarthritis. Herein, we present details of the technique to evaluate osteoclasts in vitro, as well as specific techniques to isolate M-MDSCs and identify them. This protocol can be easily adapted to isolate M-MDSCs from most pathologic conditions for easy evaluation.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States; Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States; Department of Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
13
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Ren Y, Bäcker H, Müller M, Kienzle A. The role of myeloid derived suppressor cells in musculoskeletal disorders. Front Immunol 2023; 14:1139683. [PMID: 36936946 PMCID: PMC10020351 DOI: 10.3389/fimmu.2023.1139683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The immune system is closely linked to bone homeostasis and plays a pivotal role in several pathological and inflammatory conditions. Through various pathways it modulates various bone cells and subsequently sustains the physiological bone metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous immature myeloid-derived cells that can exert an immunosuppressive function through a direct cell-to-cell contact, secretion of anti-inflammatory cytokines or specific exosomes. These cells mediate the innate immune response to chronic stress on the skeletal system. In chronic inflammation, MDSCs act as an inner offset to rebalance overactivation of the immune system. Moreover, they have been found to be involved in processes responsible for bone remodeling in different musculoskeletal disorders, autoimmune diseases, infection, and cancer. These cells can not only cause bone erosion by differentiating into osteoclasts, but also alleviate the immune reaction, subsequently leading to long-lastingly impacted bone remodeling. In this review, we discuss the impact of MDSCs on the bone metabolism under several pathological conditions, the involved modulatory pathways as well as potential therapeutic targets in MDSCs to improve bone health.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Henrik Bäcker
- Department of Orthopedics, Auckland City Hospital, Auckland, New Zealand
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité — Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Arne Kienzle,
| |
Collapse
|
15
|
PDX Models: A Versatile Tool for Studying the Role of Myeloid-Derived Suppressor Cells in Breast Cancer. Cancers (Basel) 2022; 14:cancers14246153. [PMID: 36551639 PMCID: PMC9777315 DOI: 10.3390/cancers14246153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The pivotal role of myeloid-derived suppressive cells (MDSCs) in cancer has become increasingly apparent over the past few years. However, to fully understand how MDSCs can promote human tumor progression and to develop strategies to target this cell type, relevant models that closely resemble the clinical complexity of human tumors are needed. Here, we show that mouse MDSCs of both the monocytic (M-MDCS) and the granulocytic (PMN-MDSC) lineages are recruited to human breast cancer patient-derived xenograft (PDX) tumors in mice. Transcriptomic analysis of FACS-sorted MDSC-subpopulations from the PDX tumors demonstrated the expression of several MDSC genes associated with both their mobilization and immunosuppressive function, including S100A8/9, Ptgs2, Stat3, and Cxcr2, confirming the functional identity of these cells. By combining FACS analysis, RNA sequencing, and immune florescence, we show that the extent and type of MDSC infiltration depend on PDX model intrinsic factors such as the expression of chemokines involved in mobilizing and recruiting tumor-promoting MDSCs. Interestingly, MDSCs have been shown to play a prominent role in breast cancer metastasis, and in this context, we demonstrate increased recruitment of MDSCs in spontaneous PDX lung metastases compared to the corresponding primary PDX tumors. We also demonstrate that T cell-induced inflammation enhances the recruitment of MDSC in experimental breast cancer metastases. In conclusion, breast cancer PDX models represent a versatile tool for studying molecular mechanisms that drive myeloid cell recruitment to primary and metastatic tumors and facilitate the development of innovative therapeutic strategies targeting these cells.
Collapse
|
16
|
Giannoni P, Marini C, Cutrona G, Todoerti K, Neri A, Ibatici A, Sambuceti G, Pigozzi S, Mora M, Ferrarini M, Fais F, de Totero D. A High Percentage of CD16+ Monocytes Correlates with the Extent of Bone Erosion in Chronic Lymphocytic Leukemia Patients: The Impact of Leukemic B Cells in Monocyte Differentiation and Osteoclast Maturation. Cancers (Basel) 2022; 14:cancers14235979. [PMID: 36497460 PMCID: PMC9740193 DOI: 10.3390/cancers14235979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Significant skeletal alterations are present in Chronic Lymphocytic Leukemia (CLL) patients; bone erosion, particularly evident in the long bone shaft, appeared increased in the progressive disease stage. Moreover, the partial colonization of the bone with reactive bone marrow we documented via PET-FDG imaging suggests that neoplastic cell overgrowth contributes to bone derangement. Indeed, cytokines released by leukemic B cells impair osteoblast differentiation and enhance osteoclast formation in vitro. CD16, Fcγ-RIIIa, has been previously indicated as a marker of osteoclast precursors. We demonstrate, here, that the percentage of circulating monocytes, CD16+, is significantly higher in CLL patients than in normal controls and directly correlated with the extent of bone erosion. When we assessed if healthy monocytes, treated with a CLL-conditioned medium, modulated RANK, RANKL and CD16, we observed that all these molecules were up-regulated and CD16 to a greater extent. Altogether, these findings suggest that leukemic cells facilitate osteoclast differentiation. Interestingly, the evidence that monocytes, polarized toward the M2 phenotype, were characterized by high CD16 expression and showed a striking propensity to differentiate toward osteoclasts may provide further explanations for the enhanced levels of bone erosion detected, in agreement with the high number of immunosuppressive-M2 cells present in these patients.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Department of Pathology, IRCCS Istituto Nazionale dei Tumori G. Venezian, 20133 Milano, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Adalberto Ibatici
- Hematology Unit and Bone Marrow Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Simona Pigozzi
- Department of Surgical and Diagnostic Sciences, University of Genova, 16132 Genova, Italy
| | - Marco Mora
- Pathology Anatomy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|
17
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
18
|
Calvert RD, Fleet JC, Fournier PGJ, Juarez P, Burcham GN, Haverkamp JM, Guise TA, Ratliff TL, Elzey BD. Monocytic Myeloid-Derived Suppressor Cells from Tumor Tissue Are a Differentiated Cell with Limited Fate Plasticity. Immunohorizons 2022; 6:790-806. [PMID: 36480485 DOI: 10.4049/immunohorizons.2200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to ease of access and high yield, most murine myeloid-derived suppressor cell (MDSC) knowledge comes from the study of spleen-derived MDSCs rather than those isolated from the tumor. Although several studies have identified subtle differences in suppressive function between these MDSCs, a recent report demonstrated that the whole peripheral myeloid compartment poorly reflects myeloid populations found at the tumor. We confirm and extend these observations by presenting data that indicate extensive differences exist between peripheral and tumor MDSCs, suggesting that it may be inappropriate to use spleen MDSCs as surrogates for studying tumor MDSCs. Using cytospins, we observed that tumor MDSCs have undergone a morphologic shift from immature myeloid cell forms commonly seen in bone marrow (BM) and spleen MDSCs and acquired mature myeloid cell characteristics. Spleen and BM monocyte-like MDSCs (M-MDSCs) readily responded to differentiation signals for multiple myeloid cell types whereas tumor M-MDSCs had remarkably reduced cellular plasticity. At the time of isolation, M-MDSCs from BM or spleen have little to no T cell suppressive activity whereas those from the tumor possess immediate and efficient T cell suppressive function. Finally, microarray analysis revealed that the transcriptomes of tumor and spleen M-MDSCs possessed >4500 differentially expressed transcripts. We conclude that tumor M-MDSCs are more differentiated and mature, and that they are morphologically, genetically, and functionally distinct from spleen and BM M-MDSCs. These observations have important implications for the design of anti-MDSC therapies and suggest that preclinical studies using nontumor MDSCs could lead to results not applicable to tumor MDSCs.
Collapse
Affiliation(s)
- Ryan D Calvert
- Department of Science and Mathematics, Tabor College, Hillsboro, KS
| | - James C Fleet
- Department of Nutrition Science, University of Texas, Austin, TX
| | - Pierrick G J Fournier
- Center for Scientific Research and Higher Education at Ensenada, Ensenada, Baja California, Mexico
| | - Patricia Juarez
- Center for Scientific Research and Higher Education at Ensenada, Ensenada, Baja California, Mexico
| | - Grant N Burcham
- Heeke Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, Dubois, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | | | - Theresa A Guise
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN.,Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Bennett D Elzey
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX; and.,Center for Cancer Research, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Bone Metastasis of Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14235727. [PMID: 36497209 PMCID: PMC9738274 DOI: 10.3390/cancers14235727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Bone metastasis is a common complication of many types of advanced cancer, including breast cancer. Bone metastasis may cause severe pain, fractures, and hypercalcemia, rendering clinical management challenging and substantially reducing the quality of life and overall survival (OS) time of breast cancer patients. Studies have revealed that bone metastasis is related to interactions between tumor cells and the bone microenvironment, and involves complex molecular biological mechanisms, including colonization, osteolytic destruction, and an immunosuppressive bone microenvironment. Agents inhibiting bone metastasis (such as bisphosphate and denosumab) alleviate bone destruction and improve the quality of life of breast cancer patients with bone metastasis. However, the prognosis of these patients remains poor, and the specific biological mechanism of bone metastasis is incompletely understood. Additional basic and clinical studies are urgently needed, to further explore the mechanism of bone metastasis and develop new therapeutic drugs. This review presents a summary of the molecular mechanisms and therapeutic strategies of bone metastasis of breast cancer, aiming to improve the quality of life and prognosis of breast cancer patients and provide a reference for future research directions.
Collapse
|
20
|
Ihle CL, Wright-Hobart SJ, Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacol Ther 2022; 239:108280. [DOI: 10.1016/j.pharmthera.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
|
21
|
Zou L, Jiang W, Wang Z, Zhu S, Chen J. Effect of Advanced Oxidation Protein Products (AOPPs) and aging on the osteoclast differentiation of Myeloid-Derived Suppressor Cells (MDSCs) and its preliminary mechanism. Biochem Biophys Res Commun 2022; 636:87-96. [DOI: 10.1016/j.bbrc.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
22
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
23
|
Arellano DL, Juárez P, Verdugo‐Meza A, Almeida‐Luna PS, Corral‐Avila JA, Drescher F, Olvera F, Jiménez S, Elzey BD, Guise TA, Fournier PG. Bone Microenvironment-Suppressed T Cells Increase Osteoclast Formation and Osteolytic Bone Metastases in Mice. J Bone Miner Res 2022; 37:1446-1463. [PMID: 35635377 PMCID: PMC9543062 DOI: 10.1002/jbmr.4615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 12/05/2022]
Abstract
Immunotherapies use components of the immune system, such as T cells, to fight cancer cells, and are changing cancer treatment, causing durable responses in some patients. Bone metastases are a debilitating complication in advanced breast and prostate cancer patients. Approved treatments fail to cure bone metastases or increase patient survival and it remains unclear whether immunotherapy could benefit patients. The bone microenvironment combines various immunosuppressive factors, and combined with T cell products could increase bone resorption fueling the vicious cycle of bone metastases. Using syngeneic mouse models, our study revealed that bone metastases from 4T1 breast cancer contain tumor-infiltrating lymphocyte (TILs) and their development is increased in normal mice compared to immunodeficient and T-cell depleted mice. This effect seemed caused by the TILs specifically in bone, because T-cell depletion increased 4T1 orthotopic tumors and did not affect bone metastases from RM-1 prostate cancer cells, which lack TILs. T cells increased osteoclast formation ex vivo and in vivo contributing to bone metastasis vicious cycle. This pro-osteoclastic effect is specific to unactivated T cells, because activated T cells, secreting interferon γ (IFNγ) and interleukin 4 (IL-4), actually suppressed osteoclastogenesis, which could benefit patients. However, non-activated T cells from bone metastases could not be activated in ex vivo cultures. 4T1 bone metastases were associated with an increase of functional polymorphonuclear and monocytic myeloid-derived suppressor cells (MDSCs), potent T-cell suppressors. Although effective in other models, sildenafil and zoledronic acid did not affect MDSCs in bone metastases. Seeking other therapeutic targets, we found that monocytic MDSCs are more potent suppressors than polymorphonuclear MDSCs, expressing programmed cell death receptor-1 ligand (PD-L1)+ in bone, which could trigger T-cell suppression because 70% express its receptor, programmed cell death receptor-1 (PD-1). Collectively, our findings identified a new mechanism by which suppressed T cells increase osteoclastogenesis and bone metastases. Our results also provide a rationale for using immunotherapy because T-cell activation would increase their anti-cancer and their anti-osteoclastic properties. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danna L. Arellano
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Patricia Juárez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| | - Andrea Verdugo‐Meza
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Paloma S. Almeida‐Luna
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Juan A. Corral‐Avila
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Florian Drescher
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Felipe Olvera
- Departamento de Biología Molecular y BioprocesosInstituto de Biotecnología Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Samanta Jiménez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
| | - Bennett D. Elzey
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Theresa A. Guise
- Department of MedicineIndiana University School of MedicineIndianapolisIN
- Endocrine Neoplasia and Hormone DisordersThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Cancer Prevention and Research Institute of TexasAustinTXUSA
| | - Pierrick G.J. Fournier
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| |
Collapse
|
24
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Blaye C, Boyer T, Peyraud F, Domblides C, Larmonier N. Beyond Immunosuppression: The Multifaceted Functions of Tumor-Promoting Myeloid Cells in Breast Cancers. Front Immunol 2022; 13:838040. [PMID: 35309358 PMCID: PMC8927658 DOI: 10.3389/fimmu.2022.838040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancers are commonly associated with an immunosuppressive microenvironment responsible for tumor escape from anti-cancer immunity. Cells of the myeloid lineage account for a major part of this tumor-promoting landscape. These myeloid cells are composed of heterogeneous subsets at different stages of differentiation and have traditionally been described by their cardinal ability to suppress innate and adaptive anticancer immunity. However, evidence has accumulated that, beyond their immunosuppressive properties, breast cancer-induced myeloid cells are also equipped with a broad array of “non-immunological” tumor-promoting functions. They therefore represent major impediments for anticancer therapies, particularly for immune-based interventions. We herein analyze and discuss current literature related to the versatile properties of the different myeloid cell subsets engaged in breast cancer development. We critically assess persisting difficulties and challenges in unequivocally discriminate dedicated subsets, which has so far prevented both the selective targeting of these immunosuppressive cells and their use as potential biomarkers. In this context, we propose the concept of IMCGL, “pro-tumoral immunosuppressive myeloid cells of the granulocytic lineage”, to more accurately reflect the contentious nature and origin of granulocytic cells in the breast tumor microenvironment. Future research prospects related to the role of this myeloid landscape in breast cancer are further considered.
Collapse
Affiliation(s)
- Céline Blaye
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Thomas Boyer
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Florent Peyraud
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Charlotte Domblides
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Service d'Oncologie Médicale, Centre Hospitalo-Universitaire (CHU) Bordeaux, Bordeaux, France
| | - Nicolas Larmonier
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol 2022; 13:824117. [PMID: 35386705 PMCID: PMC8977491 DOI: 10.3389/fimmu.2022.824117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
A substantial amount patients with cancer will develop bone metastases, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis. Despite advancements in systemic therapies for advanced cancer, survival remains poor for those with bone metastases. The interaction between bone cells and the immune system contributes to a better understanding of the role that the immune system plays in the bone metastasis of cancer. The immune and bone systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, which can stimulate the differentiation and activation of bone-resorbing osteoclasts. The process of cancer metastasis to bone, which deregulates bone turnover and results in bone loss and skeletal-related events (SREs), is also controlled by primary cancer-related factors that modulate the intratumoral microenvironment as well as cellular immune process. The nuclear factor kappa B ligand (RANKL) and the receptor activator of nuclear factor kappa B (RANK) are key regulators of osteoclast development, bone metabolism, lymph node development, and T-cell/dendritic cell communication. RANKL is an osteoclastogenic cytokine that links the bone and the immune system. In this review, we highlight the role of RANKL and RANK in the immune microenvironment and bone metastases and review data on the role of the regulatory mechanism of immunity in bone metastases, which could be verified through clinical efficacy of RANKL inhibitors for cancer patients with bone metastases. With the discovery of the specific role of RANK signaling in osteoclastogenesis, the humanized monoclonal antibody against RANKL, such as denosumab, was available to prevent bone loss, SREs, and bone metastases, providing a unique opportunity to target RANKL/RANK as a future strategy to prevent bone metastases.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
28
|
Anders CK, Woodcock MG, Van Swearingen AED, Moore DT, Sambade MJ, Laurie S, Robeson A, Kolupaev O, Cuaboy LA, Garrett AL, McKinnon K, Cowens K, Bortone D, Calhoun BC, Wilkinson AD, Carey L, Jolly T, Muss H, Reeder-Hayes K, Kaltman R, Jankowitz R, Gudena V, Olajide O, Perou C, Dees EC, Vincent BG, Serody JS. Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer. J Immunother Cancer 2022; 10:jitc-2021-003427. [PMID: 35121644 PMCID: PMC8819787 DOI: 10.1136/jitc-2021-003427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is characterized by the presence of immune cells in the tumor microenvironment, however, the response to single-agent immune checkpoint inhibitor (ICI) therapy is modest. Preclinical models have demonstrated that intratumoral regulatory T cells (Tregs) dampen the antitumor response to ICI. We performed a single-arm phase II trial to evaluate the efficacy of a single low dose of cyclophosphamide (Cy) to deplete Tregs administered before initiating pembrolizumab. PATIENTS AND METHODS 40 patients with pretreated metastatic TNBC were enrolled. The primary endpoints were progression-free survival (PFS) and change in peripheral blood Tregs after Cy. Secondary endpoints included overall response rate (ORR), duration of response, overall survival, treatment-related adverse events (AEs), and correlative evaluations. RESULTS Median PFS was 1.8 months, and the ORR was 21%. Tregs were not significantly decreased after Cy prior to ICI (-3.3%, p=0.19), and increased significantly after the first cycle of therapy (+21% between cycles 1 and 2, p=0.005). Immune-related AEs were similar to historical pembrolizumab monotherapy, and were associated with response to therapy (p=0.02). Patients with pretreatment tumors harboring increased expression of B cell metagene signatures and increased circulating B cell receptor repertoire diversity were associated with clinical response and immune-related toxicity (IRT). CONCLUSIONS Among patients with heavily pretreated TNBC, Cy prior to pembrolizumab did not significantly deplete Tregs, and in those with decreased numbers there was rapid recovery following therapy. Increased B cell gene expression in baseline samples was associated with clinical response and IRT.
Collapse
Affiliation(s)
| | - Mark G Woodcock
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Dominic T Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Maria J Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sonia Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alexander Robeson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Oleg Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Luz A Cuaboy
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Amy L Garrett
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Karen McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen Cowens
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dante Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin C Calhoun
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alec D Wilkinson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Lisa Carey
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Trevor Jolly
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hyman Muss
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Katherine Reeder-Hayes
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rebecca Kaltman
- Department of Hematology and Oncology, George Washington Cancer Center, Washington, District of Columbia, USA
| | - Rachel Jankowitz
- Division of Hematology/Oncology, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vinay Gudena
- Division of Hematology/Oncology, Cone Health Cancer Center, Greensboro, North Carolina, USA
| | - Oludamilola Olajide
- Rex Hematology Oncology Associates, Rex Cancer Care, Raleigh, North Carolina, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E Claire Dees
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA .,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 2022; 13:1019864. [PMID: 36246916 PMCID: PMC9556850 DOI: 10.3389/fendo.2022.1019864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is closely related to the survival rate of cancer patients and reduces their quality of life. The bone marrow microenvironment contains a complex immune cell component with a local microenvironment that is conducive to tumor formation and growth. In this unique immune environment, a variety of immune cells, including T cells, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, participate in the process of bone metastasis. In this review, we will introduce the interactions between immune cells and cancer cells in the bone microenvironment, obtain the details of their contributions to the implications of bone metastasis, and discuss immunotherapeutic strategies targeting immune cells in cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, Yangzhou University, Yangzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
30
|
Yang Q, Liu J, Wu B, Wang X, Jiang Y, Zhu D. Role of extracellular vesicles in osteosarcoma. Int J Med Sci 2022; 19:1216-1226. [PMID: 35928720 PMCID: PMC9346389 DOI: 10.7150/ijms.74137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor characterized by the direct production of osteoid tissue from tumor cells. Extracellular vesicles are membranous vesicles released by cells into the extracellular matrix, which exist widely in various body fluids and cell supernatants, and stably carry some important signaling molecules. They are involved in cell communication, cell migration, angiogenesis and tumor cell growth. Increasing evidence has shown that extracellular vesicles play a significant role in osteosarcoma development, progression, and metastatic process, indicating that extracellular vesicles can be use as biomarker vehicles in the diagnosis and prognosis of osteosarcoma. This review discusses the basic biological characteristics of extracellular vesicles and focuses on their application in osteosarcoma.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Jing Liu
- The first clinical medical college of Bin Zhou Medical College, Street Huanghe 661, China
| | - Bo Wu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Xinyu Wang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Ye Jiang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Dong Zhu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| |
Collapse
|
31
|
Johnson RW, Rhoades J, Martin TJ. Parathyroid hormone-related protein in breast cancer bone metastasis. VITAMINS AND HORMONES 2022; 120:215-230. [PMID: 35953110 DOI: 10.1016/bs.vh.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) was discovered as the tumor product causing the humoral hypercalcemia of malignancy. Its structural similarity to the hormone, PTH, with 8 of the first 13 amino acids identical, was sufficient to explain the sharing by PTHrP and PTH of a common receptor, PTH1R, although the remainder of the sequences are unique. PTHrP has important roles in development of several organs, including breast and bone, and functions as a paracrine factor postnatally in these and other tissues. In addition to its hormonal role in cancer, PTHrP is produced by two thirds of primary breast cancers and 90% of bone metastases from breast cancer, leading to the concept that its production in bone by breast cancer cells promotes bone resorption, thus favoring tumor establishment and expansion, and an exit from tumor dormancy in bone through downregulation of leukemia inducing factor receptor (LIFR). Cancer production of PTHrP is increased by bone-derived growth factors, with particular attention paid to TGFβ, as well as by promoter-driven transcriptional effects, such as the hedgehog signaling factor, GLI2, and microenvironment effects including changes in underlying stiffness of substrates for cells. Although interest has been focused on PTHrP-induced bone resorption in bone metastasis, a mechanistically separate, protective effect against tumor progression has been proposed. Although there is conflicting mouse data, there are clinical studies suggesting that increased production of PTHrP by breast cancers confers upon them a less invasive phenotype, an effect distinct from the bone resorption-stimulating action that favors bone metastasis.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, and Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie Rhoades
- Department of Medicine, Division of Clinical Pharmacology, and Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - T John Martin
- St Vincent's Institute of Medical Research, University of Melbourne, St Vincent's Health, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci 2021; 78:7161-7183. [PMID: 34635950 PMCID: PMC11072300 DOI: 10.1007/s00018-021-03966-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.
Collapse
Affiliation(s)
- Zhiguo Ling
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
33
|
Cheng X, Wang Z. Immune Modulation of Metastatic Niche Formation in the Bone. Front Immunol 2021; 12:765994. [PMID: 34745140 PMCID: PMC8564379 DOI: 10.3389/fimmu.2021.765994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis is commonly seen in patients with breast cancer, prostate cancer and lung cancer. Tumor-intrinsic factors and the tumor microenvironment cooperate to affect the formation of bone metastatic niche. Within the bone microenvironment, immune cells have been regarded as a major contributor to metastatic progression. In this review, we describe the dynamic roles of immune cells in regulating metastatic homing, seeding, dormancy, and outgrowth in the bone. We also summarize the diverse functions of immune molecules including chemokines, cytokines, and exosomes in remodeling the bone metastatic niche. Furthermore, we discuss the therapeutic and prognostic potential of these cellular and molecular players in bone metastasis.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
34
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
35
|
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18:488-505. [PMID: 33875860 DOI: 10.1038/s41571-021-00499-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell-osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Dresden, Dresden, Germany.
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Martina Rauner
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Franz Jakob
- Department of Orthopedic Surgery, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
36
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
37
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
38
|
Cheng JN, Frye JB, Whitman SA, Kunihiro AG, Pandey R, Funk JL. A Role for TGFβ Signaling in Preclinical Osteolytic Estrogen Receptor-Positive Breast Cancer Bone Metastases Progression. Int J Mol Sci 2021; 22:4463. [PMID: 33923316 PMCID: PMC8123146 DOI: 10.3390/ijms22094463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.
Collapse
Affiliation(s)
- Julia N. Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Jennifer B. Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Susan A. Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Janet L. Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
39
|
Edwards CM, Johnson RW. From Good to Bad: The Opposing Effects of PTHrP on Tumor Growth, Dormancy, and Metastasis Throughout Cancer Progression. Front Oncol 2021; 11:644303. [PMID: 33828987 PMCID: PMC8019909 DOI: 10.3389/fonc.2021.644303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parathyroid hormone related protein (PTHrP) is a multifaceted protein with several biologically active domains that regulate its many roles in normal physiology and human disease. PTHrP causes humoral hypercalcemia of malignancy (HHM) through its endocrine actions and tumor-induced bone destruction through its paracrine actions. PTHrP has more recently been investigated as a regulator of tumor dormancy owing to its roles in regulating tumor cell proliferation, apoptosis, and survival through autocrine/paracrine and intracrine signaling. Tumor expression of PTHrP in late stages of cancer progression has been shown to promote distant metastasis formation, especially in bone by promoting tumor-induced osteolysis and exit from dormancy. In contrast, PTHrP may protect against further tumor progression and improve patient survival in early disease stages. This review highlights current knowledge from preclinical and clinical studies examining the role of PTHrP in promoting tumor progression as well as skeletal and soft tissue metastasis, especially with regards to the protein as a regulator of tumor dormancy. The discussion will also provide perspectives on PTHrP as a prognostic factor and therapeutic target to inhibit tumor progression, prevent tumor recurrence, and improve patient survival.
Collapse
Affiliation(s)
- Courtney M. Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Giannandrea D, Citro V, Lesma E, Bignotto M, Platonova N, Chiaramonte R. Restoring Tissue Homeostasis at Metastatic Sites: A Focus on Extracellular Vesicles in Bone Metastasis. Front Oncol 2021; 11:644109. [PMID: 33869035 PMCID: PMC8044846 DOI: 10.3389/fonc.2021.644109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Bone is the most common site of cancer metastasis and the spread of cancer cells to the bone is associated with poor prognosis, pain, increased risk of fractures, and hypercalcemia. The bone marrow microenvironment is an attractive place for tumor dissemination, due to the dynamic network of non-malignant cells. In particular, the alteration of the bone homeostasis favors the tumor homing and the consequent osteolytic or osteoblastic lesions. Extracellular vesicles (EVs) are reported to be involved in the metastatic process, promoting tumor invasion, escape from immune surveillance, extravasation, extracellular matrix remodeling, and metastasis, but the role of EVs in bone metastases is still unclear. Current results suggest the ability of tumor derived EVs in promoting bone localization and metastasis formation, altering the physiological balance between bone destruction and new bone depositions. Moreover, EVs from the bone marrow niche may support the onset of tumor metastasis. This review summarizes recent findings on the role of EVs in the pathological alterations of homeostasis that occur during bone metastasis to show novel potential EV-based therapeutic options to inhibit metastasis formation.
Collapse
Affiliation(s)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Bignotto
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
41
|
Safarzadeh E, Mohammadi A, Mansoori B, Duijf PHG, Hashemzadeh S, Khaze V, Kazemi T, Derakhshani A, Silvestris N, Baradaran B. STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients. Front Immunol 2021; 11:613215. [PMID: 33679700 PMCID: PMC7933669 DOI: 10.3389/fimmu.2020.613215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells escape immune destruction. From this perspective, myeloid-derived suppressor cells (MDSCs), which are immunosuppressive in various cancers including breast cancer (BC), are significant. However, the precise mechanisms are unknown. We isolated HLA-DR-CD33+ MDSCs and CD3+ T cells from BC patients’ peripheral blood and healthy donors through MACS and immunophenotyped by flow cytometry. Transfection of short-interfering RNAs and treatment with a TLR7/8 agonist altered pathway activities in vitro. Gene expression was analyzed using qRT-PCR, western blotting, and immunohistochemistry. Our findings showed an association between the progression of BC and increased levels of circulating HLA-DR-CD33+ MDSCs. These cells strongly suppress both autologous and analogous CD3+ T cell proliferation and enter the tumor microenvironment. We also identified increased STAT3 signaling and increased IDO and IL-10 expression in BC-derived MDSCs as immunosuppression mechanisms. Further, STAT3 inhibition and TLR7/8 pathway stimulation reduce the immunosuppressive activity of patient-derived MDSCs on T cells by inducing MDSC repolarization and differentiation into mature myeloid cells. This also alters the expression of critical cytokines and transcription factors in CD3+ T cells and, importantly, reduces breast cancer cells’ proliferation. Finally, while chemotherapy is able to significantly reduce circulating MDSCs’ level in patients with breast cancer, these MDSCs remained highly T cell-suppressive. We identified a novel molecular mechanism of MDSC-mediated immunosuppression. STAT3 inhibition and TLR7/8 pathway stimulation in MDSCs repolarize and suppress MDSCs from breast cancer patients. This offers new opportunities for BC immunotherapy.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology and Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute (TRI), University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO), University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Arana Echarri A, Beresford M, Campbell JP, Jones RH, Butler R, Gollob KJ, Brum PC, Thompson D, Turner JE. A Phenomic Perspective on Factors Influencing Breast Cancer Treatment: Integrating Aging and Lifestyle in Blood and Tissue Biomarker Profiling. Front Immunol 2021; 11:616188. [PMID: 33597950 PMCID: PMC7882710 DOI: 10.3389/fimmu.2020.616188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Over the last four decades, diagnostic and therapeutic procedures have improved substantially, giving patients with localized disease a better chance of cure, and those with more advanced cancer, longer periods of disease control and survival. However, understanding and managing heterogeneity in the clinical response exhibited by patients remains a challenge. For some treatments, biomarkers are available to inform therapeutic options, assess pathological response and predict clinical outcomes. Nevertheless, some measurements are not employed universally and lack sensitivity and specificity, which might be influenced by tissue-specific alterations associated with aging and lifestyle. The first part of this article summarizes available and emerging biomarkers for clinical use, such as measurements that can be made in tumor biopsies or blood samples, including so-called liquid biopsies. The second part of this article outlines underappreciated factors that could influence the interpretation of these clinical measurements and affect treatment outcomes. For example, it has been shown that both adiposity and physical activity can modify the characteristics of tumors and surrounding tissues. In addition, evidence shows that inflammaging and immunosenescence interact with treatment and clinical outcomes and could be considered prognostic and predictive factors independently. In summary, changes to blood and tissues that reflect aging and patient characteristics, including lifestyle, are not commonly considered clinically or in research, either for practical reasons or because the supporting evidence base is developing. Thus, an aim of this article is to encourage an integrative phenomic approach in oncology research and clinical management.
Collapse
Affiliation(s)
| | - Mark Beresford
- Department of Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Department of Medical Oncology, Velindre Cancer Centre, Cardiff, United Kingdom
- Department of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Rachel Butler
- South West Genomics Laboratory Hub, North Bristol NHS Trust, Bristol, United Kingdom
| | - Kenneth J. Gollob
- International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
43
|
O'Melia MJ, Manspeaker MP, Thomas SN. Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer Immunol Immunother 2021; 70:2179-2195. [PMID: 33459842 DOI: 10.1007/s00262-020-02792-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) is a significant clinical problem to which immunotherapeutic strategies have been applied with limited success. Using the syngeneic E0771 TNBC mouse model, this work explores the potential for antitumor CD8+ T cell immunity to be primed extratumorally in lymphoid tissues and therapeutically leveraged. CD8+ T cell viability and responses within the tumor microenvironment (TME) were found to be severely impaired, effects coincident with local immunosuppression that is recapitulated in lymphoid tissues in late stage disease. Prior to onset of a locally suppressed immune microenvironment, however, CD8+ T cell priming within lymph nodes (LN) that depended on tumor lymphatic drainage remained intact. These results demonstrate tumor-draining LNs (TdLN) to be lymphoid tissue niches that support the survival and antigenic priming of CD8+ T lymphocytes against lymph-draining antigen. The therapeutic effects of and CD8+ T cells response to immune checkpoint blockade were furthermore improved when directed to LNs within the tumor-draining lymphatic basin. Therefore, TdLNs represent a unique potential tumor immunity reservoir in TNBC for which strategies may be developed to improve the effects of ICB immunotherapy.
Collapse
Affiliation(s)
- Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA. .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
44
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, Utikal J, Umansky V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol 2020; 359:104254. [PMID: 33296753 DOI: 10.1016/j.cellimm.2020.104254] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are generated during tumor progression and suppress the anti-tumor functions of T and natural killer (NK) cells. Their enrichment is associated with a bad prognosis and a worse outcome of immunotherapy in cancer patients. The cytokine interleukin (IL)-6 was found to be a crucial regulator of MDSC accumulation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Accordingly, IL-6 can serve as a negative prognostic marker in cancer. On the other hand, this cytokine is also involved in T cell activation. This review discusses the pleiotropic effects of IL-6 on immune cell populations that are critical for tumor development, such as MDSC and T cells, and summarizes the data on targeting IL-6 or IL-6 receptor (IL-6R) for tumor immunotherapy to block MDSC-mediated immunosuppression in cancer patients.
Collapse
Affiliation(s)
- Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
46
|
Pu F, Chen F, Zhang Z, Liu J, Shao Z. Information Transfer and Biological Significance of Neoplastic Exosomes in the Tumor Microenvironment of Osteosarcoma. Onco Targets Ther 2020; 13:8931-8940. [PMID: 32982285 PMCID: PMC7498481 DOI: 10.2147/ott.s266835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a highly invasive kind of malignant bone tumor. Exosomes are a type of extracellular vesicles that play an important role in intercellular communication in the microenvironment. Tumor cell progression is promoted through the interaction between exosomes and cells in the microenvironment (including immune cells, mesenchymal cells, and endothelial cells) during tumor development. Neoplastic exosomes can carry a variety of biological information molecules, such as proteins, lipids, and nucleic acids. These molecules play an important clinical role, not only being able domesticate the recipient cells but also being recognized as tumor specific markers. At the same time, exosomes secreted by osteosarcoma can also cooperate with antigen-presenting cells to activate the body's immune response and then to exert anti-tumor effects. Studies on exosomes may be a breakthrough in the search for a new osteosarcoma treatment. In this study, we review the role of neoplastic exosomes in the osteosarcoma microenvironment, summarize their potential as tumor markers, and investigate their clinical application prospects.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
47
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
48
|
De Cicco P, Ercolano G, Ianaro A. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Front Immunol 2020; 11:1680. [PMID: 32849585 PMCID: PMC7406792 DOI: 10.3389/fimmu.2020.01680] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Suppression of antitumor immune responses is one of the main mechanisms by which tumor cells escape from destruction by the immune system. Myeloid-derived suppressor cells (MDSCs) represent the main immunosuppressive cells present in the tumor microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous group of immature myeloid cells with a potent activity against T-cell. Studies in mice have demonstrated that MDSCs accumulate in several types of cancer where they promote invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In addition, different clinical studies have shown that MDSCs levels in the peripheral blood of cancer patients correlates with tumor burden, stage and with poor prognosis in multiple malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies and their targeting may be a beneficial strategy for improvement the efficiency of immunotherapeutic interventions. However, the great heterogeneity of these cells makes their identification in human cancer very challenging. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important to accurately characterized the precise MDSC subsets that have clinical relevance in each tumor environment to more efficiently target them. In this review we summarize the phenotype and the suppressive mechanisms of MDSCs populations expanded within different tumor contexts. Further, we discuss about their clinical relevance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
de Almeida Nagata DE, Chiang EY, Jhunjhunwala S, Caplazi P, Arumugam V, Modrusan Z, Chan E, Merchant M, Jin L, Arnott D, Romero FA, Magnuson S, Gascoigne KE, Grogan JL. Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Rep 2020; 27:269-281.e4. [PMID: 30943407 DOI: 10.1016/j.celrep.2019.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are found in most cancer malignancies and support tumorigenesis by suppressing immunity and promoting tumor growth. Here we identify the bromodomain (BRD) of CBP/EP300 as a critical regulator of H3K27 acetylation (H3K27ac) in MDSCs across promoters and enhancers of pro-tumorigenic target genes. In preclinical tumor models, in vivo administration of a CBP/EP300-BRD inhibitor (CBP/EP300-BRDi) alters intratumoral MDSCs and attenuates established tumor growth in immunocompetent tumor-bearing mice, as well as in MDSC-dependent xenograft models. Inhibition of CBP/EP300-BRD redirects tumor-associated MDSCs from a suppressive to an inflammatory phenotype through downregulation of STAT pathway-related genes and inhibition of Arg1 and iNOS. Similarly, CBP/EP300-BRDi decreases differentiation and suppressive function of human MDSCs in vitro. Our findings uncover a role of CBP/EP300-BRD in intratumoral MDSCs that may be targeted therapeutically to boost anti-tumor immunity.
Collapse
Affiliation(s)
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vidhyalakshmi Arumugam
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Micro Array Lab, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chan
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lingyan Jin
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Arnott
- Department of Technology, Proteomics & Biological Resources, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - F Anthony Romero
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Magnuson
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karen E Gascoigne
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|